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Preface to the Second Edition

v

In 2013 the world mathematical community is celebrating the 100th anniver-
sary of Paul Erdős’ birth. His personality is remembered by many of his
friends, former disciples, and over 500 coauthors, and his mathematics is as
alive and well as if he was still among us. In 1995/1996 we were preparing
the two volumes of The Mathematics of Paul Erdős not only as a tribute to
the achievements of one of the great mathematicians of the twentieth century
but also to display the full scope of his œuvre, the scientific activity which
transcends individual disciplines and covers a large part of mathematics as
we know it today. We did not want to produce just a “festschrift”.

In 1995/1996 this was a reasonable thing to do since most people were
aware of the (non-decreasing) Erdős activity only in their own particular area
of research. For example, we combinatorialists somehow have a tendency to
forget that the main activity of Erdős was number theory.

In the busy preparation of the volumes we did not realize that at the end,
when published, our volumes could be regarded as a tribute, as one of many
obituaries and personal recollections which flooded the scientific (and even
mass) media. It had to be so; the old master left.

Why then do we think that the second edition should be published?
Well, we believe that the quality of individual contributions in these volumes
is unique, interesting and already partly historical (and irreplaceable—
particularly in Part I of the first volume). Thus it should be updated and
made available especially in this anniversary year. This we feel as our duty
not only to our colleagues and authors but also to students and younger
scientists who did not have a chance to meet the wandering scholar personally.
We decided to prepare a second edition, asked our authors for updates and
in a few instances we solicited new contributions in exciting new areas. The
result is then a thoroughly edited volume which differs from the first edition
in many places.

On this occasion we would like to thank all our authors for their time and
work in preparing their articles and, in many cases, modifying and updating
them. We are fortunate that we could add three new contributions: one by
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Joel Spencer (in the way of personal introduction), one by Larry Guth in
Part IV of the first volume devoted to geometry, and one by Alexander
Razborov in Part I of the second volume devoted to extremal and Ramsey
problems. We also wish to acknowledge the essential contributions of Steve
Butler who assisted us during the preparation of this edition. In fact Steve’s
contributions were so decisive that we decided to add him as co-editor to
these volumes. We also thank Kaitlin Leach (Springer) for her efficiency and
support. With her presence at the SIAM Discrete Math. conference in Halifax,
the whole project became more realistic.

However, we believe that these volumes deserve a little more contem-
plative introduction in several respects. The nearly 20 years since the first
edition was prepared gives us a chance to see the mathematics of Paul
Erdős in perspective. It is easy to say that his mathematics is alive; that
may sound cliché. But this is in fact an understatement for it seems that
Erdős’ mathematics is flourishing. How much it changed since 1995 when
the first edition was being prepared. How much it changed in the wealth
of results, new directions and open problems. Many new important results
have been obtained since then. To name just a few: the distinct distances
problem, various bounds for Ramsey numbers, various extremal problems, the
empty convex 6-gon problem, packing and covering problems, sum-product
phenomena, geometric incidence problems, etc. Many of these are covered by
articles of this volumes and many of these results relate directly or indirectly
to problems, results and conjectures of Erdős. Perhaps it is not as active
a business any more to solve a particular Erdős problem. After all, the
remaining unsolved problems from his legacy tend to be the harder ones.
However, many papers quote his work and in a broader sense can be traced
to him.

There may be more than meets the eye here. More and more we see that
the Erdős problems are attacked and sometimes solved by means of tools that
are not purely combinatorial or elementary, and which originate in the other
areas of mathematics. And not only that, these connections and applications
merge to new theories which are investigated on their own and some of which
belong to very active areas of contemporary mathematics. As if the hard
problems inspire the development of new tools which then became a coherent
group of results that may be called theories. This phenomenon is known to
most professionals and was nicely described by Tim Gowers as two cultures.
[W. T. Gowers, The two cultures of mathematics, in Mathematics: Frontiers
and Perspectives (Amer. Math. Soc., Providence, RI, 2000), 65–78.] On one
side, problem solvers, on the other side, theory builders. Erdős’ mathematics
seems to be on one side. But perhaps this is misleading. As an example,
see the article in the first volume Unexpected applications of polynomials
in combinatorics by Larry Guth and the article in the second volume Flag
algebras: an interim report by Alexander Razborov for a wealth of theory
and structural richness. Perhaps, on the top level of selecting problems and
with persistent activity in solving them, the difference between the two sides
becomes less clear. (Good) mathematics presents a whole.
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Time will tell. Perhaps one day we shall see Paul Erdős not as a theory
builder but as a man whose problems inspired a wealth of theories.

People outside of mathematics might think of our field as a collection
of old tricks. The second edition of mathematics of Paul Erdős is a good
opportunity to see how wrong this popular perception of mathematics is.

La Jolla, USA R.L. Graham
Prague, Czech Republic J. Nešetřil





IN MEMORIAM

Paul Erdős

26.3.1913–20.9.1996

The week before these volumes were scheduled to go to press, we learned that
Paul Erdős died on September 20, 1996. He was 83. Paul died while attending
a conference in Warsaw, on his way to another meeting. In this respect, this
is the way he wanted to “leave”. In fact, the list of his last month’s activities
alone inspires envy in much younger people.

Paul was present when the completion of this project was celebrated
by an elegant dinner in Budapest for some of the authors, editors and
Springer representatives attending the European Mathematical Congress. He
was especially pleased to see the first copies of these volumes and was perhaps
surprised (as were the editors) by the actual size and impact of the collection
(On the opposite page is the collection of signatures from those present at
the dinner, taken from the inside cover of the mock-up for these volumes).
We hope that these volumes will provide a source of inspiration as well as a
last tribute to one of the great mathematicians of our time. And because of
the unique lifestyle of Paul Erdős, a style which did not distinguish between
life and mathematics, this is perhaps a unique document of our times as well.

R.L. Graham
J. Nešetřil

ix
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In 1992, when Paul Erdős was awarded a Doctor Honoris Causa by Charles
University in Prague, a small conference was held, bringing together a distin-
guished group of researchers with interests spanning a variety of fields related
to Erdős’ own work. At that gathering, the idea occurred to several of us
that it might be quite appropriate at this point in Erdős’ career to solicit a
collection of articles illustrating various aspects of Erdős’ mathematical life
and work. The response to our solicitation was immediate and overwhelming,
and these volumes are the result.

Regarding the organization, we found it convenient to arrange the papers
into six chapters, each mirroring Erdős’ holistic approach to mathematics.
Our goal was not merely a (random) collection of papers but rather a
thoroughly edited volume composed in large part by articles explicitly
solicited to illustrate interesting aspects of Erdős and his life and work.
Each chapter includes an introduction which often presents a sample of
related Erdős’ problems “in his own words”. All these (sometimes lengthy)
introductions were written jointly by editors.

We wish to thank the nearly 70 contributors for their outstanding efforts
(and their patience). In particular, we are grateful to Béla Bollobás for his
extensive documentation of Paul Erdős’ early years and mathematical high
points; our other authors are acknowledged in their respective chapters. We
also want to thank A. Bondy, G. Hahn, I. Ouhel, K. Marx, J. Načeradský
and Ché Graham for their help and for the use of their works. At various
stages of the project, the book was supported by AT&T Bell Laboratories,
GAČR 2167 and GAUK 351. We also are indebted to Dr. Joachim Heinze
and Springer Verlag for their encouragement and support. Finally, we would
like to record our extreme debt to Susan Pope (at AT&T Bell Laboratories)
who somehow (miraculously) managed to convert more than 50 manuscripts
of all types into the attractive form they now have.

Here then is a unique portrait of a man who has devoted his whole being
to “proving and conjecturing” and to the pursuit of mathematical knowledge
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and understanding. We hope that this will form a lasting tribute to one of
the great mathematicians of our time.

Murray Hill, USA R.L. Graham
Praha, Czech Republic J. Nešetřil
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Paul Erdős lecturing.

Photo by George Csicsery.
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college in Spring 1989.

Photo by Colm Mulcahy.
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Béla Bollobás and Andrew Thomason

Cycles and Paths in Triangle-Free Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 81
Stephan Brandt

Problems in Graph Theory from Memphis . . . . . . . . . . . . . . . . . . . . . . . . 95
Ralph J. Faudree, Cecil C. Rousseau, and Richard H. Schelp

Some Remarks on the Cycle Plus Triangles Problem . . . . . . . . . . . 119
Herbert Fleischner and Michael Stiebitz

Intersection Representations of the Complete
Bipartite Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Zoltán Füredi
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Ramsey Theory in the Work of Paul Erdős . . . . . . . . . . . . . . . . . . . . . . . . 171
Ron L. Graham and Jaroslav Nešetřil
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I. Combinatorics and Graph Theory
Introduction

Erdős’ work in graph theory started early and arose in connection with D.
Kőnig, his teacher in prewar Budapest. The classic paper of Erdős’ and
Szekeres from 1935 also contains a proof in “graphotheoretic terms.” The
investigation of the Ramsey function led Erdős to probabilistic methods and
seminal papers in 1947, 1958 and 1960. It is perhaps interesting to note
that three other very early contributions of Erdős’ to graph theory (before
1947) were related to infinite graphs: infinite Eulerian graphs (with Gallai
and Vászoni) and a paper with Kakutani on nondenumerable graphs (1943).
Although the contributions of Erdős to graph theory are manifold, and he
proved (and always liked) beautiful structural results such as the Friendship
Theorem (jointly with V. T. Sós and Kövári), and compactness results
(jointly with N. G. de Bruijn), his main contributions were in asymptotic
analysis, probabilistic methods, bounds and estimates. Erdős was the first
who brought to graph theory the experience and rigor of number theory
(perhaps being preceded by two papers by V. Jarńık, one of his early
coauthors). Thus he contributed in an essential way to lifting graph theory
up from the “slums of topology.”

This part contains a “special” problem paper not by Erdős but by his
frequent coauthors from Memphis: R. Faudree, C. C. Rousseau and R. Schelp
(well, there is actually an Erdős supplement there as well). We encouraged
the authors to write this paper and we are happy to include it in this
volume. This part also includes two papers coauthored by Béla Bollobás,
who is one of Erdős’ principal disciples. Bollobás contributed to much
of Erdős’ combinatorial activities and wrote important books about them
(Extremal Graph Theory, Introduction to Graph Theory, Random Graphs).
His contributions to this chapter (coauthored with his two former students G.
Brightwell and A. Thomason) deal with graphs (and thus are in this chapter)
but they by and large employ random graph methods (and thus they could be
also be at home in the other volume). The main questions there may be also
considered as extremal graph theory questions (and thus they could fit into
the following part). Other contributions to this chapter, which are related to
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some aspect of Erdős’ work or simply pay tribute to him are by N. Alon, Z.
Füredi, M. Aigner and E. Triesch, S. Bezrukov and K. Engel, A. Gyárfás,
S. Brandt, N. Sauer and H. Wang, H. Fleischner and M. Stiebitz, and D.
Beaver, S. Haber and P. Winkler.

In 1995/1996, when the contents of these volumes were already crystal-
lizing, we asked Paul Erdős to isolate a few problems, both recent and old,
for each of the eight main parts of this book. To this part on Combinatorics
and Graph Theory he contributed the following collection of problems and
comments.

Erdős in his own words

Many years ago I proved by the probability method that for every k and r
there is a graph of girth ≥ r and chromatic number ≥ k. Lovász when he was
still in high school found a fairly difficult constructive proof. My proof still
had the advantage that not only was the chromatic number of G(n) large but
the largest independent set was of size < εn for every ε > 0 if n > n0(ε, r, k).
Nešetřil and V. Rödl later found a simpler constructive proof.

There is a very great difference between a graph of chromatic number ℵ0

and a graph of chromatic number ≥ ℵ1. Hajnal and I in fact proved that if
G has chromatic number ℵ1 then G must contain a C4 and more generally
G contains the complete bipartite graph K(n,ℵ1) for every n < ℵ0. Hajnal,
Shelah and I proved that every graph G of chromatic number ℵ1 must contain
for some k0 every odd cycle of size ≥ k0 (for even cycles this was of course
contained in our result with Hajnal), but we observed that for every k and
every m there is a graph of chromatic number m which contains no odd cycle
of length < k. Walter Taylor has the following very beautiful problem: Let
G be any graph of chromatic number ℵ1. Is it true that for every m > ℵ1

there is a graph Gm of chromatic number m all finite subgraphs of which
are contained in G? Hajnal and Komjáth have some results in this direction
but the general conjecture is still open. If it would have been my problem, I
certainly would offer 1,000 dollars for a proof or a disproof. (To avoid financial
ruin I have to restrict my offers to my problems.)

Let k be fixed and n → ∞. Is it true that there is an f(k) so that if G(n)
has the property that for every m every subgraph of m vertices contains an
independent set of size m/2 − k then G(n) is the union of a bipartite graph
and a graph of ≤ f(k) vertices, i.e., the vertex set of G(n) is the union of three
disjoint sets S1, S2 and S3 where S1 and S2 are independent and |S3| ≤ f(k).
Gyárfás pointed out that even the following special case is perhaps difficult.
Let m be even and assume that every m vertices of our G(n) induces an
independent set of size at least m/2. Is it true then that G(n) is the union of
a bipartite graph and a bounded set? Perhaps this will be cleared up before
this paper appears, or am I too optimistic?

Hajnal, Szemerédi and I proved that for every ε > 0 there is a graph of
infinite chromatic number for which every subgraph of m vertices contains
an independent set of size (1 − ε)m/2 and in fact perhaps (1 − ε)m/2 can be
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replaced by m/2 − f(m) where f(m) tends to infinity arbitrarily slowly. A
result of Folkman implies that if G is such that every subgraph of m vertices
contains an independent set of size m/2− k then the chromatic number of G
is at most 2k + 2.

Many years ago Hajnal and I conjectured that if G is an infinite graph
whose chromatic number is infinite, then if a1 < a2 < . . . are the lengths of
the odd cycles of G we have

∑

i

1

ai
= ∞

and perhaps a1 < a2 < . . . has positive upper density. (The lower density can
be 0 since there are graphs of arbitrarily large chromatic number and girth.)

We never could get anywhere with this conjecture. About 10 years ago
Mihók and I conjectured that G must contain for infinitely many n cycles
of length 2n. More generally it would be of interest to characterize the
infinite sequences A = {a1 < a2 < . . .} for which every graph of infinite
chromatic number must contain infinitely many cycles whose length is in A.
In particular, assume that the ai are all odd.

All these problems are unattackable (at least for us). About 3 years ago
Gyárfás and I thought that perhaps every graph whose minimum degree is
≥ 3 must contain a cycle of length 2k for some k ≥ 2. We became convinced
that the answer almost surely will be negative but we could not find a
counterexample. We in fact thought that for every r there must be a Gr
every vertex of which has degree ≥ r and which contains no cycle of length
2k for any k ≥ 2. The problem is wide open.

Gyárfás, Komlós and Szemerédi proved that if k is large and a1 < a2 < . . .
are the lengths of the cycles of a G(n, kn), that is, an n-vertex graph with
kn edges, then

∑ 1

ai
> c logn.

The sum is probably minimal for the complete bipartite graphs.
(Erdős-Hajnal) If G has large chromatic number does it contain two (or k

if the chromatic number is large) edge-disjoint cycles having the same vertex
set? It surely holds if G(n) has chromatic number > nε but nothing seems to
be known.

Fajtlowicz, Staton and I considered the following problem (the main
idea was due to Fajtlowicz). Let F (n) be the largest integer for which
every graph of n vertices contains a regular induced subgraph of ≥ F (n)
vertices. Ramsey’s theorem states that G(n) contains a trivial subgraph, i.e.,
a complete or empty subgraph of c logn vertices. (The exact value of c is not
known but we know 1/2 ≤ c ≤ 2.) We conjectured F (n)/ logn → ∞. This is
still open. We observed F (5) = 3 (since if G(5) contains no trivial subgraph
of 3 vertices then it must be a pentagon) . Kohayakawa and I worked out
the F (7) = 4 but the proof is by an uninteresting case analysis. (We found
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that this was done earlier by Fajtlowicz, McColgan, Reid and Staton, see Ars
Combinatoria vol 39.) It would be very interesting to find the smallest integer
n for which F (n) = 5, i.e., the smallest n for which every G(n) contains a
regular induced subgraph of ≥ 5 vertices. Probably this will be much more
difficult than the proof of F (7) = 4 since in the latter we could use properties
of perfect graphs. Bollobás observed that F (n) < c

√
n for some c > 0.

Let G(10n) be a graph on 10n vertices. Is it true that if every index
subgraph of 5n vertices of our G(10n) has ≥ 2n2 + 1 edges then our G(10n)
contains a triangle? It is easy to see that 2n2 edges do not suffice. A
weaker result has been proved by Faudree, Schelp and myself at the Hakone
conference (1992, I believe) see also a paper by Fan Chung and Ron Graham
(one of the papers in a volume published by Bollobás dedicated to me).

A related forgotten conjecture of mine states that if our G(10n) has more
than 20n2 edges and every subgraph of 5n vertices has ≥ 2n2 edges then
our graph must have a triangle. Simonovits noticed that if you replace each
vertex of the Petersen graph by n vertices you get a graph of 10n vertices,
15n2 edges, no triangle and every subgraph of 5n vertices contains ≥ 2n2

edges.

*****

So much for P. Erdős in 1995. Let us add that since that time some of
these problems were solved, some are open and some seem to be dormant.
Some were subject of intensive study. The reference to the above Hakone
conference is:

P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp, A local density
condition for triangles, Discrete Math. 127, 1–2 (1994), 153–161.
(The conference was The Second Japan Conference on Graph Theory and
Combinatorics, Aug 18–22, 1990 in Hakone.)

The mentioned paper by Fan Chung et al. is the following:
F. R. K. Chung and R. L. Graham, On graphs not containing prescribed
induced subgraphs, in A Tribute to Paul Erdos, ed. by A. Baker, B. Bollobás
and A. Hajnal, Cambridge University Press (1990), 111–120.

One of these problems was quoted by Erdős much earlier. For example the
problem of Taylor was mentioned as early as 1975; (W. Taylor: Problem 42.
In: Combinatorial Structures and Their Applications, Proc. Calgary Internat.
Conf. 1969, Gordon and Breach 1969.)

For more information about Erdős problems on graphs and of their
current status see:
F. R. K. Chung, R. L. Graham, Erdős on Graphs: His Legacy of Unsolved
Problems, A K Peters, Cambridge, MA 1993, xiv+142 pp.



Reconstruction Problems for Digraphs

Martin Aigner and Eberhad Triesch
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Summary. Associate to a finite directed graph G(V,E) its out-degree resp.
in-degree sequences d+, d− and the corresponding neighborhood lists N+, N−

(when G is a labeled graph). We discuss various problems when sequences resp.
lists of sets can be realized as degree sequences resp. neighborhood lists of a directed
graph.

1. Introduction

Consider a finite graph G(V,E). Let us associate with G a finite list P (G) of
parameters, e.g. the degrees, the list of cliques, the chromatic polynomial, or
whatever we like. For any set P of invariants there arise two natural problems:

(R) Realizability. Given P , when is P = P (G) for some graph G? We
then call P graphic, and say that G realizes P .

(U) Uniqueness. Suppose P (G) = P (H). When does this imply G ∼= H?
In other words, when is P a complete set of invariants?

The best studied questions in this context are probably the reconstruction
conjecture for (U), and the degree realization problem for (R). This latter
problem was solved in a famous theorem of Erdős-Gallai [4] characterizing
graphic sequences. Their theorem reads as follows: Let d1 ≥ · · · ≥ dn ≥ 0 be
a sequence of integers. Then (d1 ≥ · · · ≥ dn) can be realized as the degree
sequence of a graph if and only if the degree sum is even and

k∑

i=1

di ≤ k(k − 1) +

n∑

j=k+1

min(dj , k) (k = 1, . . . , n). (1)

A variant of this problem concerning neighborhoods was first raised by Sós
[13] and studied by Aigner-Triesch [2]. Consider a finite labeled graphG(V,E)
and denote by N(u) the neighborhood of u ∈ V . N (G) = {N(u) : u ∈ V } is
called the neighborhood list of G. Given a list (multiset) N = (N1, . . . , Nn)
of sets. When is N = N (G) for some graph G? In contrast to the polynomial

R.L. Graham et al. (eds.), The Mathematics of Paul Erdős II,
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verification of (1), it was shown in [2] that the neighborhood list problem
NL is NP-complete for arbitrary graphs. For bipartite graphs, NL turns out
to be polynomially equivalent to the GRAPH ISOMORPHISM problem. A
general survey of these questions appears in [3].

In the present paper we consider directed graphs G(V,E) on n vertices
with or without loops and discuss the corresponding realizability problems
for the degree resp. neighborhood sequences. We assume throughout that
there is at most one directed edge (u, v) for any u, v ∈ V . To every u ∈ V
we associate its out-neighborhood N+(u) = {v ∈ V : (u, v) ∈ E} and its
in-neighborhood N−(u) = {v ∈ V : (v, u) ∈ E} with d+(u) = |N+(u)| and
d−(u) = |N−(u)| being the out-degree resp. in-degree of u.

For both the degree realization problem and the neighborhood problem
we have three versions in the directed case:

(D+) Given a sequence d+ = (d+1 , . . . , d
+
n ) of non-negative integers. When

is d+ realizable as the out-degree sequence of a directed graph?
Obviously, (D−) is the same problem.
(D+

−) Given a sequence of pairs d+− = ((d+1 , d
−
1 ), . . . , (d+n , d

−
n )). When is

there a graph G with d+(ui) = d+i , d−(ui) = d−i for all i?
(D+,D−) Given two sequences d+ = (d+1 , . . . d

+
n ), d− = (d−1 , . . . , d

−
n ).

When is there a directed graph such that d+ is the out-degree sequence (in
some order) and d− the in-degree sequence?

In an analogous way, we may consider the realization problems (N+),
(N+

− ), (N+,N−) for neighborhood lists.
In Sect. 2 we consider the degree problems and in Sect. 3 the neighborhood

problems. Section 4 is devoted to simple directed graphs when there is at most
one edge between any two vertices and no loops.

2. Degree Sequences

Depending on whether we allow loops or not there are six different reconstruc-
tion problems whose solutions are summarized in the following diagram:

Degrees (D+) (D+
−) (D+,D−)

With loops Trivial Gale-Ryser Gale-Ryser

Without loops Trivial Fulkerson Fulkerson

The problems (D+) have the following trivial solutions: (d+) is realizable
with loops if and only if d+i ≤ n for all i, and without loops if and only if
d+i ≤ n− 1 for all i.

Consider (D+
−) with loops. We represent G(V,E) as usual by its adjacency

matrix M where the rows and columns are indexed by the vertices u1, . . . , un
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with mij = 1 if (ui, uj) ∈ E and 0 otherwise. To realize a given sequence
(d+−) is therefore equivalent to constructing a 0, 1-matrix with given row-sums
d+i and column-sums d−i which is precisely the content of the Gale-Ryser
Theorem [7, 11]. In fact, the Gale-Ryser Theorem applies to the situation
(D+,D−) as well by permuting the columns. If we do not allow loops, then
the realization problem (D+

−) is settled by an analogous theorem of Fulkerson
[5, 6]. He reduces the problem of constructing a 0, 1-matrix with zero trace
and given row and column sums to a network flow problem, an approach
which can also be used in the case of the Gale-Ryser theorem thus showing
that both problems are polynomially decidable. Finally, we remark that the
case (D+,D−) can be reduced to the case (D+

−) in view of the following
proposition.

Proposition 1. Suppose two sequences d+ = (d+1 , . . . , d
+
n ), d− = (d−1 , . . . ,

d−n ) are given. Denote by d̄+ (resp. d̄−) a non-increasing (resp. non-
decreasing) rearrangement of d+ (resp. d−). If there exists a 0, 1-matrix
M = (mij) with

∑n
j=1mjj = 0,

∑n
j=1mij = d+i ,

∑n
j=1mji = d−i ,

1 ≤ i ≤ n, then there exists a 0, 1-matrix M = (mij) satisfying
∑
jmjj = 0,

∑
jmij = d

+

i ,
∑
imji = d

−
i , 1 ≤ i ≤ n.

Proof. Suppose M is given as above. By permuting the rows and columns
of M by the same permutation (which does not change the trace) we may

assume that d+ = d
+

. �

Now suppose that for some indices i < j, d−i > d−j . We will show that M

can be transformed into a matrix M̂ with zero trace, row sum vector d+ and
column sum vector d̂−, where d̂− arises from d− by exchanging d−i and d−j .
Since each Permutation is generated by transpositions, this will obviously
complete the proof. To keep notation simple, we give the argument only for
the case i = n − 1, j = n but it is immediately clear how the general case
works. Suppose

M =

⎛

⎜⎜⎝
a b

0 y
x 0

⎞

⎟⎟⎠.

(i) If x ≤ y, then we exchange (ai, bi) when ai = 1 and bi = 0 for d−n−1 − d−n
indices i ≤ n− 2.

(ii) If x = 1, y = 0, then since d+n−1 ≥ d+n there exists some � < n − 1 such
that

(
mn−1,�

mn,�

)
=

(
1

0

)
.
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Now let

M =

⎛

⎜⎜⎝
b a

0 0 1
1 0 0

⎞

⎟⎟⎠

3. Neighborhood Lists

As in the undirected case the neighborhood problems are more involved.
Again, we summarize our findings in a diagram and then discuss the proofs.

Neighbors (N+) (N+
− ) (N+,N−)

With loops Trivial ≥ GRAPH ISOM. ≈ GRAPH ISOM.

Without loops Bipartite matching NP-complete NP-complete

Let us consider (N+) first. Allowing loops, any list (N+
i ) can be realized.

In the absence of loops, (N+
i ) can be realized if and only if (N+c

1 , . . . , N+c

n )
has a transversal, where N c is the complement of N . So, this problem is
equivalent to the bipartite matching problem and, in particular, polynomially
decidable.

Let us treat next the problem (N+
− ) without loops. The special caseN+

i =
N−
i for all i clearly reduces to the (undirected) neighborhood list problem

NL which as mentioned is NP-complete. Accordingly, (N+
− ) is NP-complete

as well.
We show next that the decision problem (N+

− ) with loops is polynomially
equivalent to the matrix symmetry problem MS defined as follows:

The input is an n×n-matrix A with 0, 1-entries, with the question: Does
there exist a permutation matrix P such that (PA)T = PA holds?

Let us represent G(V,E) again by its adjacency matrix. Then, clearly,
MS is the special case of (N+

− ) where N+
i = N−

i for all i. To see the converse
denote by xi (resp. yi) the incidence vectors of N+

i (resp. N−
i ) as row vectors,

and set

X =

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ , Y =

⎛

⎜⎝
y1

...
yn

⎞

⎟⎠.

The problem (N+
− ) is thus equivalent to the following decision problem: Does

there exist a permutation matrix P such that

PX = (PY )T ?
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Note that PX = (PY )T ⇐⇒ (PX)T = PY . Now consider the 4n× 4n-
matrix

Γ =

O I X U
I O I W
Y I O Z
UT WT ZT O

where O, I are the zero-matrix and identity matrix, respectively, and U,W,Z
are matrices with identical rows each which ensure that a permutation matrix
R satisfying (RΓ)T = RΓ must be of the form

R =

R1 O O O
O R2 O O
O O R3 O
O O O R4

.

Clearly, such matrices U,W,Z exist. Now (RΓ)T = RΓ if and only if

(R1X)T = R3Y,R
T
2 = R1, R3 = RT2 = R1,

i.e. if and only if (R1X)T = R1Y , and the result follows.
It was mentioned in [2] that MS is at least as hard as GRAPH

ISOMORPHISM, but we do not know whether they are polynomially
equivalent.

Let us, finally, turn to the problems (N+, N−). We treat (N+,N−) with
loops, the other version is settled by a matrix argument as above. Using again
the notation xi, yi, X , Y , our problem is equivalent to the following matrix
problem: Do there exist permutation matrices P and Q such that

PX = Y TQ, i.e. PXQT = Y T ?

This latter problem is obviously polynomially equivalent to HYPERGRAPH
ISOMORPHISM which is known to be equivalent to GRAPH ISOMOR-
PHISM (see [2]).

4. Simple Directed Graphs and Tournaments

Let us now consider simple directed graphs and, in particular, tournaments.
In contrast to the non-simple case, where (D+) and (N+) are trivial resp.
polynomially solvable (bipartite matching), the problems now become more
involved.

As for (D+), a necessary and sufficient condition for (d+i ) to be realizable
as an out-degree sequence of a tournament was given by Landau [9]. Assume
d+1 ≥ · · · ≥ d+n , then (d+i ) is realizable if and only if
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k∑

i=1

d+i ≤ (n− 1) + . . .+ (n− k) (K = 1, . . . , n)

with equality for k = n.
Deleting the last condition yields the corresponding result for arbitrary

simple digraphs.

Theorem 1. A sequence (d+1 ≥ · · · ≥ d+n ) is realizable as out-degree sequence
of a simple directed graph if and only if

k∑

i=1

d+i ≤
k∑

i=1

(n− i) (K = 1, . . . , n). (2)

Proof. The condition is obviously necessary. For the converse we make use of
the dominance order of sequences p = (p1 ≥ · · · ≥ pn), q = (q1 ≥ · · · ≥ qn):

p ≤ q ⇐⇒
k∑

i=1

pi ≤
k∑

i=1

qi (k = 1, . . . , n). (3)

Suppose m =
∑n

i=1 d
+
i , and denote by L(m) the lattice of all sequences

p = (p1 ≥ · · · ≥ pn),
∑n
i=1 pi = m, ordered by (3), see [1] for a survey on the

uses of L(m). Let S(m) ⊆ L(m) be the set of sequences which are realizable
as out-degree sequences of a simple digraph with m edges.

Claim 1. S(m) is a down-set, i.e. p ∈ S(m), q ≤ p =⇒ q ∈ S(m).

It is well-known that the order ≤ in L(m) is transitively generated by
successive “pushing down boxes”, i.e. it suffices to prove the claim for q ≤ p
with qr = pr − 1, qs = ps + 1 for some pr ≥ ps + 2, and qi = pi for i = r, s.
Now suppose G realizes the sequence p, with d+(ui) = pi. Since d+(ur) ≥
d+(us) + 2, there must be a vertex vt with (ur, ut) ∈ E, (us, ut) /∈ E. If
(ut, us) ∈ E, replace (ur, ut), (ut, us) by (ut, ur), (us, ut), and if (ut, us) /∈ E,
replace (ur, ut) by (us, ut). In either case, we obtain a simple directed graph
G′ with q as out-degree sequence, and the claim is proved.

Claim 2. Suppose m = (n− 1) + . . .+ (n− �+ 1) + r with r ≤ n− �, then
pm = (n− 1, . . . , n− �+ 1, r) is the only maximal element of S(m) in L(m).

By the definition (3), the sequence pm clearly dominates any sequence in
S(m), and since pm can obviously be realized as an out-degree sequence of a
simple digraph, it is the unique maximum of S(m).

Taking Claims 1 and 2 together yields the characterization

d ∈ S(m) ⇐⇒ d ≤ pm

and this latter condition is plainly equivalent to (1). �


