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Preface

There have been dramatic developments in the areas of quadratic and higher degree
forms in recent years, and so the time seemed opportune to convene meetings
devoted to these topics. During March 2009 there were two major conferences in
the area of quadratic forms. One was a research conference at the University of
Florida in Gainesville, on “Quadratic forms, sums of squares, and integral lattices”
where the latest advances were presented. Immediately after this was the Arizona
Winter School on “Quadratic Forms” at the University of Arizona in Tucson, which
was an instructional workshop for graduate students with the goal of preparing them
for research in this important area. These two conferences were followed by the
Conference on Higher Degree Forms at the University of Florida in May 2009.

This volume is an outgrowth of these three conferences, all of which were
completely funded by the National Science Foundation. We gratefully acknowledge
this support from the NSF. The Tucson conference was the twelfth Arizona Winter
School, a longstanding series of NSF-supported workshops on topics in arithmetic
geometry. The two Gainesville conferences were in keeping with the tradition there
of having annual conferences on various aspects of number theory; they were
followed by two Focused Weeks (one on quadratic forms and another on the related
topic of integral lattices) at the University of Florida during the Spring of 2010, also
fully supported by the NSF. The PIs for the 2009 Florida NSF grant DMS-0753080
were Krishnaswami Alladi and Pham Tiep (then at the University of Florida),
with Manjul Bhargava (Princeton) as a consultant. The PIs for the Arizona Winter
School NSF grant DMS-0602287 were Matthew Papanikolas, Fernando Rodriguez-
Villegas, David Savitt, William Stein, and Dinesh Thakur.

The Arizona Winter School featured instructional lectures by Manjul Bhargava,
John Conway, Noam Elkies, Jonathan Hanke, and R. Parimala on various aspects
of quadratic forms. The informal (but comprehensive) notes of these lectures are
available at the website of the 2009 Arizona Winter School (http://swc.math.arizona.
edu). Parimala and Hanke have polished their articles and submitted excellent
surveys to this volume.

Even though the Florida conference on quadratic forms was a research con-
ference focusing on the latest developments, there was significant participation
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vi Preface

by graduate and undergraduate students to help them enter this exciting domain
of research. In order to prepare them for the advanced conference lectures, an
instructional workshop preceded this conference for which Jonathan Hanke was the
main lecturer. Some aspects of his Florida talks are covered in his survey paper in
this book.

In his survey, Hanke discusses fundamental connections between the classical
theory of quadratic forms over number fields and their rings of integers, and the
theory of modular and automorphic forms. In doing so he provides a treatment of
theta functions and some aspects of Clifford algebras as well. Hanke’s survey is
nicely complemented by that of Parimala who provides a lucid introduction to the
algebraic theory of quadratic forms, the invariants associated with quadratic forms,
and connections with Galois cohomology. She also states some open problems and
discusses recent progress. These two surveys are augmented by the survey and
research paper of Voight on quaternion algebras and quadratic forms.

The classical theorems of Lagrange that every integer is a sum of four squares
and Gauss that every integer is a sum of three triangular numbers motivate the
study of “universal forms”, namely those that represent all integers, as well as the
investigation of ternary forms in general. The papers of Jagy on integral positive
ternary quadratic forms, of Berkovich on sums of three squares, and of Chan
and Haensch on certain almost universal ternary forms, show that there still are
fundamental questions worthy of investigation on very classical topics.

Whereas the study of universal quadratic forms addresses the question of
representing all integers, one could consider the question of representing quadratic
forms by integral quadratic forms. In 2008 Ellenberg and Venkatesh introduced
ergodic theory as a new tool in this study and made dramatic progress going
beyond what Eichler and Kneser had achieved using an arithmetic approach. In his
survey of such representation problems, Schulze-Pillot sketches three approaches—
arithmetic, algebraic and ergodic—and gives a comparative study of them.

The theory of integral lattices has important links with quadratic forms. Bannai
and Miezaki discuss a famous conjecture of D. H. Lehmer on the Fourier coefficients
of weighted theta series of certain integral lattices and describe recent progress on
this classical question. Integral lattices and quadratic forms have links with binary
linear codes, and this is investigated by Elkies and Kominers. In doing so, they
provide a new structural development of harmonic polynomials on Hamming space
analogous to the treatment of harmonic polynomials on Euclidean space, and present
several applications.

Finally, the paper of Reznick discusses certain fundamental questions on the
length of binary forms of higher degree starting from the seminal work of Sylvester
in the mid-nineteenth century. After discussing some current research, he concludes
with a list of important open questions.

We hope that this volume, which comprises both introductory survey articles and
research papers reporting the latest developments, will be of interest to students and
senior mathematicians alike. In conducting the conferences in Florida, we owe a
special debt to Frank Garvan as a conference organizer and to Margaret Somers for
taking care of all local arrangements. Similarly, we wish to acknowledge Annette
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Horn for handling the local arrangements for the 2009 Arizona Winter School. We
thank Elizabeth Loew of Springer for her support and interest in including this book
in the series Developments in Mathematics.

Gainesville, FL, USA Krishnaswami Alladi
Princeton, NJ, USA Manjul Bhargava
Tucson, AZ, USA David Savitt
Tucson, AZ, USA Pham Huu Tiep
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Toy Models for D. H. Lehmer’s Conjecture II

Eiichi Bannai and Tsuyoshi Miezaki*

Abstract In the previous paper under the same title, we showed that the m-th
Fourier coefficient of the weighted theta series of the Z

2-lattice and the A2-lattice
does not vanish when the shell of norm m of those lattices is not the empty
set. In other words, the spherical 4 (resp. 6)-design does not exist among the
nonempty shells in the Z

2-lattice (resp. A2-lattice). This paper is the sequel to the
previous paper. We take 2-dimensional lattices associated to the algebraic integers of
imaginary quadratic fields whose class number is either 1 or 2, except for Q(

√−1)
and Q(

√−3), then, show that the m-th Fourier coefficient of the weighted theta
series of those lattices does not vanish, when the shell of normm of those lattices is
not the empty set. Equivalently, we show that the corresponding spherical 2-design
does not exist among the nonempty shells in those lattices.
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2 E. Bannai and T. Miezaki

1 Introduction

The concept of spherical t-design is due to Delsarte-Goethals-Seidel [7]. For a
positive integer t, a finite nonempty subset X of the unit sphere

Sn−1 = {x = (x1, x2, · · · , xn) ∈ R
n | x21 + x22 + · · ·+ x2n = 1}

is called a spherical t-design on Sn−1 if the following condition is satisfied:

1

|X |
∑

x∈X

f(x) =
1

|Sn−1|
∫

Sn−1

f(x)dσ(x),

for all polynomials f(x) = f(x1, x2, · · · , xn) of degree not exceeding t. Here,
the righthand side means the surface integral on the sphere, and |Sn−1| denotes
the surface volume of the sphere Sn−1. The meaning of spherical t-design is that
the average value of the integral of any polynomial of degree up to t on the sphere
is replaced by the average value at a finite set on the sphere. A finite subset X in
Sn−1(r), the sphere of radius r centered at the origin, is also called a spherical
t-design if 1

rX is a spherical t-design on the unit sphere Sn−1.
We denote by Harmj(R

n) the set of homogeneous harmonic polynomials of
degree j on R

n. It is well known that X is a spherical t-design if and only if the
condition

∑

x∈X

P (x) = 0

holds for all P ∈ Harmj(R
n) with 1 ≤ j ≤ t [7]. If the set X is antipodal, that is

−X = X , and j is odd, then the above condition is fulfilled automatically. So we
reformulate the condition of spherical t-design on the antipodal set as follows:

Proposition 1.1. A nonempty finite antipodal subsetX ⊂ Sn−1 is a spherical 2s+
1-design if the condition

∑

x∈X

P (x) = 0

holds for all P ∈ Harm2j(R
n) with 2 ≤ 2j ≤ 2s.

It is known [7] that there is a natural lower bound (Fisher type inequality) for
the size of a spherical t-design in Sn−1. Namely, if X is a spherical t-design in
Sn−1, then

|X | ≥
(
n− 1 + [t/2]

[t/2]

)
+

(
n+ [t/2]− 2

[t/2]− 1

)

if t is even, and
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|X | ≥ 2

(
n− 1 + [t/2]

[t/2]

)
(1)

if t is odd.
A lattice in R

n is a subset Λ ⊂ R
n with the property that there exists a basis

{v1, · · · , vn} of Rn such that Λ = Zv1 ⊕ · · · ⊕ Zvn, i.e., Λ consists of all integral
linear combinations of the vectors v1, · · · , vn. The dual lattice Λ is the lattice

Λ� := {y ∈ R
n | (y, x) ∈ Z, for all x ∈ Λ},

where (x, y) is the standard Euclidean inner product. The lattice Λ is called integral
if (x, y) ∈ Z for all x, y ∈ Λ. An integral lattice is called even if (x, x) ∈ 2Z
for all x ∈ Λ, and it is odd otherwise. An integral lattice is called unimodular if
Λ� = Λ. For a lattice Λ and a positive real numberm > 0, the shell of normm of Λ
is defined by

Λm := {x ∈ Λ | (x, x) = m} = Λ ∩ Sn−1(
√
m).

Let H := {z ∈ C | Im (z) > 0} be the upper half-plane.

Definition 1.1. Let Λ be the lattice of Rn. Then for a polynomial P , the function

ΘΛ,P (z) :=
∑

x∈Λ

P (x)eiπz(x,x)

is called the theta series of Λ weighted by P .

Remark 1.1 (See Hecke [9], Schoeneberg [19, 20]).

(i) When P = 1, we get the classical theta series

ΘΛ(z) = ΘΛ,1(z) =
∑

m≥0

|Λm|qm, where q = eπiz.

(ii) The weighted theta series can be written as

ΘΛ,P (z) =
∑

x∈Λ

P (x)eiπz(x,x)

=
∑

m≥0

a(P )
m qm, where a(P )

m :=
∑

x∈Λm

P (x).

These weighted theta series have been used efficiently for the study of spherical
designs which are the nonempty shells of Euclidean lattices. (See [5, 6, 16, 23, 24].
See also [2].)

Lemma 1.1 (cf. [23,24], [16, Lemma 5]). Let Λ be an integral lattice in R
n. Then,

for m > 0, the non-empty shell Λm is a spherical t-design if and only if

a(P )
m = 0
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for all P ∈ Harm2j(R
n) with 1 ≤ 2j ≤ t, where a(P )

m are the Fourier coefficients
of the weighted theta series

ΘΛ,P (z) =
∑

m≥0

a(P )
m qm.

We recall the definition of a modular form.

Definition 1.2. Let Γ ⊂ SL2(R) be a Fuchsian group of the first kind and let χ be
a character of Γ. A holomorphic function f : H → C is called a modular form of
weight k for Γ with respect to χ, if the following conditions are satisfied:

(i) f
(az + b

cz + d

)
=

(cz + d

χ(σ)

)k

f(z) for all σ =

(
a b

c d

)
∈ Γ.

(ii) f(z) is holomorphic at every cusp of Γ.

If f(z) has period N , then f(z) has a Fourier expansion at infinity, [11]:

f(z) =

∞∑

m=0

amq
m
N , qN = e2πiz/N .

We remark that for m < 0, am = 0, by the condition (ii). A modular form
with constant term a0 = 0, is called a cusp form. We denote by Mk(Γ, χ) (resp.
Sk(Γ, χ)) the space of modular forms (resp. cusp forms) with respect to Γ with the
character χ. When f is the normalized eigenform of Hecke operators, p. 163, [11],
the Fourier coefficients satisfy the following relations:

Lemma 1.2 (cf. [11], Proposition 32, 37, 40, Exercise 2, p. 164). Let α ∈ N and
f(z) =

∑
m≥1 a(m)qm ∈ Sk(Γ, χ). If f(z) is the normalized eigenform of Hecke

operators, then the Fourier coefficients of f(z) satisfy the following relations:

a(mn) = a(m)a(n) if (m,n) = 1 (2)

a(pα+1) = a(p)a(pα)− χ(p)pk−1a(pα−1) if p is a prime. (3)

We set f(z) =
∑

m≥1 a(m)qm ∈ Sk(Γ, χ). When dimSk(Γ, χ) = 1 and
a(1) = 1, then f(z) is the normalized eigenform of Hecke operators, [11]. So, the
coefficients of f(z) have the relations as mentioned in Lemma 1.2. It is known that

|a(p)| < 2p(k−1)/2 (4)

for all primes p, [11, p. 164], [10]. Note that this is the Ramanujan conjecture and
its generalization, called the Ramanujan-Petersson conjecture for cusp forms which
are eigenforms of the Hecke operators. These conjectures were proved by Deligne
as a consequence of his proof of the Weil conjectures, [11, p. 164], [10]. Moreover,
for a prime p with χ(p) = 1 the following equation holds, [12].
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a(pα) = p(k−1)α/2 sin(α+ 1)θp
sin θp

, (5)

where 2 cos θp = a(p)p−(k−1)/2 and α ∈ N.
It is well known that the theta series of Λ ⊂ R

n weighted by harmonic
polynomial P ∈ Harmj(R

n) is a modular form of weight n/2 + j for some
subgroup Γ ⊂ SL2(R) [8]. In particular, when deg(P ) ≥ 1, the theta series of
Λ weighted by P is a cusp form.

For example, we consider the even unimodular lattice Λ. Then the theta series of
Λ weighted by harmonic polynomial P , ΘΛ,P (z), is a modular form with respect to
SL2(Z).

Example 1.1. Let Λ be the E8-lattice. This is an even unimodular lattice of R
8,

generated by the E8 root system. The theta series is as follows:

ΘΛ(z) = E4(z) = 1 + 240

∞∑

m=1

σ3(m)q2m

= 1 + 240q2 + 2,160q4 + 6,720q6 + 17,520q8 + · · · ,
where σ3(m) is a divisor function σ3(m) =

∑
0<d|m d3.

For j = 2, 4 and 6, the theta series of Λ weighted by P ∈ Harmj(R
8) is a weight

6, 8 and 10 cusp form with respect to SL2(Z). However, it is well known that for
k = 6, 8 and 10, dimSk(SL2(Z)) = 0, that is, ΘΛ,P (z) = 0. Then by Lemma 1.1,
all the nonempty shells of E8-lattice are spherical 6-design.

For j = 8, the theta series of Λ weighted by P is a weight 12 cusp form with
respect to SL2(Z). Such a cusp form is uniquely determined up to constant, i.e., it
is Ramanujan’s delta function:

Δ(z) = q2
∏

m≥1

(1− q2m)24 =
∑

m≥1

τ(m)q2m.

The following proposition is due to Venkov, de la Harpe and Pache [5,6,16,23].

Proposition 1.2 (cf. [16]). Let the notation be the same as above. Let Λ be the
E8-lattice. Then the following are equivalent:

(i) τ(m) = 0.
(ii) (Λ)2m is an 8-design.

It is a famous conjecture of Lehmer that τ(m) 
= 0. So, Proposition 1.2 gives
a reformulation of Lehmer’s conjecture. Lehmer proved in [12] the following
theorem.

Theorem 1.1 (cf. [12]). Let m0 be the least value of m for which τ(m) = 0. Then
m0 is a prime if it is finite.
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There are many attempts to study Lehmer’s conjecture [12, 21], but it is difficult
to prove and it is still open.

Recently, however, we showed the “Toy models for D. H. Lehmer’s conjecture”
[3]. We take the two cases Z

2-lattice and A2-lattice. Then, we consider the
analogue of Lehmer’s conjecture corresponding to the theta series weighted by some
harmonic polynomialP . Namely, we show that the m-th coefficient of the weighted
theta series of Z2-lattice does not vanish when the shell of norm m of those lattices
is not an empty set. Or equivalently, we show the following result.

Theorem 1.2 (cf. [3]). The nonempty shells in Z
2-lattice (resp. A2-lattice) are not

spherical 4-designs (resp. 6-designs).

This paper is sequel to the previous paper [3]. In this paper, we take some
lattices related to the imaginary quadratic fields. LetK = Q(

√−d) be an imaginary
quadratic field, and let OK be its ring of algebraic integers. Let ClK be the ideal
classes. In this paper, we only consider the cases |ClK | = 1 and |ClK | = 2 except
for Sect. 6. So, when we consider the cases |ClK | = 1 and |ClK | = 2, we denote by
o (resp. a) the principal (resp. nonprincipal) ideal class.

We denote by dK the discriminant of K:

dK =

{−4d if − d ≡ 2, 3 (mod 4),

−d if − d ≡ 1 (mod 4).

Theorem 1.3 (cf. [25, p. 87]). Let d be a positive square-free integer, and let K =
Q(
√−d). Then

OK =

⎧
⎨

⎩
Z+ Z

√−d if − d ≡ 2, 3 (mod 4),

Z+ Z
−1 +√−d

2
if − d ≡ 1 (mod 4).

Therefore, we considerOK to be the lattice in R
2 with the basis

⎧
⎨

⎩
(1, 0), (1,

√−d) if − d ≡ 2, 3 (mod 4),

(1, 0),
(
− 1

2
,

√−d
2

)
if − d ≡ 1 (mod 4),

denoted by Lo.
Generally, it is well-known that there exists one-to-one correspondence between

the set of reduced quadratic forms f(x, y) with a fundamental discriminant dK < 0
and the set of fractional ideal classes of the unique quadratic field Q(

√−d) [25,
p. 94]. Namely, For a fractional ideal A = Zα + Zβ, we obtain the quadratic form
ax2+ bxy+ cy2, where a = αᾱ/N(A), b = (αβ̄+ ᾱβ)/N(A) and c = ββ̄/N(A).
Conversely, for a quadratic form ax2 + bxy + cy2, we obtain the fractional ideal
Z + Z(b +

√
dK)/2a. We remark that N(A) is a norm of A and ᾱ is a complex

conjugate of α.
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Here, we define the automorphism group of f(x, y) as follows:

Uf =

{(
α β

γ δ

)
∈ SL2(Z)

∣∣∣∣∣ f(αx+ βy, γx+ δy) = f(x, y)

}
.

Then, for n ≥ 1, the number of the nonequivalent solutions of f(x, y) = n under
the action ofUf is equal to the number of the integral ideals of norm n [25]. Namely,
let a be an ideal class and fa(x, y) be the reduced quadratic form corresponding to
a. Moreover, let La be the lattice corresponding to fa(x, y). Then,

∑

x∈La

q(x,x)

= 1 +#Uf

∑∞
n=1 #{A | A is an integral ideal of a, N(A) = n} qn,

(6)

where N(A) is the norm of an ideal A.

Theorem 1.4 (cf. [25, p. 63]). Let f(x, y) be the reduced quadratic form with
a fundamental discriminant D < 0 and Uf be the automorphism group of
f(x, y). Then

#Uf =

⎧
⎨

⎩

6 if D = −3,
4 if D = −4,
2 if D < −4.

These classical results are due to Gauss, Dirichlet, etc.
When |ClK | = 1 and 2, we give the generators ofLa Tables 5 and 6 of Appendix.

Here, we remark that when K = Q(
√−1) (resp. K = Q(

√−3)), Lo is Z2-lattice
(resp. A2-lattice). We studied the spherical designs of shells of those lattices in the
previous paper [3].

In this paper, we take the imaginary quadratic fields Q(
√−d), with d 
= 1 and

d 
= 3. Then, we consider the analogue of Lehmer’s conjecture corresponding to
its theta series weighted by some harmonic polynomial P . Here, we consider the
following problem of whether the nonempty shells of Lo and La are spherical
2-designs (hence 3-designs) or not.

In Sect. 4, we study the case that the class number is 1. We show that the m-th
coefficient of the weighted theta series of Lo-lattice does not vanish when the shell
of norm m of those lattices is not an empty set. Or equivalently, we show the
following result:

Theorem 1.5. Let K = Q(
√−d) be an imaginary quadratic field whose class

number is 1 and d 
= 1, 3 i.e., d is in the following set: {2, 7, 11, 19, 43, 67, 163}.
Then, the nonempty shells in Lo are not spherical 2-designs.

Similarly, in Sect. 5, we study the case that the class number is 2 and show the
following result:

Theorem 1.6. Let K = Q(
√−d) be an imaginary quadratic field whose class

number is 2 i.e., d is in the following set: {5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91,
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115, 123, 187, 235, 267, 403, 427}. Then, the nonempty shells in Lo and La are not
spherical 2-designs.

In Sect. 6, we consider the case that the class number is 3 and study the property
of Hecke characters. In Sect. 7, we give some concluding remarks and state a
conjecture for the future study.

2 Preliminaries

In this section, we review the theory of imaginary quadratic fields.

Theorem 2.1 (cf. [4, p. 104, Proposition 5.16]). We can classify the prime ideals
of a quadratic field as follows:

1. If p is an odd prime and (dK/p) = 1 (resp. dK ≡ 1 (mod 8)) then
(p)=PP (resp. (2) = PP ), where P and P are prime ideals with P 
= P ,
N(P )=N(P ) = p (resp. N(P ) = 2).

2. If p is an odd prime and (dK/p) = −1 (resp. dK ≡ 5 (mod 8)) then
(p)=P (resp. (2) = P ), where P is a prime ideal with N(P ) = p2 (resp.
N(P )=4).

3. If p | dk then (p) = P 2, where P is a prime ideal with N(P ) = p.

Lemma 2.1. Let |ClK | = 1 and I be an integral ideal of K . For n ∈ N, if N(I) =
n and I is a principal ideal, namely, I ∈ o then there exist a, b ∈ Z such that for
−d ≡ 2, 3 (mod 4)

n = a2 + db2,

for −d ≡ 1 (mod 4)

n = a2 + db2 or n =
a2 + db2

4
.

If |ClK | = 2,N(I) = n and I is a nonprincipal ideal, namely, I ∈ a and assume
that m is one of the norms of nonprincipal ideals then there exist a, b ∈ Z such that
for −d ≡ 2, 3 (mod 4)

mn = a2 + db2,

for −d ≡ 1 (mod 4)

mn = a2 + db2 or mn =
a2 + db2

4
.

Proof. We assume that |ClK | = 1. For−d ≡ 2, 3 (mod 4), we can write I = (a+
b
√−d), thenN(I) = a2+db2. For−d ≡ 1 (mod 4), we can write I = (a+b

√−d)
or I = ((a+ b

√−d)/2), then N(I) = a2 + db2 or N(I) = (a2 + db2)/4.
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Here, we assume that |ClK | = 2. Let J be the nonprincipal ideal of K whose
norm is m. If I is a nonprincipal ideal then, JI is a principal ideal of K . Therefore,
for−d ≡ 2, 3 (mod 4), we can write JI = (a+ b

√−d), then N(JI) = a2+ db2.
Hence, mn = a2 + db2. for −d ≡ 1 (mod 4), we can write JI = (a+ b

√−d) or
JI = ((a+ b

√−d)/2), thenN(JI) = a2+db2 orN(JI) = (a2+db2)/4. Hence,
mn = a2 + db2 or mn = (a2 + db2)/4. �
Proposition 2.1. Let F (m) be the number of the integral ideals of norm m of K .
Let p be a prime number. Then, if p 
= 2

F (pe) =

⎧
⎨

⎩

e+ 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK ,

if p = 2

F (2e) =

⎧
⎨

⎩

e+ 1 if dK ≡ 1 (mod 8),

(1 + (−1)e)/2 if dK ≡ 5 (mod 8),

1 if 2 | dK .

Proof. When (dK/p) = 1 i.e., (p) = PP and P 
= P , since P and P are the only
integral ideals of norm p, we have F (p) = 2. Moreover, the integral ideals of norm
pe are as follows: P e, P e−1P , . . . , (P )e. So, we have F (pe) = e + 1. The other
cases can be proved similarly. �

3 Hecke Characters and Theta Series

In this section, we introduce the Hecke character and discuss the relationships
between the Hecke character and the weighted theta series of the lattices Lo and
La. Then, we show that for |ClK | = 1 and P1 = (x2 − y2)/2, the weighted theta
series ΘLo,P1 is a normalized Hecke eigenform. For |ClK | = 2 and P2 = x2 − y2,
a certain sum of the two weighted theta series c1ΘLo,P2 + c2ΘLa,P2 is a normalized
Hecke eigenform. Later, we give the explicit values of c1 and c2.

For the readers convenience we quote from [15] the notion of the Hecke character
(for more information the reader is referred to [15]). A Hecke character φ of weight
k ≥ 2 with modulus Λ is defined in the following way. Let Λ be a nontrivial ideal in
OK and let I(Λ) denote the group of fractional ideals prime to Λ. A Hecke character
φ with modulus Λ is a homomorphism

φ : I(Λ)→ C
×

such that for each α ∈ K× with α ≡ 1 (mod Λ) we have

φ(αOK) = αk−1. (7)
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Let ωφ be the Dirichlet character with the property that

ωφ(n) := φ((n))/nk−1

for every integer n coprime to Λ.

Theorem 3.1 (cf. [15, p. 9], [14, p. 183]). Let the notation be the same as above,
and define ΨK,Λ(z) by

ΨK,Λ(z) :=
∑

A

φ(A)qN(A) =
∞∑

n=1

a(n)qn, (8)

where the sum is over the integral idealsA that are prime to Λ andN(A) is the norm
of the ideal A. Then ΨK,Λ(z) is a cusp form in Sk(Γ0(dK ·N(Λ)),

(−dK

•
)
ωφ).

We remark that function (8) is a normalized Hecke eigenform [1,22]. Moreover,
if the class number ofK is h then the character as given in (7) will have h extensions
to nonprincipal ideals. Namely, the function (8) has h choices, so we denote by
Ψ

(1)
K,Λ(z), . . . ,Ψ

(h)
K,Λ(z) these functions (see [17]).

Example 3.1.

(i) d = 2.
We calculate ΨK,Λ(z) =

∑
m≥1 a(m)qm, where Λ = (1) and the weight of

the Hecke character is 3. We remark that |ClK | = 1 and ideals are listed in
Table 3.

By the definitions (7) and (8), we have a(1) = 12 = 1, a(2) =
√−22 = −2,

a(3) = (−1 +√−2)2 + (−1−√−2)2 = 2, a(4) = 22, . . . . Thus, we obtain

Ψ
(1)
K,Λ(z) = q − 2q2 − 2q3 + 4q4 + 4q6 − 8q8 − 5q9 + · · · .

(ii) d = 5.
We calculate ΨK,Λ(z) =

∑
m≥1 a(m)qm, where Λ = (1) and the weight of the

Hecke character is 3. We remark that |ClK | = 2 and ideals are listed in Table 4.
When A of normm is a nonprincipal ideal,A2 is a principal ideal, so, φ(A2) is
computable by the definition (7). For example,φ((2, 1+

√−5))2 = φ((2)) = 4,
so, we can assume that φ((2, 1 +

√−5)) = 2, i.e., a(2) = 2. Then, since
(2, 1 +

√−5)(3, 1 +√−5) = (1 −√−5) and (2, 1 +
√−5)(3, 1 − √−5) =

(−1−√−5), we have a(3) = ((1+
√−5)2+(1−√−5)2)/2 = −4, a(4) = 22,

. . . . Thus, we obtain

Ψ
(1)
K,Λ(z) = q + 2q2 − 4q3 + 4q4 − 5q5 − 8q6 + 4q7 + 8q8 + 7q9 + · · · .

On the other hand, we assume that φ((2, 1 +
√−5)) = −2, i.e., a(2) = −2.

Then, we have

Ψ
(2)
K,Λ(z) = q − 2q2 + 4q3 + 4q4 − 5q5 − 8q6 − 4q7 − 8q8 + 7q9 + · · · .
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Table 1 Coefficients, c1 and c2

−d −5 −6 −10 −13 −15 −22 −35 −37 −51

c1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

c2 1/2 1/2 1/2 1/2 2 1/2 3 1/2 1/2

−d −58 −91 −115 −123 −187 −235 −267 −403 −427

c1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

c2 1/2 5/3 1/2 1/2 7/3 1/2 1/2 11/9 1/2

Here, we discuss the relationships between the Hecke character and the weighted
theta series of the lattices Lo and La. First, we quote the following theorem:

Theorem 3.2 (cf. [14, p. 192]). Let L be a 2-dimensional integral lattice with the
Gram matrix A and N be the natural number such that the elements of NA−1 are
rational integers. Let the character χ(d) be

χ(d) =
( (−1)(r/2) detL

d

)
.

Then, for P ∈ Harm2(R
2),

(1) ΘL,P ∈M3(Γ0(4N), χ).
(2) If all the diagonal elements of A are even, then ΘL,P ∈M3(Γ0(2N), χ).
(3) If all the diagonal elements of A and NA−1 are even, then ΘL,P ∈

M3(Γ0(N), χ).

Then, we obtain the following lemmas:

Lemma 3.1. Let K be an imaginary quadratic field whose class number is 1 and
Lo be the lattice corresponding to the principal ideal class o. Let φ be the Hecke
character of weight 3with modulusΛ. Assume thatΛ = (1) andP1 = (x2−y2)/2 ∈
Harm2(R

2). Then, ΨK,Λ(q) = ΘLo,P1(q).

Lemma 3.2. Let K be an imaginary quadratic field whose class number is 2
and Lo (resp. La) be the lattice corresponding to the principal ideal class o
(resp. nonprincipal ideal class a). Let φ be the Hecke character of weight 3 with
modulus Λ. Assume that Λ = (1) and P2 = x2 − y2 ∈ Harm2(R

2). Then,
ΨK,Λ(q) = c1ΘLo,P2(q) + c2ΘLa,P2(q), where c1 and c2 are given as in Table 1.

Proof of Lemmas 3.1 and 3.2. First, we assume that the lattices are integral
lattices, if not we multiply the Gram matrix of L by 2.

Because of the Theorems 3.1 and 3.2, ΨK,Λ(q), ΘLo,P (q) and ΘLa,P (q) with
P = P1, P2 are modular forms of the same group Γ. Therefore, we calculate the
basis of the space of modular forms of group Γ and check ΨK,Λ(q) = ΘLo,P1(q)
and ΨK,Λ(q) = c1ΘLo,P2(q)+ c2ΘLa,P2(q) explicitly (using “Sage”, Mathematics
Software [18]). �
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Corollary 3.1. Let the notation be the same as above. If |ClK | = 1 then ΘL1,P1(q)
is a normalized Hecke eigenform. If |ClK | = 2 then c1ΘL1,P2(q) + c2ΘL2,P2(q) is
a normalized Hecke eigenform.

Proof. The function (8) is a normalized Hecke eigenform [1, 22]. �
Finally, we give the following proposition, which is an analogue of Theorem 1.1

and the crucial part of the proof of Theorems 1.5 and 1.6.

Proposition 3.1. Assume that
∑

m≥1 a(m)qm is a normalized Hecke eigenform
of S3(Γ, χ) and the coefficients a(m) are rational integers. Moreover let p be the
prime such that χ(p) = 1. Let α0 be the least value of α for which a(pα) = 0. If
a(p) 
= ±p then α0 = 1 if it is finite.

Proof. Assume the contrary, that is, α0 > 1, so that a(p) 
= 0. By the equation (5),

a(pα0) = 0 = pα0
sin(α0 + 1)θp

sin θp
.

This shows that θp is a real number of the form θp = πk/(1 + α0), where k is an
integer. Now the number

z = 2 cos θp = a(p)p−1, (9)

being twice the cosine of a rational multiple of 2π, is an algebraic integer. On the
other hand, z is a root of the equation

pz − a(p) = 0. (10)

Hence z is a rational integer. By (4) and (9), we have |z| ≤ 1. Therefore z = ±1 and
the equation (10) becomes a(p) = ±p. By assumption, this is a contradiction. �

4 The Case of |ClK| = 1

Let K := Q(
√−d) be an imaginary quadratic field. If the class number of K is 1

then d is in the following set {1, 2, 3, 7, 11, 19, 43, 67, 163}. In particular, we only
consider the cases where d is in the set: {2, 7, 11, 19, 43, 67, 163} since the cases
d = 1 and d = 3 are considered in [3].

In this section, we assume that a(m) and b(m) are the coefficients of the
following functions:

ΘLo(q) =
∑

m≥0

a(m)qm, ΘLo,P1(q) =
∑

m≥1

b(m)qm,

where P1 = (x2 − y2)/2 ∈ Harm2(R
2).
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Lemma 4.1. Let p be a prime number. Let d be one of the elements in {2, 7, 11, 19,
43, 67, 163}. We set a′(m) = a(m)/2 for all m. Then,

a′(pe) =

⎧
⎨

⎩

e + 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK .

Proof. Because of the equation (6), a′(m) is the number of integral ideals of K of
norm m. Therefore, it can be proved by Proposition 2.1. �
Lemma 4.2. Let p be a prime number such that (dK/p) = 1. Then, b(p) 
= 0.
Moreover, if p 
= d then b(p) 
= ±p.

Proof. We remark that by Lemma 3.1 and Corollary 3.1, ΘLo,P1(q) = ΨK,Λ(q).
So, the numbers b(m) are the coefficients of ΨK,Λ(q).

First, we assume that d 
= 2, i.e., −d ≡ 1 (mod 4) and OK = Z + Z(1 +√−d)/2. If N((a+ b
√−d)) is equal to p then by Lemma 2.1

p = a2 + db2.

Because of the definition of ΨK,Λ(q),

b(p) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − db2) = ±(a2 + db2),

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
If N(((a+ b

√−d)/2)) is equal to p then by Lemma 2.1

a2 + db2

4
= p.

Because of the definition of ΨK,Λ(q),

b(p) =
(a+ b

√−d
2

)2

+
(a− b√−d

2

)2

=
a2 − db2

2
.

If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

a2 − db2
2

= ±a
2 + db2

4
,

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
Next, we assume that d = 2 i.e., −d ≡ 2 (mod 4) and OK = Z + Z

√−2.
If N((a+ b

√−2)) is equal to p then by Lemma 2.1

p = a2 + 2b2.
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Because of the definition of ΨK,Λ(q),

b(p) = (a+ b
√−2)2 + (a− b√−2)2 = 2(a2 − 2b2).

If b(p) = 0 then a2 = 2b2. This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − 2b2) = ±(a2 + 2b2),

that is, a2 = 6b2 or 3a2 = 2b2. This is a contradiction. �
Proof of Theorem 1.5. We will show that b(m) 
= 0 when (Lo)m 
= ∅.

By Theorem 3.1, ΘLo,P1 is a normalized Hecke eigenform. So, We assume that
m is a power of prime, if not we could apply the equation (2). We will divide our
considerations into the following three cases.

(i) Case m = pα and p | dK :
By a(m) = 2 and the inequality (1), the shells (Lo)m are not spherical
2-designs. Hence, b(m) 
= 0.

(ii) Case m = pα and (dK/p) = −1:
By Lemma 4.1,

a(pn) =

{
0 if n is odd,

2 if n is even.

By a(m) = 2 and the inequality (1), when n is even, the shells (Lo)m are not
spherical 2-designs. Hence, b(m) 
= 0.

(iii) Case m = pα and (dK/p) = 1:
By Proposition 3.1 and Lemma 4.2, we have b(m) 
= 0. This completes the
proof of Theorem 1.5. �

5 The Case of |ClK| = 2

Let K := Q(
√−d) be an imaginary quadratic field. In this section, we assume that

the class number of K is 2. So, we consider that d is in the following set: {5, 6, 10,
13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427}. We denote by o
(resp. a) the principal (resp. nonprincipal) ideal class.

In this section, we also assume that a(m) and b(m) are the coefficients of the
following functions:

ΘLo(q) + ΘLa(q) =
∑

m≥0

a(m)qm,

c1ΘLo,P2(q) + c2ΘLa,P2(q) =
∑

m≥1

b(m)qm,

where c1 and c2 are defined in Lemma 3.2.
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Table 2 Values of m and b(m)

−d −5 −6 −10 −13 −15 −22 −35 −37 −51

m 2 2 2 2 3 2 5 2 3

b(m) 2 2 2 2 −3 2 −5 2 3

−d −58 −91 −115 −123 −187 −235 −267 −403 −427

m 2 7 5 3 11 5 3 13 7

b(m) 2 −7 −5 3 −11 5 3 −13 7

Lemma 5.1. Set l1 := {N(O) | O ∈ o} and l2 := {N(A) | A ∈ a}. Then,
l1 ∩ l2 = ∅. Therefore, the set Lo ∩ La consists of the origin.

Proof. Let p be a prime number such that (dK/p) = 1. Then there exist prime ideals
P and P ′ such that (p) = PP ′ and N(P ) = N(P ′) = p. Since a class number is
2, we have P and P ′ ∈ o or P and P ′ ∈ a. If P and P ′ ∈ o we denote by pi such a
prime. If P and P ′ ∈ a we denote by p′i such a prime.

Let p be a prime number such that (dK/p) = −1. Then (p) is a prime ideal and
N((p)) = p2. We denote by qi such a prime.

Let p be a prime number such that p | dK . Then there exists a prime ideal P such
that (p) = P 2 and N(P ) = p. Since a class number is 2, we have P ∈ o or P ∈ a.
If P ∈ o we denote by ri such a prime. If P ∈ a we denote by r′i such a prime.

We take the element n ∈ l1 ∩ l2 and perform a prime factorization, n =
p1 · · · p′1 · · · q1 · · · r1 · · · r′1 · · · . Then, p1 · · · , q1 · · · and r1 · · · correspond to princi-
pal ideals. So, if the number of occurrences of each of the primes p′ and r′ is even
then n ∈ l1 and if the number of occurrences of each of the primes p′ and r′ is odd
then n ∈ l2. This completes the proof of Lemma 5.1. �
Lemma 5.2. Let p be a prime number. Let d be one of the elements in {5, 6, 10,
13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427}. We set a′(m) =
a(m)/2 for all m. Then,

a′(pe) =

⎧
⎨

⎩

e + 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK .

Proof. Because of the equation (6), a′(m) is the number of integral ideals of K of
norm m. Therefore, it can be proved by Proposition 2.1. �

Lemma 5.3. Let p be a prime number such that (dK/p) = 1. Then, b(p) 
= 0.
Moreover, if p 
= d then b(p) 
= ±p.

Proof. We remark that by Lemma 3.2 and Corollary 3.1, c1ΘLo,P2(q) +
c2ΘLa,P2(q) = ΨK,Λ(q). So, the numbers b(m) are the coefficients of ΨK,Λ(q).

We set N(J) = p. When J is a principal ideal, it can be proved by the similar
method in Lemma 4.2. So, we assume that J is nonprincipal.

We list the smallest prime numberm such thatm | dK andm ∈ {N(I) | I ∈ a},
and the values b(m) are in Table 2.
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First, we assume that −d ≡ 2 or 3 (mod 4). If N(J) is equal to p then by
Lemma 2.1

mp = a2 + db2.

Because of the definition of ΨK,Λ(q),

b(mp) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

Since b(mp) = b(m)b(p) and the value of b(m) in Table 2, we have b(p) = a2−db2.
If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

a2 − db2 = ±a
2 + db2

2
,

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
Next, we assume that−d ≡ 1 (mod 4). IfN(J) is equal to p then by Lemma 2.1

there exist a, b ∈ Z such that

mp = a2 + db2 or mp =
a2 + db2

4
.

Because of the definition of ΨK,Λ(q),

b(mp) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

or

b(mp) =
(a+ b

√−d
2

)2

+
(a− b√−d

2

)2

=
a2 − db2

2
.

Since b(mp) = b(m)b(p) and the value of b(m) in Table 2, we have b(p) =
2/b(m)× (a2− db2) or b(p) = 1/b(m)× (a2− db2)/2. If b(p) = 0 then a2 = db2.
This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − db2)
b(m)

= ±a
2 + db2

m
,

or

a2 − db2
2b(m)

= ±a
2 + db2

4m
,

that is, a2 = 3db2 or 3a2 = db2 since m = ±b(m) for −d ≡ 1 (mod 4). This is a
contradiction. �
Proof of Theorem 1.6. Because of Lemma 5.1, it is enough to show that b(m) 
= 0
when (Lo)m 
= ∅ or (La)m 
= ∅.
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By Theorem 3.1, c1ΘLo,P2 + c2ΘLa,P2 is a normalized Hecke eigenform. So,
We assume that m is a power of prime, if not we could apply the equation (2). We
will divide into the three cases.

(i) Case m = pα and p | dK :
By a(m) = 2 and (1), the shells (L)m are not spherical 2-designs. Hence,
b(m) 
= 0.

(ii) Case m = pα and (dK/p) = −1:
By Lemma (4.1),

a(pn) =

{
0 if n is odd,

2 if n is even.

By a(m) = 2 and (1), when n is even, the shells (L)m are not spherical
2-designs. Hence, b(m) 
= 0.

(iii) Case m = pα and (dK/p) = 1:
By Proposition 3.1 and Lemma 5.3, b(m) 
= 0. This completes the proof of
Theorem 1.6. �

6 The Case of |ClK| = 3

In the previous sections, we studied the cases of class number h = |ClK | is either 1
or 2. However, it seems that the situation is somewhat different for the cases of class
numbers h ≥ 3. In this section, we discuss briefly how it is different, by considering
the case of d = 23 (h = 3).

We first remark that one reason of success for the cases h = 1 and h = 2 is
that the coefficients a(m) of the Hecke eigenform ΨK,Λ are all integers. Therefore,
by formula (10), we have that z = a(p)/p is a rational number (and since it is an
algebraic integer), and so it must be a rational integer. It seems that this situation
is no longer true in general for the cases of h ≥ 3. We will give more detailed
information, concentrating the special (and typical) case of d = 23.

We denote by o, a1 and a2 the ideal classes. The corresponding quadratic
forms are x2 + xy + 6y2, 2x2 − xy + 3y2 and 2x2 + xy + 3y2, namely,
Lo = 〈(1, 0), (1/2,√23/2)〉, La1 = 〈(2, 0), (1/2,√23/2)〉 and La2 =
〈(2, 0), (−1/2,√23/2)〉, respectively. We give the weighted theta series of those
ideal lattices. We set P1 = x2 − y2 and P2 = xy in this section.
ΘLo = 1+2q+2q4+4q6+4q8+2q9+4q12+2q16+4q18+2q23+4q24+2q25+
4q26+4q27+4q32+6q36+4q39+8q48+2q49+4q52+4q54+4q58+4q59+4q62+
6q64+8q72+4q78+2q81+4q82+4q87+2q92+4q93+4q94+8q96+2q100+O[q]101.
1
2 ×ΘLo,P1 = q+4q4−11q6−7q8+9q9+q12+16q16+13q18−23q23−44q24+
25q25 + 29q26 − 38q27 − 28q32 + 85q36 − 14q39 + 77q48 + 49q49 − 103q52 −
99q54 − 91q58 + 26q59 + 101q62 − 15q64 − 11q72 + 133q78 + 81q81 − 43q82 +
82q87 − 92q92 − 182q93 − 19q94 − 7q96 + 100q100 +O[q]101.
ΘLo,P2 = 0.
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ΘLa1
= 1+2q2+2q3+2q4+2q6+2q8+2q9+4q12+2q13+4q16+4q18+6q24+

2q26 + 2q27 + 2q29 + 2q31 + 4q32 + 6q36 + 2q39 + 2q41 + 2q46 + 2q47 + 6q48 +
2q50 + 4q52 + 6q54 + 2q58 + 2q62 + 4q64 + 2q69 + 2q71 + 8q72 + 2q73 + 2q75 +
6q78 +4q81 +2q82 +2q87 +2q92 +2q93 +2q94 +8q96 +2q98 +2q100 +O[q]101.
2×ΘLa1 ,P1 = 8q2 − 11q3− 7q4 + q6 + 32q8 + 13q9 − 88q12 + 29q13 − 56q16 +

121q18 + 81q24− 103q26− 99q27 − 91q29 + 101q31 + 49q32 +41q36 + 133q39−
43q41−184q46−19q47−183q48+200q50+232q52−295q54+209q58+41q62−
224q64+253q69+77q71+393q72−283q73−275q75−375q78+418q81−247q82−
227q87 + 161q92 − 203q93 + 353q94 + 616q96 + 392q98 − 175q100 +O[q]101.
4√
23
×ΘLa1 ,P2 = q3 − 3q4 + 5q6 − 7q9 + 9q13 − 11q18 + 13q24 − 3q26 + 9q27 −

15q29−15q31+21q32−27q36+17q39+33q41−39q47−19q48+45q54+21q58−
51q62− 23q69+57q71+5q72− 15q73+25q75− 35q78− 38q81+45q82− 55q87+
69q92 + 65q93 − 27q94 − 75q100 +O[q]101.
ΘLa2

= 1+2q2+2q3+2q4+2q6+2q8+2q9+4q12+2q13+4q16+4q18+6q24+

2q26 + 2q27 + 2q29 + 2q31 + 4q32 + 6q36 + 2q39 + 2q41 + 2q46 + 2q47 + 6q48 +
2q50 + 4q52 + 6q54 + 2q58 + 2q62 + 4q64 + 2q69 + 2q71 + 8q72 + 2q73 + 2q75 +
6q78 +4q81 +2q82 +2q87 +2q92 +2q93 +2q94 +8q96 +2q98 +2q100 +O[q]101.
2×ΘLa2 ,P1 = 8q2 − 11q3− 7q4 + q6 + 32q8 + 13q9 − 88q12 + 29q13 − 56q16 +

121q18 + 81q24− 103q26− 99q27 − 91q29 + 101q31 + 49q32 +41q36 + 133q39−
43q41−184q46−19q47−183q48+200q50+232q52−295q54+209q58+41q62−
224q64+253q69+77q71+393q72−283q73−275q75−375q78+418q81−247q82−
227q87 + 161q92 − 203q93 + 353q94 + 616q96 + 392q98 − 175q100 +O[q]101.
4√
23
×ΘLa2 ,P2 = −q3+3q4− 5q6+7q9− 9q13+11q18− 13q24+3q26− 9q27+

15q29+15q31−21q32+27q36−17q39−33q41+39q47+19q48−45q54−21q58+
51q62+23q69− 57q71− 5q72+15q73− 25q75+35q78+38q81− 45q82+55q87−
69q92 − 65q93 + 27q94 + 75q100 +O[q]101.

We calculate the Hecke character of weight 3 and modulus (1), i.e, we calculate
ΨK,Λ =

∑
m≥1 a(m)qm, where Λ = (1) and k = 3. When A of norm m is

a nonprincipal ideal, A3 is a principal ideal. Then we set φ(A)3 = φ(A3). For
example, (2,−1/2 +√−23/2)3 = (−3/2−√−23/2). Because of

φ
((−3−√−23

2

))
=

(−3−√−23
2

)2

=
−7 + 3

√−23
2

,

φ((2,−1/2 +√−23/2)) is one of the roots of

x3 −
(−7 + 3

√−23
2

)
= 0. (11)

We denote by α1, α2 and α3 the roots of equation (11), namely, α1 ∼ −1.86272+
0.728188i,α2 ∼ 0.300733− 1.97726i and α3 ∼ 1.56199+1.24907i, respectively.
Then, φ((2,−1/2 +

√−23/2)) is one of α1, α2 or α3. (Actually there are three
different Hecke characters in this case.) First let us set φ((2,−1/2 +√−23/2)) =
α1. By the equation (2,−1/2 +√−23/2)× (2, 1/2 +

√−23/2) = (2),
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φ
((

2,
−1 +√−23

2

))
× φ

((
2,

1 +
√−23
2

))
= φ((2)).

We get

α1 × φ
((

2,
1 +
√−23
2

))
= 4,

hence, φ((2, 1/2 +
√−23/2)) = 4/α1. So,

a(2) = φ
((

2,
−1 +√−23

2

))
+ φ

((
2,

1 +
√−23
2

))
= α1 + 4/α1.

By the equation (2,−1/2+√−23/2)×(3, 1/2−√−23/2) = (1/2−√−23/2),

φ
((

2,
−1 +√−23

2

))
× φ

((
3,

1−√−23
2

))
= φ

((1−√−23
2

))
.

We get

α1 × φ
((

3,
1−√−23

2

))
=

(1−√−23
2

)2

=
−11−√−23

2
,

hence, φ((3, 1/2−√−23/2)) = (−11−√−23)/2×1/α1. Similarly, φ((3,−1/2−√−23/2)) = (−11 +√−23)/2× α1/(α
2
1 + 4). So,

a(3) = φ
((

3,
1−√−23

2

))
+ φ

((
3,
−1−√−23

2

))

=
−11−√−23

2
× 1

α1
+
−11 +√−23

2
× α1

α2
1 + 4

.

We recall α1 ∼ −1.86272 + 0.728188i. Then, we obtain

Ψ
(1)
K,Λ = q − 3.72545q2 + 4.24943q3 + · · · .

Actually, it is possible to continue this calculation, but we need the information on
the basis of all the ideals, which is rather complicated. So, we determine the Hecke
eigenforms Ψ

(i)
K,Λ by a different method. By computer calculation (using “Sage”

[18]), we know that the space of the modular forms of weight 3 where ΨK,Λ belongs
is of dimension 3. We can calculate the basis of this modular form explicitly, and
the three basis elements are of the form:

q + 4q4 − 11q6 − 7q8 + 9q9 + · · · ,
q2 − 5q4 + 7q6 + 4q8 − 8q9 + · · · ,
q3 − 3q4 + 5q6 − 7q9 + · · · .
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On the other hand, because of Theorems 3.1 and 3.2, ΘLo,P1 , ΘLa1 ,P1 and ΘLa2 ,P2

are in the same space of Hecke eigenforms Ψ
(i)
K,Λ. Therefore, comparing the first

three coefficients of the following equation:

Ψ
(1)
K,Λ(q) =

1

2
ΘLo,P (q) + a2ΘLa1 ,P

(q) + b
4√
23

ΘLa2 ,P
(q),

we can find numbers a and b as follows:

(a, b) =

⎧
⎨

⎩

(A1, B2),

(A2, B1),

(A3, B3),

where A1, A2 and A3 are the elements defined by

{x | 512x3 − 96x+ 7 = 0}
= {A1 = −0.465681, A2 = 0.0751832, A2 = 0.390498},

respectively, and B1, B2 and B3 are the elements defined by

{x | 512x3 − 2208x+ 1587 = 0}
= {B1 = −2.37065, B2 = 0.873067, B3 = 1.49759},

respectively.
In this way, we can calculate the Hecke eigenforms Ψ(i)

K,Λ. Namely,

Ψ
(1)
K,Λ = q − 3.72545q2 + 4.24943q3 + 9.87897q4 − 15.831q6 − 21.9018q8 +

9.05761q9 + 41.9799q12 − 21.3624q13 + 42.0781q16 − 33.7437q18 − 23q23 −
93.07q24 + 25q25 + 79.5844q26 + 0.244826q27 + 55.473q29 − 33.9378q31 −
69.1528q32+89.4799q36−90.7777q39−8.78692q41+85.6853q46+42.8975q47+
178.808q48 + 49q49 − 93.1362q50 +O[q]51.

Ψ
(2)
K,Λ = q + 0.601466q2 + 1.54364q3 − 3.63824q4 + 0.928445q6 − 4.59414q8 −

6.61718q9 − 5.61612q12 + 23.5162q13 + 11.7897q16 − 3.98001q18 − 23q23 −
7.09168q24 + 25q25 + 14.1442q26 − 24.1073q27 − 42.4015q29 − 27.9663q31 +
25.4677q32+24.0749q36+36.3005q39+74.9986q41−13.8337q46−93.8839q47+
18.1991q48 + 49q49 + 15.0366q50 +O[q]51.

Ψ
(3)
K,Λ = q + 3.12398q2 − 5.79306q3 + 5.75927q4 − 18.0974q6 + 5.49593q8 +

24.5596q9 − 33.3638q12 − 2.15383q13 − 5.86788q16 + 76.7237q18 − 23q23 −
31.8383q24 + 25q25 − 6.72853q26 − 90.1376q27 − 13.0715q29 + 61.9041q31 −
40.3149q32+141.445q36+12.4773q39−66.2117q41−71.8516q46+50.9864q47+
33.993q48 + 49q49 + 78.0996q50 +O[q]51.

The coefficients a(m) for this case are far from integers. In fact they are not
elements in a cyclotomic number field in general. So, it seems difficult to use the


