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Preface

Since the seminal papers of Kalman (1960, 1961) and the early development in the
field of engineering, state-space models have become an increasingly important tool
for research in finance and economics in recent years. This book is a collection of
contributed papers that reflect this new phase of theoretical developments of state-
space models and their applications in economics and finance. We hope that the
breadth of research shared in this volume will serve as an inspiration and a valuable
reference for future users of state-space models in these two areas.

A generic state-space model consists of two equations. One describes how ob-
servable economic variables relate to potentially unobservable state variables, and
the other describes how state variables evolve over time. Both state and observable
variables can be either discrete- or continuous-time stochastic processes.

This book is divided into four parts. In Parts I and II, we mainly consider discrete-
time state-space models. Let ¥; be an n x 1 observable variable and X; be a k x 1 state
variable. Then, a state-space model can be written as follows:

Yv[:f(X[7678[) (1)
Xt+1 = g(XlueantJrl) (2)

where 6 is an m X 1 vector of model parameters, and & and 7, are independent and
identically distributed random shocks (or noises). f(-) and g(-) are n x 1 and k x 1
(non)linear functions, respectively. Because of its flexibility, many discrete-time
models in economics and finance can be represented in this state-space form. These
models include autoregressive moving average (ARMA) models, regression models
with time-varying coefficients, dynamic factor models (DFM), models with stochas-
tic volatility (SV), regime-switching models, and hidden Markov models (HMM).
In these models, the parameter 6 is typically unknown. Therefore, one central ques-
tion in many applications is to estimate 6 and to conduct statistical inferences of the
model (e.g., hypothesis testing). Researchers are also highly interested in obtaining
unbiased and efficient estimates of the underlying state variables X;.

In Parts III and IV, we include models where the state variable, X(z), can be a
continuous-time finite-state Markov chain as that in hidden Markov or
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regime-switching models of Chaps.8-11. X () can also be a general continuous-
time Markov process described by a stochastic differential equation as those in
Chaps. 12-15. The Markov processes include a geometric Brownian motion (GBM)
and a jump-diffusion process with regime switching among others. The observa-
tion process, Y (¢), can be a continuous-path process (Chaps. 10 and 11), an equally
spaced time series (Chap. 14), or an irregularly spaced point process (Chaps. 8, 13,
and 15). These models have found many applications in finance such as pricing of
credit risk, optimal trading rules and hedging, optimal annuity purchasing or div-
idend policies, optimal learning in financial markets, and modeling (ultra) high-
frequency data.

Below, we provide a more detailed description of each part.

Part I includes three chapters on Particle Filtering and Parameter Learning in
Nonlinear State-Space Models. The introduction of particle filters has had a major
impact on the development of nonlinear and non-Gaussian state-space models. This
technique has expanded the range of practical applicability of state-space models to
cases with high-dimension state space.

In Chap. 1, Tze Leung Lai and Vibhav Bukkapatanam provide a review of the
estimation of the latent state variables using particle filters with known or unknown
model parameters. They also present a new adaptive particle filter that uses a compu-
tationally efficient Markov Chain Monte Carlo estimate of the posterior distribution
of the state-space model parameters in conjunction with sequential state estimation.
They describe several applications in finance and economics, including frailty mod-
els of portfolio default probabilities, SV models with contemporaneous price and
volatility jumps, and hidden Markov models for high-frequency transaction data.

In Chap. 2, Maria Paula Rios and Hedibert Freitas Lopes explore kernel smooth-
ing and conditional sufficient statistics extensions of the auxiliary particle filters (Pitt
and Shepard 1999) and bootstrap filters (Gordon, Salmond and Smith 1993). Using
simulated data from SV models with Markov switching, they show that the Liu-
West particle filter degenerates and has the largest Monte Carlo error, while their
auxiliary particle filter extended with sufficient statistics (APF + SS) has a much
better performance. Their APF + SS filter takes advantage of recursive sufficient
statistics that are sequentially tracked and whose behavior resembles that of a latent
state with conditionally deterministic updates. They also assess the performance of
the APF + SS filter in sequential estimation in examples with real data.

In Chap. 3, Alexandre J. Chorin, Matthias Morzfeld, and Xuemin Tu review the
implicit particle filter. The key idea is to concentrate the particles on the high-
probability regions of the target probability density function (pdf) so that the num-
ber of particles required for a good approximation of the pdf remains manageable
even if the state space has high dimensions. They explain how this idea is imple-
mented, discuss special cases of practical importance, and show the relations of
the implicit particle filter with other data assimilation methods. They further illus-
trate the method with examples such as SV, stochastic Lorenz attractor, stochastic
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Kuramoto—Sivashinsky equation, and data assimilations.

Part II includes four chapters on the application of Linear State-Space Models in
Macroeconomics and Finance.

In Chap. 4, Yulei Luo, Jun Nie, and Eric Young explicitly solve a linear-quadratic
macroeconomic model under model uncertainty (due to concerns of model misspec-
ification) and state uncertainty (due to limited information constraint). They show
that the model can be mapped to a state-space representation that can be used to
quantify the key parameters of model uncertainty. They demonstrate through exam-
ples how this framework can be used to study a range of interesting questions in
macroeconomics and international finance such as explaining current account dy-
namics and resolving the international consumption puzzle.

In Chap. 5, Pym Manopimoke estimates a state-space model of the inflation dy-
namics in Hong Kong. The model allows her to decompose Hong Kong inflation
into a stochastic trend and a stationary cycle component that can be driven by both
domestic and foreign economic variables such as output gaps. This empirical model
is consistent with economic theories of inflation and output, offering new insight
into the determination of trend and cyclical inflation in Hong Kong. This is an ex-
ample of the power of state-space models in empirical macroeconomic research.

Inrecent years, vector autoregression models (VARs) have become a primary tool
for investigating dynamic relationship between multiple economic variables. One
challenge, however, is that such relationships are often evolving over time as a result
of shifts in government policies or structural changes in the economy. In Chap. 6,
Taeyoung Doh and Michael Connolly show that the state-space representation is a
useful tool to estimate VARs with time-varying coefficients and/or SV. They show
that these models can better capture the changing relationships between important
macroeconomic variables.

Chapter 7 is an application to finance. Jun Ma nd Mark Wohar use a state-space
model to address one important issue regarding sources of stock market volatility.
They argue that the existing empirical studies have focused on point estimation and
lack robust statistical inference. The authors show that the small signal-to-noise ra-
tio has made the market data contain too little useful information for researchers to
reach robust conclusions about the relative importance of different sources of stock
market volatility.

Part III includes five chapters on Hidden Markov Models (HMM), Regime
Switching, and Mathematical Finance.

Chapters 8 and 9 are on hidden Markov models and their applications to finance.
In Chap. 8, Robert Elliott and Tak Kuen Siu discuss an intensity-based model of
portfolio credit risk using a collection of hidden Markov-modulated single jump
processes. The model is a dynamic version of a frailty model casted in state-space
form, able to describe dependent default risks among firms that are exposed to
a common hidden dynamic frailty factor. The authors develop filtering equations
and filter-based estimates of the model in recursive forms. They also obtain the
joint default probability of reference entities in a credit portfolio as well as the
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variance dynamics for both observations and hidden states. In Chap.9, Xiaojing
Xi and Rogemar Mamon develop a weak hidden Markov model (WHMM) for the
term structure of interest rates where the means and volatilities of bond yields are
governed by a second-order Markov chain in discrete time. The authors use the
multivariate filtering technique in conjunction with the EM algorithm to estimate
the model parameters. They assess the goodness of fit of the model based on out-of-
sample forecasts and apply AIC to determine the optimal number of regimes in their
model. They apply the model to a data set of daily Treasury yields in the USA. The
empirical results show that their WHMM outperforms the standard HMM in terms
of out-of-sample forecasts.

Chapters 10 and 11 are applications of regime-switching models to insurance
risk and optimal trading rule. Models with regime switching usually don’t have an-
alytical solutions to the associated stochastic control problems. In Chap. 10, Zhuo
Jin and George Yin discuss numerical methods for solving stochastic optimization
problems involving regime-switching models. They propose a numerical solution to
the system of HJB equations based on Markov chain approximation. They show how
these regime-switching models can be applied to analyze optimal annuity purchas-
ing and optimal dividend payment strategy problems. In Chap. 11, Eunju Sohn and
Qing Zhang study an optimal trading rule problem where the underlying asset price
is governed by a mean-reverting process with regime switching. The investor’s ob-
jective is to buy and sell the asset so as to maximize the overall return. The authors
consider the case in which the jump rates of the Markov chain can go to infinite.
They study the asymptotic properties of the limit value functions and establish a
limiting problem which is easier to solve. They show that the solution to the limit-
ing problem can be used to construct a trading rule that is nearly optimal.

In Chap. 12, Mingming Wang and Allanus Tsoi discuss Constant Proportion
Portfolio Insurance (CPPI) problem with jump diffusion. They also consider the as-
sociated problem of hedging using both the PDE/PIDE and martingale approaches.
In particular, they consider the mean-variance hedging problem when the contingent
claim is a function of the CPPI portfolio value.

Part 1V includes three chapters on Nonlinear State-Space Models for High-
Frequency Financial Data.

In Chap. 13, combining classical Kyle and Glosten—Milgrom models, Yoonjung
Lee proposes a new state-space modeling framework under asymmetric information.
The model is able to describe the interactions among some important variables in
financial markets such as the price impact of a trade, the duration between trades,
and the degree of information asymmetry. In the model, a private signal is partially
revealed through trades, while new public information arrives continuously at the
market. In order to set a competitive price that rationally incorporates these two
sources of information, the market maker utilizes Bayesian learning. The author
derives the corresponding nonlinear filtering equation using anticipative Girsanov
transformation. She further proves the existence and uniqueness of the ask and bid
prices using an SPDE approach. The pricing rule depends on the actual sequence
of order arrivals, not just the total number of buy/sell orders. The price impact of a
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trade tends to decrease when the duration between trades gets longer. The speed at
which the information gets incorporated into the price depends on the quality of the
private signal and the trading rate of informed traders.

Chapter 14 is concerned with volatility estimation and prediction. A popular ap-
proach is to use the high-frequency data to estimate volatilities and then fit a low-
frequency AR volatility model for forecasting. While the empirical performance
of this approach is good, there is a lack of theoretical foundation. In this chapter,
Yazhen Wang and Xin Zhang show that, for rather general underlying price and
volatility processes, the realized volatility estimators approximately follow a het-
erogeneous autoregressive model, hence providing theoretical justifications of the
popular approach. An important feature of the model is that the two- or multi-scaled
realized volatility estimators employed are based on a state-space model, where the
prices from high-frequency transactions may include market microstructure noise.

Chapter 15 is concerned with estimating models for ultra-high frequency data.
The class of models has a random-arrival-time state-space form that explicitly ac-
commodates market microstructure noises in asset price. Although the model is able
to capture stylized facts of tick data, the nonlinear state-space model structure makes
parameter estimation a challenge. Cai Zhu and James Huang apply particle Markov
Chain Monte Carlo (PMCMC) method to estimate a couple models when the un-
derlying intrinsic value processes follow a GBM or a jump-diffusion process. They
show that the PMCMC method is able to yield reasonable estimates of the model
parameters and further discuss numeric methods that are able to enhance the effi-
ciency of the algorithm.

We would like to express our gratitude to all the contributors of the book chapters
for their efforts in making their research accessible to a wide range readers. We hope
the book can lead to more interdisciplinary research among economists, mathemati-
cians, and statisticians. We also would like to thank Yaozhong Hu of University of
Kansas, Neng Wang of Columbia University, and Zhenxiao Wu of National Univer-
sity of Singapore for their generous help during the preparation of this book.

We want to thank Brian Foster, a former Springer editor, for his enthusiasm and
help in the early stage of this book project. We also want to thank Hannah Bracken,
Marc Strauss, Nicolas Philipson, and William Curtis of Springer New York. Their
continuing support and commitment throughout the project are highly appreciated.
We owe a special thanks to Hannah Bracken for her superb editorial assistance.

Yong Zeng’s research is supported by National Science Foundation under the
grants of TG-DMS100019 and DMS-1228244 and a grant from the University of
Missouri Research Board in 2011. He gratefully acknowledges those grant supports.
Finally, we would like to thank our families for their continuous support, which
makes the completion of this project possible.
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Particle Filtering and Parameter Learning
in Nonlinear State-Space Models



Chapter 1

Adaptive Filtering, Nonlinear State-Space
Models, and Applications in Finance
and Econometrics

Tze Leung Lai and Vibhav Bukkapatanam

1.1 Introduction

The Kalman filter, which is applicable to linear Gaussian models, and its
modifications such as extended Kalman filters, Gaussian sum filters, and unscented
Kalman filters for nonlinear state-space models are widely used in engineering.
Without relying on local linearization techniques or functional approximations, par-
ticle filters are able to handle a large class of nonlinear non-Gaussian state-space
models and have become increasingly popular in engineering applications in the
past decade. Filtering in state-space models involves sequential computation of
the posterior distribution of the latent state x; given observations yy,...,y;. Smooth-
ing involves the estimation of the hidden state x; given observations yy,...,y,, with
1 <t < n. More details are given in Sect. 1.2.

State-space models typically involve unknown parameters that have to be esti-
mated from the data by either maximum likelihood or Bayesian methods. Replacing
these unknown parameters in a particle filter by their sequential estimates leads to
an adaptive particle filter; see Liu and West (2001) in [31], Storvik (2002) in [38],
Carvalho et al. (2010) in [9], Polson et al. (2008) in [35], and Andrieu et al. (2010)
in [2]. Section 1.3 reviews existing methods for sequential parameter estimation
in state-space models. Section 1.4 describes a new adaptive filter that combines a
novel Markov Chain Monte Carlo (MCMC) scheme for sequential parameter esti-
mation with an efficient particle filter to estimate the state x;. An important advan-
tage of the new approach is that it yields a consistent estimate of the Monte Carlo
standard error.

T.L. Lai (B<)
Department of Statistics, Stanford University, Stanford, CA, USA
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Particle filters have powerful and far-reaching applications in state-space models
in finance and econometrics, some of which are described in Sect. 1.5. Section 1.6
gives some concluding remarks.

1.2 Particle Filters in Nonlinear State-Space Models

A general state-space model, also called a hidden Markov model (HMM), is defined
by the evolution and observation density functions

Xz|xt—1 Nf(xt|xt—1a9) (1.D)
Velxe ~ g(velxz, 9)

with respect to measures i and v, respectively, where 8 is a vector of parameters of
the model. In the Bayesian formulation, the initial state xo has prior density f(xo|0),
and O has the prior density 7(0) with respect to some measure on the parameter
space. In the HMM, x; is the latent state and y; is the observed data at time ¢. The
filtering problem is to sequentially estimate the posterior distribution p(x;,0|%;),
where % = (y1,y2,...,y) is the set of observations up to time ¢. Particle filters
approximate this posterior density by using a set of particles (x;, 6)(i) with weights

Wl@ (i=1,2,...,N) summing to 1, so that
xt76|@ zwf (1.2

in which &, is the Dirac delta function with point mass at z. We now describe dif-
ferent approaches for sampling x, (s < t) sequentially to form the particle filter in

(1.2) when 0 is fixed in advance. The weights W,(i) in (1.2) can be converted to
(@)

w;” = 1/N by a resampling step that samples with replacement N particles from
{(x, 6)(i) 11 <i < N} with respective weights W,(i), as in the original proposal by
Gordon et al. (1993) in [23] reviewed below. This is called bootstrap resampling.
An alternative resampling scheme is introduced in Sect. 1.2.3. Resampling can help
to mitigate the degeneracy of particles, which will be discussed in Sects. 1.3 and 1.4.
Since resampling is optional and also can be used occasionally, we do not include
it in the description of the basic algorithm in Sect. 1.2.1. Moreover, we assume the

parameter vector to be known and therefore omit it in the rest of this section.

1.2.1 Bootstrap Filter

Originally proposed by Gordon et al. (1993) in [23], the bootstrap filter chooses
samples from the prior distribution of the states. The Bayesian update equation for
the posterior in a general filter can be written as
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gl ) p(| % 1)
S gelx)p(xt| %1 )du(xp)

p(x|%) = (1.3)

where
pli) = [ Flosb PG 1|%1)dp ) (1.4

The bootstrap filter samples from the filtering distribution p(x;|%_) by first prop-
agating the particles which approximate p(x,_1|%_;) using the evolution den-
sity f(x|x,—1), and reweighing the particles thus obtained by the likelihood ratio
weights, as summarized in Algorithm 1.

Algorithm 1 : Bootstrap Filter

Initialize particles {x(()i)}?’: | and the corresponding weights {W(()i) =1/N}¥,
fort=1,2,...,Tdo
fori=1,2,...,Ndo

a) Propagate particle xt(’_) 1

to xt(i) using the evolution density f(x; \x,(’_)l)

b) Update particle weights according to W,(i) oc wt(?l gl \x,(i))
end for
end for

1.2.2 Auxiliary Particle Filter

The auxiliary particle filter proposed by Pitt and Shephard (1999) in [33] generates
samples from the filtering distribution with density function

P, Xi—1|5) o< p(xe|yesxi—1) p Ve |xi—1) p (-1 1% 1) (1.5)

Particles approximating p(x,_1|%_1) are first resampled using weights proportional
to the predictive density p(y;|x;—1), and the resampled particles are propagated for-
ward using p(x;|ys,x;—1). This is convenient only if p(x;|y,x;—1) is not difficult to
sample from and p(y,|x;_1) is easily available, which is often not the case. Accord-
ingly Pitt and Shephard in [33] suggest to replace p(y;|x;—1) by p(y|A(x—1)), in
which A(x,_;) is the mean, median, or mode of the distribution of x; given x,_1,
and to propagate the resampled particles by sampling from the proposal density
S (x¢|x:—1), instead of directly from p(x;|x;—1,y;). The method is summarized in
Algorithm 2.
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Algorithm 2 : Auxiliary Particle Filter

Initialize particles {x(()l)}f":l and the corresponding weights {w(()l) =N},
fort=1,2,...,Tdo
fori=1,2,...,Ndo
«

a) Resample particle x,i_l

) N)

from {xt(l_)1 e .,xt(_l} using the weight W,(’) oc p(y,M(x,(’_)l))
b) Propagate particle ?cf?l to ifl) using f(X; \?cf? )
o) Resample x” from {%", ..., %"} using the weight w\") < 0n[&")/g( 2" )
end for
end for

1.2.3 Residual Bernoulli Resampling

Bootstrap resampling has been described in the paragraph preceding Sect. 1.2.1. In
fact, the name bootstrap filter in Sect. 1.2.1 came from bootstrap resampling that
Gordon et al. in [23] used to convert weighted particles to particles with equal
weights. Residual Bernoulli resampling has been proposed as an alternative to boot-
strap resampling and has been shown to often lead to smaller variance for the associ-
ated particle filter than the bootstrap resampling scheme. The method is summarized
in Algorithm 3.

Algorithm 3 : Residual Resampling Scheme
Input: A set of particles {(W,(i), <€?§1i)),i =1,2,....,M}
Output: A new set of particles {(ﬁ7 %(1))71' =1,2,...,M}

SetR=3M | mw"|
fori=1,2,...,Mdo

_Set ) = M- mi)|
end for
for j=1,2,...,Mdo
— Sample N; ~malt(M — R, #{" W, 5™
—SC[Nj = LMVVE,/)J +Nj
_ Set %(/) — Q’Z(Nj)
end for

1.3 Particle Filters with Sequential Parameter Estimation

An important problem which has been studied extensively in recent filtering
literature is that of joint parameter estimation and filtering for general state-space
models. Traditional methods which incorporate the parameters as part of the latent
state vector suffer from severe degeneracy problems due to the absence of state evo-
lution dynamics for the subvector of latent states representing parameters. Methods
to address this issue have been considered in [2, 9, 31, 35, 38], and [34]. They are
summarized below.
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1.3.1 Liu and West’s Filter

Liu and West (2001) in [31] suggest to use a kernel smoothing approximation
to the posterior density p(0]|%/_1) of the unknown parameter 6 via a mixture
of multivariate normals and to combine it with an auxiliary particle filter de-

scribed in Algorithm 2. Let {xt(? 1,9;1)1 }fV: , be a set of particles with weights

wt@l (i =1,...,N), which approximate p(x;_1,0|%_;). They approximate the
posterior density for 6 by

N
p(01% ) = 2 mtd), 5 )

where

t—1
50l
=
N _é)(@(') _é)/
5o =(1-d% =1
2 N

)

The constant a measures the extent of shrinkage of the individual 9(1 | to the overall
mean 0. It is a tuning parameter whose choice is discussed in [31]. The mixture
approximation generates new samples from the current posterior and attempts to
avoid particle degeneracy. The method is summarized in Algorithm 4.

Algorithm 4 : Liu and West’s Filter

Output: The filtering particles {(x,(i) , 6,(i)) Y, and the parameter posterior p(6|%;), t=1,...,T
for t=1,2,...,Tdo
for i=1,2,...,Ndo
a) Resample (%,_1,6,_1)® from {(x,@l, Gt(i)l) 1}’:1 with weights w,(’) o< p(y \k(xt(gl),m(i))

b) Propagate é(i)l to " using N(sm, %, 1)
(i) ()

c) Propagate %, to x, using p(x |x ét(i))

d) Resample (x;, 6,) from {(%;,6,)V }’j\’: | with weights w o pil8” .07 /(A ) )
end for
end for
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1.3.2 Storvik’s Filter

Storvik (2002) in [38] considered sequential parameter estimation for a class of
state-space models in which the posterior parameter density p(6|%;,%) can be
written as p(8|s;), where s; is a low-dimensional set of sufficient statistics that
can be recursively updated by s; = . (s;—1,X,yr). The method is summarized in
Algorithm 5.

Algorithm 5 : Storvik’s Filter

Output: The filtering particles {(x\"”,6") N | and the parameter posterior p(0|s;), t =1,...,T
for t=1,2,..., T do

for i=1,2,... ,Ndo
(@)

1—

a) Propagate x,” to )Efi) using g(x; |)Et(£) 1,6,%)

; . ; Nl NOINO]
b) Resample (x;,s,_1)® from {(%,s,_1)}Y_, with weights wii) o PO 0P 3,-,.6)
J=1 ! a @9 0, 2)
¢) Compute sufficient statistics st(i) =9 (sf?l ,xt(i), )
d) Sample 9,(1) from p(9|st(i))
end for
end for

1.3.3 Particle Learning

Carvalho et al. (2010) in [9] propose the particle learning method which utilizes
a resample-propagate scheme similar to auxiliary particle filters and show that the
proposed method outperforms the filter of Liu and West of [31] in some comparative
studies. Assuming the availability of conditional sufficient statistics s; to represent
the posterior of the parameter vector 8, and conditional sufficient statistics s; . re-
cursive state and parameter updates. The particles are now represented at each time

by z,(i) (X, 8¢, 8t 1, 9)(i) and the Bayesian updating equation can be written as

plal) = [ plsbs1y0ptala10pa | #)dnday (16)

where
P(z-11%) o= p(Hlz-1)p(z1|%i-1) (1.7)
Denoting the updating formulas for s, and s, by s¢ = % (s,—1,%,y,) and s, =

J (Si—14,0,y;), Algorithm 6 summarizes the resampling and propagation steps in
their filter.
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Algorithm 6 : Particle Learning

Output: The filtering density approximated by particles zt(i) and the parameter posterior p(60|s;)
for t=1,2,..., T do _
1) Resample: z}@

(0

| from the particles {zt(i)l}_];gl using weights wt(i) o p(y,|zt(?1)
| to " using the distribution p(x,|£,(217yt) .
3) Propagate: Parameter sufficient statistics st(l) =7 (ft(fl ,xt(l), Vt)

2) Propagate: £,
4) Propagate: Sample 8) from p(9|s,(i>)

5) Propagate: State sufficient statistics 9,(13 =X (‘Gt(?m, 6% y,)
end for

1.3.4 Particle MCMC

Hybrid methods that combine particle filters with MCMC schemes have been con-
sidered in the literature. Important recent developments in this direction are [2, 35],
and [34]. Polson et al. (2008) in [35] use a rolling window MCMC algorithm that
approximates the target posterior distribution by a mixture of lag-k smoothing dis-
tributions. They recast the filtering problem as a sequence of smaller smoothing
problems which can be solved using standard MCMC approaches as in [7] and [8].
They exploit, whenever possible, a sufficient statistic structure as in [19] and [38]
to perform parameter updates and develop an algorithm with linear computational
cost. Andrieu et al. (2010) in [2] introduce the particle MCMC (PMCMC) methods
to perform inference on the unknown parameter vector 6. Pitt et al. (2012) in [34]
provide further analytic results on PMCMC and show that using auxiliary particle
filters in PMCMC schemes may help reduce computation time.

1.4 A New Approach to Adaptive Particle Filtering

In this section, we describe a new adaptive filtering technique, recently introduced
in [11, 12], for joint parameter and latent state filtering in particle filters, which
provides substantial improvement over previous approaches. The authors in [12]
propose an efficient MCMC method to estimate the posterior distribution of the pa-
rameters, which can be used in conjunction with traditional particle filter methods
that assume the parameters to be known. Bukkapatanam et al. (2012) in [5] pro-
vide further development of the methodology and its applications to economics and
finance, which will be summarized in Sect. 1.5.

Chan and Lai (2012a) in [11] begin by considering the case where the parameter
vector 6 is known so that it can be omitted from the notation for particle fil-
ters, as in Sects. 1.2.1-1.2.3. They consider more generally the estimation of yr =
E|w(27)|%7] instead of E[y(x7)|%7], where 27 = (x1,...,xr). When bootstrap
resampling is performed at every stage, they show that the bootstrap filter estimate
vr of yr = E[y(27)|%7] has a martingale representation



