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Preface

Contemporary engineering design is heavily based on computer simulations. Ac-
curate, high-fidelity simulations are used not only for design verification but, most
importantly, to adjust parameters of the system (e.g., wing geometry, material pa-
rameters of antennas) so that it meets given performance requirements. Unfortu-
nately, accurate simulations are often computationally expensive, with evaluation
times ranging from hours to days per design. Consequently, design automation using
conventional optimization methods is often impractical or even prohibitive. Other is-
sues include the numerical noise that is often present in simulation responses, and
the absence of sensitivity information. These, and other problems, can be alleviated
by the development and employment of so-called surrogates, which reliably repre-
sent the expensive, simulation-based model of the system/device of interest, but are
much cheaper and analytically tractable.

This edited book is about surrogate-based modeling and optimization techniques
and their applications for solving difficult and computationally expensive engineer-
ing design problems. A group of international experts summarize recent develop-
ments in the field and demonstrate applications in various disciplines of engineering
and science. The main purpose of the work is to provide the basic concepts and for-
mulations of the surrogate-based modeling and optimization paradigm, as well as
to discuss relevant modeling techniques, optimization algorithms, and design pro-
cedures.

Simulation-driven design based on surrogate models plays an increasingly impor-
tant role in contemporary engineering and permits us to solve problems that cannot
be solved otherwise, particularly by dramatically reducing the computational cost of
the solution process. Unfortunately, recent results concerning surrogate-based mod-
eling and optimization are scattered throughout the literature in various engineering
fields and, therefore, are not easily accessible to a reader interested in this technol-
ogy. Thus, this book should be of interest to engineers from any discipline where
computationally heavy simulations (such as finite element, computational fluid dy-
namics, and computational electromagnetics analyses) are used on a daily basis in
the design process. The editors of this volume hope that the presented material will
allow the readers to gain an understanding of the basic mechanisms of the surro-
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gate modeling process and familiarize themselves with important components of
surrogate-based optimization algorithms and the advantages of employing variable-
fidelity simulation-driven design, as well as enable them to reduce the cost of the
design process aided by computer simulations.

Slawomir Koziel
Leifur Leifsson

Reykjavik, Iceland
March 2013
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Space Mapping for Electromagnetic-
Simulation-Driven Design Optimization

Slawomir Koziel, Leifur Leifsson, and Stanislav Ogurtsov

Abstract Space mapping (SM) has been one of the most popular surrogate-based
optimization techniques in microwave engineering to date. By exploiting the knowl-
edge embedded in the underlying coarse model (e.g., an equivalent circuit), SM
allows dramatic reduction of the computational cost while optimizing electromag-
netic (EM)-simulated structures such as filters or antennas. While potentially very
efficient, SM is not always straightforward to implement and set up, and may suffer
from convergence problems. In this chapter, we discuss several variations of an SM
optimization algorithm aimed at improving SM performance for design problems
involving EM simulations. These include SM with constrained parameter extraction
and surrogate model optimization designed to overcome the problem of selecting
preassigned parameters for implicit SM, SM with response surface approximation
coarse models that maintain SM efficiency when a fast coarse model is not avail-
able, and SM with sensitivity which takes advantage of adjoint sensitivity (which
has recently become commercially available in EM simulators) to improve the con-
vergence properties and further reduce the computational cost of SM algorithms.
Each variation of the SM algorithm presented here is illustrated using a real-world
microwave design example.

Keywords Computer-aided design (CAD) · Microwave engineering ·
Simulation-driven optimization · Electromagnetic (EM) simulation ·
Surrogate-based optimization · Space mapping · Surrogate model · High-fidelity
model · Coarse model

1 Introduction

Space mapping (SM) [1–3] was originally developed in the 1990s to deal with
computationally expensive design problems in microwave engineering [3, 4]. Au-
tomated design closure of structures evaluated using electromagnetic (EM) simu-
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lations is still a challenging task today, mostly due to the high computational cost
of accurate, high-fidelity EM simulation. The presence of massive computing re-
sources does not always translate into computational speedup. This is due to a grow-
ing demand for simulation accuracy (which requires, among other things, finer dis-
cretization of the structure), as well as the necessity of including important interac-
tions between the structure under design and its environment (e.g., antenna housing
and connectors, etc.), which increases the computational domain and, consequently,
slows down the simulation. At the same time, multiphysics simulations (e.g., in-
cluding thermal effects) become more and more important, further contributing to
the computational cost of the simulation. As conventional optimization algorithms
(e.g., gradient-based schemes with numerical derivatives) require tens, hundreds, or
even thousands of objective function calls per run (depending on the number of de-
sign variables), the computational cost of the whole optimization process may not
be acceptable.

SM belongs to a broader family of methods called surrogate-based optimization
(SBO) techniques [5–7]. SM and most other SBO methods share a main structure,
in which the direct optimization of the expensive (here, EM-simulated) structure,
referred to as the high-fidelity or fine model, is replaced by iterative refinement and
reoptimization of a low-fidelity (or coarse) model. The coarse model is a physics-
based representation of the high-fidelity one. It is less accurate but supposedly much
faster than the latter. An example of a coarse model in microwave engineering is an
equivalent circuit which describes the same structure as the fine model but using cir-
cuit theory rather than full-wave EM simulation. The SM surrogate is constructed
by enhancing the coarse model through auxiliary transformations, usually linear,
with parameters of these transformations obtained in what is called the parameter
extraction (PE) process [8], which is a trademark of SM. PE is executed to reduce
the misalignment between the responses of the space-mapped coarse model and the
fine model at a limited number of designs, usually those that have already emerged
during the SM optimization run. The benefit of SM lies in the fact that each SM iter-
ation usually requires evaluation the high-fidelity model at a single design (the one
obtained by optimizing the current surrogate model), and—for a well-performing
algorithm—only a few iterations are necessary to yield a satisfactory design.

SM has been successfully applied to optimize a number of microwave compo-
nents, the majority of which are filters [1–4] and impedance transformers [8], but
also antennas [9–11], etc. As mentioned before, one of the fundamental prerequisites
of SM is that the underlying coarse model be fast, so that the computational over-
head related to parameter extraction and surrogate model optimization performed
at each iteration of the algorithm can be neglected. For this reason, equivalent cir-
cuit models are preferred. Unfortunately, reliable equivalent circuit models are not
available for many structures, including broadband antennas [12] and substrate in-
tegrated structures [13]. Also, if EM coupling between the device of interest and its
environment has to be taken into account (e.g., an antenna mounted in a cellphone or
on a vehicle), full-wave simulation is probably the only way to evaluate the system.
A possible lack of fast models poses a difficulty for SM, because the computational
overhead related to multiple evaluation of the low-fidelity model, particularly due
to PE, may determine the total CPU cost of the SM process.
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Another issue is convergence: as SM does not use sensitivity information by de-
fault, it is not globally convergent in a conventional sense, unless certain conditions
regarding similarity between the low- and high-fidelity models [14] are met. Those
conditions are, unfortunately, difficult to verify in practice [15]. At the same time,
SM offers a number of ways of constructing the surrogate model. A number of ele-
mentary transformations (input SM [8], implicit SM [16], or frequency SM [2, 14])
can be combined into more involved models. The specific choice of the model af-
fects the algorithm performance [17], and the optimal choice is not trivial [15].

In this chapter, we discuss several variations of the SM algorithms specifically
targeted at improving the SM performance for microwave engineering applications.
The chapter is organized as follows. In Sect. 2, we recall the SM concept and formu-
late a generic SM algorithm. In Sect. 3, we describe implicit SM with constrained
parameter extraction, which helps improve convergence of the SM algorithm with-
out requiring careful selection of its preassigned parameters. Section 4 is devoted
to SM with auxiliary response surface approximation coarse models. This approach
aims at improving the efficiency of the SM optimization process in situations when
the available low-fidelity models are relatively expensive (e.g., obtained through
coarse-discretization EM simulations), which is usually the case in antenna design.
In Sect. 5, we discuss the enhancement of SM using adjoint sensitivity. By exploit-
ing derivative information whenever possible, specifically, to enhance the surrogate
model as well as to speed up both PE and surrogate model optimization, it is pos-
sible to improve the algorithm convergence and to reduce its computational cost.
Section 6 concludes the chapter with some recommendations for readers interested
in applying SM in their design work.

2 Space Mapping Optimization: A Brief Introduction

In this section, we briefly recall the formulation of the generic space mapping (SM)
algorithm, the concept of parameter extraction (PE), and the basic types of SM sur-
rogate models.

A microwave design task can be formulated as a nonlinear minimization problem

x∗ ∈ arg min
x∈Xf

U
(
Rf (x)

)
, (1)

where Rf ∈ Rm denotes the response vector of the device of interest, e.g., the mod-
ulus of the transmission coefficient |S21| evaluated at m different frequencies. U is
a given scalar merit function, e.g., a minimax function with upper and lower speci-
fications [8]. Vector x∗ is the optimal design to be determined. Normally, Rf is ob-
tained through computationally expensive electromagnetic (EM) simulation, and is
referred to as the high-fidelity or fine model. Because of the high computational cost,
using conventional optimization techniques to handle (1) may be impractical; both
gradient-based (e.g., quasi-Newton [18]) and derivative-free (pattern search [19],
genetic algorithms [20]) methods usually require a substantial number of objective
function (and thus, high-fidelity model) evaluations.
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SM [1–3, 21] is a methodology that aims at reducing the cost of solving the
problem (1). SM belongs to a broader class of surrogate-based optimization (SBO)
techniques [7–9]. Similarly to other SBO methods, SM speeds up the design pro-
cess by shifting the optimization burden to an inexpensive yet reasonably accurate
surrogate model of the device of interest. In the generic SM framework described
here the direct optimization of the computationally expensive EM-simulated high-
fidelity model Rf is replaced by an iterative procedure [7, 14]

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (2)

that generates a sequence of points (designs) x(i) ∈ Xf , i = 0,1, . . . , that are ap-
proximate solutions to the original design problem (1). Each x(i+1) is the optimal
design of the surrogate model R

(i)
s : X(i)

s → Rm, X(i)
s ⊆ Rn, i = 0,1, . . . . R

(i)
s is as-

sumed to be a computationally cheap and sufficiently reliable representation of the
fine model Rf , particularly in the neighborhood of the current design x(i). Under
these assumptions, the algorithm (2) is likely to produce a sequence of designs that
quickly approach x∗

f .

Typically, Rf is only evaluated once per iteration (at every new design x(i+1))
for verification purposes and to obtain the data necessary to update the surrogate
model. Since the surrogate model is computationally cheap, its optimization cost
(cf. (2)) can usually be neglected, and the total optimization cost is determined by
the evaluation of Rf . The key point here is that the number of evaluations of Rf for
a well-performing surrogate-based algorithm is substantially smaller than for any
direct optimization method (e.g., a gradient-based one). Figure 1 shows the block
diagram of the SM optimization process.

If the surrogate model satisfies zero- and first-order consistency conditions with
the fine model, i.e., R

(i)
s (x(i)) = Rf (x

(i)) and (∂R
(i)
s /∂x)(x(i)) = (∂Rf /∂x)(x(i))

(verification of the latter requires Rf sensitivity data), and the algorithm (2) is en-
hanced by the trust region method [22], then it is provably convergent to a local fine
model optimum [23]. Convergence can also be guaranteed if the algorithm (2) is
enhanced by properly selected local search methods [24]. SM [8, 14, 25, 26] does
not normally rely on the aforementioned enhancements; however, it requires the
surrogate model to be constructed from the physically based coarse model [8]. This
usually gives remarkably good performance in the sense of the SM algorithm being
able to quickly locate a satisfactory design.

The way that SM constructs the surrogate model for the iterative process (2) is
one of the features that distinguish this technique from many other SBO approaches.
The surrogate model at iteration i, R

(i)
s , is constructed from the low-fidelity model

so that the misalignment between R
(i)
s and the fine model is minimized using the

parameter extraction (PE) process, which is the nonlinear minimization problem
by itself [8]. The surrogate is defined as [14]

R(i)
s (x) = Rs.g

(
x,p(i)

)
, (3)
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Fig. 1 Surrogate-based simulation-driven design optimization: the optimization burden is shifted
to the computationally cheap surrogate model which is updated and reoptimized at each iteration
of the main optimization loop. High-fidelity EM simulation is only performed once per iteration to
verify the design produced by the surrogate model and to update the surrogate itself. The number
of iterations for a well-performing SBO algorithm is substantially smaller than for conventional
techniques

where Rs.g is a generic SM surrogate model, i.e., the low-fidelity model composed
with suitable transformations, whereas

p(i) = arg min
p

i∑

k=0

wi.k

∥∥Rf

(
x(k)

)− Rs.g

(
x(k),p

)∥∥ (4)

is a vector of model parameters and wi.k are weighting factors; a common choice of
wi.k is wi.k = 1 for all i and all k.

Various SM surrogate models are available [8, 14]. They can be roughly catego-
rized into four groups:

• Models based on a (usually linear) distortion of coarse model parameter space,
e.g., input SM of the form Rs.g(x,p) = Rs.g(x,B, c) = Rc(B ·x + c) [8];

• Models based on a distortion of the coarse model response, e.g., output SM of the
form Rs.g(x,p) = Rs.g(x,d) = Rc(x)+ d [14];

• Implicit SM, where the parameters used to align the surrogate with the fine
model are separate from the design variables, i.e., Rs.g(x,p) = Rs.g(x,xp) =
Rc.i (x,xp), with Rc.i being the coarse model dependent on both the design vari-
ables x and the preassigned parameters xp (e.g., dielectric constant, substrate
height) that are normally fixed in the fine model but can be freely altered in the
coarse model [14];

• Custom models exploiting parameters characteristic to a given design problem;
the most characteristic example is frequency SM Rs.g(x,p) = Rs.g(x,F ) =



6 S. Koziel et al.

Rc.f (x,F ) [8], where Rc.f is a frequency-mapped coarse model, i.e., the coarse
model evaluated at frequencies ω different from the original frequency sweep for
the fine model, according to the mapping ω → f1 + f2ω, with F = [f1f2]T .

SM usually comprises combined transformations. For instance, a surrogate
model employing input, output, and frequency SM transformations would be
Rs.g(x,p) = Rs.g(x, c,d,F ) = Rc.f (x + c,F )+ d . The rationale for this is that a
properly chosen mapping may significantly improve the performance of the SM al-
gorithm; however, the optimal selection of the mapping type for a given design prob-
lem is not trivial [15]. Work has been done to ease the selection process for a given
design problem [17, 27]. However, regardless of the mapping choice, coarse model
accuracy is what principally affects the performance of the SM design process. One
can quantify the quality of the surrogate model through rigorous convergence con-
ditions [15]. These conditions, although useful for developing more efficient SM
algorithms and automatic surrogate model selection techniques, cannot usually be
verified because of the limited amount of data available from the fine model. In prac-
tice, the most important criterion for assessing the quality or accuracy of the coarse
model is still visual inspection of the fine and coarse model responses at certain
points and/or examining absolute error measures such as ‖Rf (x)− Rc(x)‖.

The coarse model is the most important factor that affects the performance of the
SM algorithm. The first stems from accuracy. Coarse model accuracy (more gener-
ally, the accuracy of the SM surrogate [15]) is the main factor that determines the
efficiency of the algorithm in terms of finding a satisfactory design. The more accu-
rate the coarse model, the smaller the number of fine model evaluations necessary
to complete the optimization process. If the coarse model is insufficiently accurate,
the SM algorithm may need more fine model evaluations or may even fail to find a
good quality design.

The second important characteristic is the evaluation cost. It is essential that the
coarse model be computationally much cheaper than the fine model, because both
PE (4) and surrogate optimization (2) require large numbers of coarse model eval-
uations. Ideally, the evaluation cost of the coarse model should be negligible when
compared to the evaluation cost of the fine model, in which case the total compu-
tational cost of the SM optimization process is merely determined by the necessary
number of fine model evaluations. If the evaluation time of the coarse model is too
high, say, larger than 1 % of the fine model evaluation time, the computational cost
of surrogate model optimization and, especially, PE, start playing important roles in
the total cost of SM optimization and may even determine it. Therefore, practical ap-
plicability of SM is limited to situations where the coarse model is computationally
much cheaper than the fine model. The majority of SM models reported in the lit-
erature (e.g., [4, 8, 14]) concern microstrip filters, transformers, or junctions where
fast and reliable equivalent circuit coarse models are easily available.
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3 Implicit Space Mapping with Constrained Parameter
Extraction for Microwave Filter Design

In this section, we discuss SM with constrained PE [28] as a way to alleviate the
problems related to the proper selection of the SM parameters used to construct the
surrogate model as well as to improve convergence properties of the SM algorithm.
Without loss of generality, we restrict our considerations to implicit SM [16], the
most general approach to SM. Implicit SM allows us to introduce any number of
surrogate model parameters. In particular, over-flexibility of the surrogate model
required by our method can be easily obtained. Also, implicit SM can incorporate
most other SM types, including input and output SM.

3.1 Implicit Space Mapping Algorithm

Implicit SM follows the generic SM scheme (2); however, for better clarity, we as-
sume here a specific form of the SM surrogate model. Let Rc : Xc × Xp → Rm,∈
Rm denote the response vector of the coarse model that describes the same object
as the fine model: less accurate but much faster to evaluate. Rc depends on two sets
of parameters: (i) design variables x, the same as in the fine model, and (ii) pre-
assigned parameters xp , i.e., parameters that are normally fixed in the fine model
(e.g., dielectric constants) but can be adjusted in the coarse model to match it to Rf .

The generic SM algorithm (2) can then be reformulated as follows:

x(i+1) = arg min
x

U
(
Rc

(
x,x(i)

p

))
, (5)

where

x(i)
p = arg min

xp

∥∥Rf

(
x(i)

)− Rc

(
x(i),xp

)∥∥. (6)

Thus, the coarse model with adjusted values of preassigned parameters becomes
a surrogate model for the implicit SM algorithm. We note that other types of
SM can also be reformulated in terms of implicit SM. For example, the surro-
gate model of the most popular input SM [14] is defined as Rs(x) = Rc(x + c),
where c is an n × 1 vector of parameters. It can be formulated in implicit SM
terms as Rc.i (x,xp), where Rc.i is the implicit-SM-like coarse model defined as
Rc.i (x,xp) = Rc(x + xp). In particular, the same software implementation can be
used to realize our algorithm for both implicit and input cases. Analogous reformu-
lations can be defined for scaling-like input SM Rs(x) = Rc(B · x), where B is an
n× n matrix of SM parameters, output [14] and frequency SM [14].

3.2 Space Mapping with Constrained Parameter Extraction

The performance of SM algorithms depends heavily on the quality of the coarse
model utilized in the optimization process and the type of mapping involved in
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creating the surrogate model [15]. For implicit SM, the number of possible ways
of selecting preassigned parameters is virtually unlimited. However, it is not ob-
vious how to select a set of parameters that might allow the surrogate to closely
approximate the fine model and simultaneously have good generalization capabil-
ity. A wrong choice of the parameter set may result in inadequate performance of
the SM algorithm, including convergence issues, poor quality of the final design,
and excessive computational cost [17].

Various ways of alleviating this problem have been proposed. They include adap-
tive SM algorithms [17] and assessment methodologies [15, 29]. Although useful
in the selection of the surrogate model and its parameters, none of these techniques
guarantees algorithm convergence and overall good performance. On the other hand,
trust region enhanced SM algorithms ensure algorithm convergence but not always a
sufficient quality of the final design, because in the case of inadequate improvement
of the objective function [30], they force the algorithm to terminate. Also, the trust
region approach increases the computational cost of the SM optimization process.

The technique described in this section controls the trade-off between the approx-
imation and generalization capability of the surrogate model by properly restricting
the parameter space of the model. Theoretical justification of the method can be
found in [28].

It is assumed that the initial surrogate model, i.e., the coarse model without any
constraints on its preassigned parameters, is able to approximate the fine model with
sufficient accuracy. This accuracy can be measured at a given iteration point x(i),
using any suitable criteria, e.g., ε(i) = ‖Rf (x

(i)) − Rc(x
(i),x

(i)
p )‖p , where ‖ · ‖p

determines the norm type (e.g., ‖ · ‖2 for the Euclidean norm, or ‖ · ‖∝ for the maxi-
mum norm). We would like ε(i) to be small, ε(i) ≤ εmax, where εmax is a user-defined
threshold value, so that the surrogate model is a sufficiently good representation
of Rf .

It is normally feasible to build a surrogate model satisfying the above require-
ments. Because Rc is physically based, its response is similar to that of Rf . An
appropriate surrogate model can then be created by introducing a sufficient num-
ber of preassigned parameters, e.g., dielectric constants and substrate heights cor-
responding, if necessary, to individual components of the microwave structure in
question. Even synthetic parameters can be used (i.e., parameters not corresponding
to any physical parameter in Rf but used to increase model flexibility, e.g., a small
capacitor introduced between coupled lines in the microstrip filter model). A rule
of thumb is that the number of parameters should be larger than the number of de-
sign variables. If necessary, other SM transformations (e.g., input, frequency) can
be incorporated (cf. Sect. 2).

According to the algorithm proposed in [31], the parameter extraction (PE) pro-
cess (6) is replaced by the following constrained version:

x(i)
p = arg min

l(i)≤xp≤u(i)

∥∥Rf

(
x(i)

)− Rc

(
x(i),xp

)∥∥, (7)

where l(i) and u(i) are lower and upper bounds for the preassigned parameters at
iteration i. We assume here that l(i) = x

(i−1)
p − δ(i) and u(i) = x

(i−1)
p + δ(i), where
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x
(i−1)
p is the vector of model parameters at iteration i − 1 (x(0)

p represents the ini-
tial values of the preassigned parameters), whereas δ(i) is a vector representing the
parameter space size (δ(0) is a user-defined initial value).

At iteration i, the algorithm adjusts l(i) and u(i) and performs PE as follows
(δ(i), x

(i−1)
p and εmax are input arguments):

1. Calculate l(i) = x
(i−1)
p − δ(i) and u(i) = x

(i−1)
p + δ(i);

2. Find x
(i)
p using (7);

3. If ε(i) ≤ αdecr · εmax then δ(i+1) = δ(i)/βdecr; Go to 6;
4. If ε(i) > αincr · εmax then δ(i+1) = δ(i) · βincr; Go to 6;
5. Set δ(i+1) = δ(i);
6. END;

Here, αdecr, αincr, βdecr, and βincr are user-defined parameters (typical values:
αdecr = 1, αincr = 2, βdecr = 5, βincr = 2). Our algorithm tightens the PE constraints
if the approximation error is sufficiently small; otherwise, it loosens them.

Note that constraint tightening improves the generalization capability of the sur-
rogate model: the low approximation error ε(i−1) = ‖Rf (x

(i−1)) − Rc(x
(i−1),

x
(i−1)
p )‖p and ε(i) = ‖Rf (x

(i)) − Rc(x
(i),x

(i)
p )‖p (satisfied when determin-

ing x
(i−1)
p and x

(i)
p , respectively) makes it more likely to have ‖Rf (x

(i−1)) −
Rc(x

(i−1),x
(i)
p )‖p small if δ(i) is reduced (because small ‖x(i)

p − x
(i−1)
p ‖∝ ≤

‖δ(i)‖∝ implies the similarity of subsequent surrogate models).
The convergence properties of the SM algorithm can be explicitly controlled by

constraining the surrogate optimization (2), which can be formulated as

x(i+1) = arg min
x,‖x−x(i)‖≤δ(i)

U
(
Rc

(
x,x(i)

p

))
, (8)

where δ(i) = α · ‖x(i)−x(i−1)‖ with α < 1 (recommended values are α = 0.6 to 0.9;
values too small could result in premature convergence without finding a satisfactory
design). Note that (8) is mostly used as a safeguard, because good convergence
should be ensured by the constrained PE algorithm formulated above. On the other
hand, constrained surrogate optimization is useful in finding a new design in the
close neighborhood of the current design x(i) (an over-flexible surrogate model may
result in many designs that are good with respect to specification error, but are not
necessarily close to x(i)).

It should be emphasized that the procedure described here is not related to the
trust region approach [22] that has been used to safeguard convergence for SM al-
gorithms [30]. The latter reduces the search range for the surrogate model. It rejects
a new design if it does not bring sufficient improvement with respect to the fine
model specification [32]. This increases the computational cost of SM optimization.
According to the algorithm described here, the new design is never rejected: the
generalization of the surrogate model is accommodated by the adaptive PE proce-
dure. As indicated in [28], the constrained PE algorithm is expected to improve the
convergence of the SM algorithm. The details can be found in [28].
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Fig. 2 Coupled microstrip bandpass filter: (a) geometry [33], (b) coarse model (Agilent ADS)

3.3 Design Example: Coupled Microstrip Bandpass Filter

Consider the coupled microstrip bandpass filter [33] shown in Fig. 2(a). The design
parameters are x = [L1 L2 L3 L4 S1 S2]T mm. The fine model is simulated in FEKO
[34]. The coarse model, Fig. 2(b), is an equivalent circuit implemented in Agilent
ADS [35]. The design specifications are |S21| ≥ −3 dB for 2.3 GHz ≤ ω ≤ 2.5 GHz,
and |S21| ≤ −20 dB for 1.8 GHz ≤ ω ≤ 2.15 GHz and 2.65 GHz ≤ ω ≤ 3.0 GHz.
The initial design is x(0) = [24 4 14 12 0.2 0.1]T mm.

The SM surrogate model has 14 preassigned parameters: εr1 = εr.Clin1 =
εr.Clin3, εr2 = εr.TL4 = εr.TL9, εr3 = εr.Clin2 = εr.Clin4, εr4 = εr.TL7, H1 = HClin1 =
HClin3, H2 = HTL4 = HTL9, H3 = HClin2 = HClin4, H4 = HTL7, and dL1, dL2,
dL3, dL4, dS1, dS2 (design variable perturbations). Thus, we have xp =
[εr1 εr2 εr3 εr4 H1 H2 H3 H4 dL1 dL2 dL3 dL4 dS1 dS2]T . Symbols εr.Elem and
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Fig. 3 Coupled microstrip bandpass filter: (a) responses of the fine model (solid line) and the
coarse model (dashed line) at the initial design; (b) responses of the fine model (solid line) and the
SM surrogate model (circles) at the initial design after PE. Note the excellent match between the
models

Fig. 4 Coupled microstrip bandpass filter: fine model response at the final design obtained

HElem refer to the dielectric constant (initial value 3.0) and substrate height (initial
value 0.51 mm) of element Elem, respectively. Initial values for other parameters
are zero. We take δ(0) = [1 1 1 1 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.02 0.02]T (in
respective units).

Figure 3(a) shows the fine and coarse model responses at the initial design.
Thanks to the large number of surrogate model parameters, we obtain an excellent
match to the fine model, as illustrated in Fig. 3(b). Figure 4 shows the fine model
response at the final design.
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Table 1 Coupled bandpass filter: optimization results

Algorithm Specification error Number of fine model
evaluationsBest found Final

Standard SM −0.9 dB −0.4 dB 21a

Trust region SM −2.1 dB −2.1 dB 21b

SM with constrained PE −2.1 dB −2.1 dB 12

aAlgorithm terminated after 20 iterations without convergence
bTerminated after 21 fine model evaluations (good convergence pattern, but tolerance requirements
not fulfilled yet)

Fig. 5 Coupled microstrip bandpass filter: (a) convergence plot for the standard SM (o), trust re-
gion enhanced SM (×), and for the constrained algorithm (∗). Note that there is more than one fine
model evaluation per iteration for the trust region algorithm (21 evaluations in total); (b) specifica-
tion error versus iteration index for the standard SM (o) and for the constrained algorithm (∗)

Optimization results for standard and trust region enhanced SM as well as for the
constrained algorithm of Sect. 3.2 are summarized in Table 1 as well as in Fig. 5.
We observe that the standard algorithm exhibits features typical of SM: fast initial
progress, then stagnation, as indicated by the lack of or slow convergence, and os-
cillation in the specification error values. On the other hand, the algorithm exhibits
both a nice convergence pattern and consistent behavior with respect to specifica-
tion error. The trust region convergence improves the convergence properties of the
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algorithm, but at the expense of extra computational effort: any designs that do not
reduce the specification error are rejected, so typically more than one fine model
evaluation per iteration is required for this algorithm. The total optimization cost is
almost twice as high as for the constrained algorithm.

4 Design of Antennas Using Space Mapping with Response
Surface Approximation Coarse Models

In this section we deal with a specific modification of the SM algorithm that is suit-
able in situations when the underlying low-fidelity model is relatively expensive.
This is particularly the case for antenna structures, where reliable equivalent cir-
cuit models are usually not available, and the only universal way to create a faster
representation of the structure is coarse-discretization EM simulation.

4.1 Response Surface Approximation Coarse Models

As mentioned before, the coarse model is a critical component of successful SM
optimization. The model should be physics-based; i.e., it should describe the same
phenomena as the fine model. This ensures that the surrogate model constructed us-
ing Rc will have good prediction capability [15]. Also Rc should be computation-
ally much cheaper than Rf so that the total costs of surrogate model optimization
(2) and PE (4) problems are negligible. The preferred choice for the coarse model
is therefore a circuit equivalent, e.g., one implemented in Agilent ADS [35]. Unfor-
tunately, for many structures, particularly antennas, it is difficult to build a reliable
circuit equivalent, or the circuit equivalent may be of insufficient accuracy, resulting
in poor performance of the SM process.

In general, Rc can be implemented using the same EM solver as the one of
the fine model by applying relaxed mesh requirements. However, the coarse-mesh
model may have poor analytical properties (e.g., numerical noise, nondifferentia-
bility and discontinuity of the response over the design variables) which make op-
timization of the surrogate difficult [11]. Also, it is not straightforward to find an
appropriate trade-off between the model accuracy and evaluation time. The rule of
thumb is that the evaluation time of Rc should be at least two orders of magni-
tude smaller than that of Rf in order to make the overhead of solving (2) and (4)
reasonably small.

We mention that coarse mesh is not the only different feature of the coarse model
compared to the fine model. Other options include: (i) a reduced number of cells in
the perfectly matched layer absorbing boundary conditions as well as a reduced dis-
tance from the simulated structure to the absorbing boundary conditions, in the case
of finite-volume EM simulators [36–38]; (ii) the lower order of the basis functions,
in the case of finite-element and integral equation solvers [37, 38]; (iii) simplified
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excitation [38, 39], e.g., the discrete source of the coarse model versus the waveg-
uide port of the fine model; (iv) zero thickness of metallization; (v) the use of a
perfect electric conductor in place of finite-conductivity metals.

In this chapter, a coarse model is built using a functional approximation of data
obtained with the same EM simulator as the fine model but with a much coarser
mesh. This coarse-discretization EM-based model will be denoted as Rcd. Note that
the functional approximation model would normally be set up using sampled fine
model data. Here, in order to reduce the computational overhead, the surrogate is
constructed using its simplified representation, Rcd.

A variety of function approximation methods are available, including polynomial
approximation [5], neural networks [40–44], kriging [5, 45, 46], multidimensional
Cauchy approximation [47], or support vector regression [48]. Here, the coarse
model is constructed using kriging interpolation. We made this choice not only be-
cause kriging is a reliable and popular technique [5], but also because the available
Matlab kriging toolbox, DACE [49], allows us to configure kriging-based models
in an efficient way. For brevity, we omit a formulation of the details of kriging. The
interested reader can find them in the literature (e.g., [5] or [9]).

Response surface approximation in general (and kriging interpolation in particu-
lar) as a method of generating the coarse model for the SM algorithm has a number
of advantages: (i) the resulting model is computationally cheap, smooth, and there-
fore, easy to optimize; (ii) there is no need for an equivalent circuit model, and,
consequently, no extra simulation software is needed; the SM algorithm implemen-
tation is simpler and exploits a single EM solver; (iii) it is possible to apply SM for
antenna design problems where finding reliable and fast coarse models is difficult or
impossible; (iv) the initial design obtained through optimization of the coarse-mesh
EM model is usually better than the initial design that could be obtained by other
methods.

4.2 Design Optimization Process

The design optimization procedure can be summarized as follows (Fig. 6):

1. Take initial design xinit;
2. Find the starting point x(0) for SM algorithm by optimizing the coarse-

discretization model Rcd;
3. Allocate N base designs, XB = {x1, . . . ,xN };
4. Evaluate Rcd at each design xj , j = 1,2, . . . ,N ;
5. Build the coarse model Rc as a kriging interpolation of data pairs

{(xj ,Rcd(x
j ))}j=1,...,N ;

6. Set i = 0;
7. Evaluate the fine model Rf at x(i);

8. Construct the space mapping surrogate model R
(i)
s as in (3) and (4);

9. Find a new design x(i+1) as in (2);
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Fig. 6 Flowchart of the design optimization procedure exploiting a response-surface-approxima-
tion-based coarse model and SM as the main optimization engine [9]

10. Set i = i + 1;
11. If the termination condition is not satisfied go to 7;
12. END

The first phase of the design process is to find an optimized design of the coarse-
discretization model. The optimum of Rcd is usually the best design we can get at
a reasonably low computational cost. This cost can be further reduced by relaxing
tolerance requirements while searching for x(0): due to a limited accuracy of Rcd it
is sufficient to find only a rough approximation of its optimum. Steps 3–5 describe
the construction of the kriging-based coarse model. Steps 6–12 describe the flow
of the SM algorithm. In principle, any SM surrogate model can be used except one
from implicit SM, as the kriging-based coarse model normally does not inherit pre-
assigned parameters from the coarse-discretization EM model. Here, the algorithm
is terminated when no improvement of the fine model objective function is obtained
in a given iteration. In general, the algorithm can be embedded in the trust region
framework [22] for improved convergence.

The mesh density for the coarse-discretization model Rcd should be adjusted so
that its evaluation time is substantially smaller than that of the fine model and, at the
same time, its accuracy is still decent. Typically, if Rcd is set up so that it is 20 to 60
times faster than Rf , its accuracy is acceptable for the purpose of the design proce-
dure. The coarse model is created in the neighborhood XN of x(0), the approximate
optimum of the coarse-discretization model Rcd. The relative size of this neighbor-
hood depends on the sensitivity of the antenna response to design variables as well
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Fig. 7 DRA: (a) 3D view, (b) top view, and (c) front view; substrate shown transparent

as the discrepancy between the fine and coarse-discretization models, and may vary
from a few to 20 percent. The number of base designs N depends on the problem
dimensionality; typical values are 50 to 200. The base points should be allocated as
uniformly as possible in XN . Here, we use a modified Latin hypercube sampling
[50] algorithm that gives a fairly uniform distribution of samples regardless of the
number of design variables.

4.3 Design Example: Dielectric Resonator Antenna

Consider a rectangular DRA [51]; see Fig. 7 for its geometry. The DRA comprises
a rectangular dielectric resonator (DR) estimated to operate at the perturbed TEδ11
mode [51], supporting RO4003C [52] slabs, and polycarbonate housing. The hous-
ing is fixed to the circuit board with four through M1 bolts. The DRA is ener-
gized with a 50 � microstrip through a slot made in the metal ground. The sub-
strate is 0.5 mm thick RO4003C. The design specifications are |S11| ≤ −15 dB for
5.1–5.9 GHz; also the DRA is required to have an antenna gain of better than 5 dBi
for the zero zenith angle over the bandwidth of interest.

There are nine design variables: x = [ax ay az ay0 us ws ys g1 y1]T , where ax ,
ay , and az are the dimensions of the DR, ay0 stands for the offset of the DR center
relative to the slot center (marked by a black dot in Fig. 7(b)) in the Y -direction, us
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Fig. 8 DRA, |S11| versus frequency: fine model Rf at the initial design (- - -), optimized
coarse-discretization model Rcd (· · · ·), and Rf at the optimum of Rcd (−)

and ws are the slot dimensions, ys is the length of the microstrip stub, and g1 and
y1 are the slab dimensions. The relative permittivity and loss tangent of the DR are
10 and 1e-4, respectively, at 6.5 GHz.

The width of the microstrip signal trace is 1.15 mm. Metallization of the trace
and ground is done with 50 μm copper. The relative permittivity and loss tangent of
the polycarbonate housing are 2.8 and 0.01 at 6.5 GHz, respectively. DRA models
are defined with the CST MWS [39], and the built-in single-pole Debye model is
used for all dielectrics to describe their dispersion properties. Other dimensions are
fixed as follows: hx = hy = hz = 1, bx = 7.5, sx = 2, and ty = ay − ay0 − 1, all in
millimeters.

The initial design is xin = [8.000 14.000 9.000 0 1.750 10.000 3.000 1.500
6.000]T mm. The fine (1,099,490 mesh cells at xin) and coarse-discretization
(26,796 mesh cells at xin) antenna models are evaluated with CST MWS transient
solver in 2,175 and 42 s, respectively.

A coarse-discretization model optimum is x(0) = [7.444 13.556 9.167 0.250
1.750 10.500 2.500 1.500 6.000]T mm. Figure 8 shows the fine model reflection
response at the initial design as well as that of the fine and coarse-discretization
model Rcd at x(0). The kriging coarse model is set up using 200 samples of Rcd al-
located in the vicinity of x(0) of size [0.5 0.5 0.5 0.25 0.5 0.25 0.25 0.25 0.5]T mm.

The final design, x(4) = [7.556 13.278 9.630 0.472 1.287 10.593 2.667
1.722 6.482]T mm, is obtained after four SM iterations; its reflection response
is shown in Fig. 9. The far-field response of the final design is shown in Fig. 10.
For the bandwidth of interest, the peak gain is above 5 dBi, and the back radiation
level is below −14 dB (relative to the maximum). All responses shown include the
effect of the 25 mm input microstrip. The surrogate model used by the optimization
algorithm exploited input and output SM of the form Rs(x) = Rc(x + c) + d . The
optimization costs are summarized in Table 2. The total design time corresponds to
about 11 evaluations of the fine model.
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Fig. 9 DRA, |S11| versus frequency: Rf at the final design

Fig. 10 DRA, realized gain versus frequency: (—) is for the zero zenith angle (θ = 00); (- - -) is
back radiation for θ = 180◦. Here, only θ -polarization (φ = 90◦) contributes to the gain for the
listed directions

Table 2 DRA: optimization cost

Algorithm component Number of model
evaluations

CPU time

Absolute Relative to Rf

Optimization of Rcd 150 × Rcd 105 min 2.9

Setting up Rc 200 × Rcd 140 min 3.9

Evaluation of Rf 4 × Rf 145 min 4.0

Total cost N/A 390 min 10.8

5 Space Mapping with Adjoint Sensitivity

In this section, we discuss the use of adjoint sensitivity [53] to enhance conventional
SM optimization algorithms. More specifically, adjoint sensitivity is exploited to:
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(i) speed up the surrogate model optimization process (2), (ii) speed up the PE pro-
cess (4), and (iii) improve the matching between the surrogate and the high-fidelity
model. Due to (i) and (ii), both PE and surrogate model optimization can be per-
formed using a small number of low-fidelity model evaluations, which allows us
to utilize coarse-discretization EM coarse models. This widens SM applications as
well as improving SM performance, as low-fidelity SM models are normally quite
accurate. Adjoint sensitivities are also used to match both the responses and first-
order derivatives of the surrogate and the high-fidelity model, which improves the
performance and convergence properties of the SM algorithm [54]. An illustrative
example is provided.

5.1 Low-Fidelity and Surrogate Models

SM with adjoint sensitivity follows the generic SM scheme (2). As usual, the sur-
rogate model is constructed using the underlying low-fidelity (or coarse) model Rc ,
which is a simplified representation of the high-fidelity one. Here, we focus on
coarse-discretization EM models, as they allow us to extend the applicability of
SM to all conceivable microwave structures. Coarse-discretization EM models are
typically accurate but relatively expensive; therefore, the SM surrogate exploited
here is based on input and output SM [21] of the form:

R(i)
s (x) = Rc

(
x + c(i)

)+ d(i) + E(i)
(
x − x(i)

)
. (9)

Here, only the input SM vector c(i) is obtained through the nonlinear PE process

c(i) = arg min
c

∥∥Rf

(
x(i)

)− Rc

(
x(i) + c

)∥∥. (10)

Output SM parameters are calculated as

d(i) = Rf

(
x(i)

)− Rc

(
x(i) + c(i)

)
(11)

and

E(i) = JRf

(
x(i)

)− JRc

(
x(i) + c(i)

)
, (12)

where J denotes the Jacobian of the respective model obtained using adjoint sen-
sitivities. Formulation (2)–(5) ensures zero- and first-order consistency [55] be-
tween the surrogate and the fine model, i.e., R(i)

s (x(i)) = Rf (x
(i)) and J

R
(i)
s
(x(i)) =

JRf
(x(i)), which substantially improves the ability of the SM algorithm to quickly

locate the high-fidelity model optimum [55]. Here, the algorithm (2) is embedded in
the trust region framework [30]; i.e., we have x(i+1) = arg min{‖x − x(i)‖ ≤ δ(i) :
U(R

(i)
s (x))}, where the trust region radius δ(i) is updated using classical rules [30].

Assuming first-order consistency and smoothness of R
(i)
s (x), this ensures conver-

gence to the local Rf optimum.
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5.2 Fast Parameter Extraction and Surrogate Optimization Using
Adjoint Sensitivities

To speed up the PE process (4), we exploit adjoint sensitivities. We use a simple
trust-region-based [22] algorithm, where the approximate solution c(i.k+1) of c(i) is
found as (k is the iteration index for PE process (13))

c(i.k+1) = arg min
‖c−c(i.k)‖≤δ

(k)
PE

∥∥Rf

(
x(i)

)− L(i.k)
c.c (c)

∥∥, (13)

where L
(i.k)
c.c (c) = Rc(x

(i)+c(i.k))+JRc (x
(i)+c(i.k)) ·(c−c(i.k)) is a linear approx-

imation of Rc(x
(i) + c) at c(i.k). The trust region radius δ

(k)
PE is updated according to

standard rules [22]. PE is terminated upon convergence or exceeding the maximum
number of coarse model evaluations (here, the limit is set to 5, which is sufficient
when using adjoint sensitivity).

Adjoint sensitivities are also utilized to lower the cost of surrogate model opti-
mization. Similarly to (13), we use a trust-region-based algorithm that produces a
sequence of approximations x(i+1.k) of the solution x(i+1) to (2) as follows (k is the
iteration index for surrogate model optimization process (14)):

x(i+1.k+1) = arg min
‖x−x(i+1.k)‖≤δ

(k)
SO

U
(
L(i.k)

c.x (x)
)
, (14)

where L
(i.k)
c.x (x) = R

(i)
s (x(i+1.k) + c(i)) + J

R
(i)
s
(x(i+1.k) + c(i)) · (x − x(i+1.k)) is a

linear approximation of R
(i)
s (x + c(i)) at x(i+1.k). The trust region radius δ

(k)
SO is

updated according to standard rules [54]. Typically, due to adjoint sensitivities, sur-
rogate model optimization requires only a few evaluations of the coarse model Rc .
Note that the sensitivities of the surrogate model can be calculated using the sensitiv-
ities of both Rf and Rc as follows: J

R
(i)
s
(x + c(i)) = JRc (x + c(i))+[JRf

(x(i))−
JRc (x

(i) + c(i))].

5.3 Design Example: Dielectric Resonator Filter

Consider the dielectric resonator filter [56] shown in Fig. 11. The design variables
are x = [u1 u2 u3 v1 v2]T mm, and the relative permittivity of the dielectric res-
onators (DR) is εr1 = 38. The relative permittivity of the DR supports and the coax
filling is εr2 = 2.1. The materials are considered lossless. Here h3 = h4 = h5 =
1 mm, r3 = r2 (the inner radius of the DR), and r4 = r2 +1 mm, and ρ1 = 2.05 mm.
Other dimensions are fixed as in [56].

The filter models are simulated by the CST MWS transient solver [39]. The
coarse-discretization model Rcd comprises 38,220 hexahedral cells and runs for
1 min, and the fine model Rf comprises 333,558 cells and runs for 28 min, both at
the initial design which is x(init) = [8 12 25 25 −10]T mm. The design specifica-
tions are |S21| ≥ −0.75 dB for 4.52 GHz ≤ ω ≤ 4.54 GHz, and |S21| ≤ −20 dB for
4.4 GHz ≤ ω ≤ 4.47 GHz and 4.59 GHz ≤ ω ≤ 4.63 GHz.
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Fig. 11 Dielectric resonator filter [56]: (a) 3D view, (b) side view, and (b) front view. Front and
side metal walls of the waveguide section are shown transparent

Table 3 Dielectric resonator filter: optimization results

Algorithm component Number of model
evaluationsa

CPU time

Absolute [min] Relative to Rf

Evaluation of Rc 80 80 2.9

Evaluation of Rf 11 308 11

Total costa N/A 398 13.9

aExcludes Rf evaluation at the initial design

The filter was optimized using the algorithm of Sects. 5.1 and 5.2. Figure 12(a)
shows the responses of Rf and Rc at xinit. Figure 12(b) shows the response of
the fine model at the final design x(∗) = [7.28 11.06 24.81 26.00 −11.07]T mm
obtained after ten SM iterations. Table 3 summarizes the total optimization cost.
Note that using adjoint sensitivities allows us to greatly reduce the number of both
fine and coarse model evaluations in the design process. The average cost of the
PE and surrogate optimization processes is only about 5 evaluations of Rc. The
evolution of the specification error is shown in Fig. 13.

6 Conclusion

In this chapter, a number of design examples concerning various microwave com-
ponents have been presented, including microstrip filters and planar antennas, as
well as transition structures. In all cases, the surrogate-based techniques presented
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Fig. 12 Dielectric resonator filter: (a) responses of Rf (—) and Rc (- - -) at the initial design xinit,
(b) response of Rf (—) at the final design

Fig. 13 Dielectric resonator filter: minimax specification error versus SM iteration index

here have been employed as optimization engines. The results presented here in-
dicate that the surrogate-based optimization methods make the simulation-driven
microwave design feasible and efficient, in terms of both the quality of the final
design and the computational cost. In most cases, the design cost corresponds to
a few high-fidelity electromagnetic simulations of the microwave structure under
consideration, typically comparable to the number of design variables. While this
kind of performance is definitely appealing, improved robustness and reliability as
well as availability through commercial software packages are needed to make the
surrogate-based techniques widely accepted by the microwave engineering commu-
nity. Therefore, a substantial research effort in this area is expected in the years to
come.


