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Preface

Our goal in writing this book has been to provide a comprehensive, mathematically
rigorous, but still accessible treatment of the interaction between information and
control in multi-agent decision making in the context of networked control systems.
These are systems where different decision units (or equivalently decision makers
or agents, which could be sensors, controllers, encoders, or decoders) are connected
over a real-time communication network, where the communication medium is
heterogeneous, information is decentralized and distributed, and its acquisition is
not instantaneous. The questions we address are all performance driven, and entail
the issues of what data to pick and how to shape and transmit them for control
purposes under various resource constraints as well as how to design optimal
control policies with partial information. We deal specifically with the issues of
quantization and encoding, design of optimum channels, effects of decentralization
on control performance, stability, learning, signaling, and relationships between
team performance (of a group of agents) and various information structures.

The book draws and utilizes a diverse set of tools (of both conceptual and
analytical nature) from various disciplines, including stochastic control, stochastic
teams, information theory, probability theory and stochastic processes, and source-
coding and channel-coding theory, and amalgamates them into a unified, coherent,
applicable theory. It could be used as a textbook or as an accompanying text in
a graduate course on networked control or multi-agent decision making under
informational constraints.

Acknowledgements We would like to thank several individuals whose work, either independently
or through collaboration, has shaped the contents of the book. Of particular mention are Tamás
Linder (Chaps. 4 and 10); Sean Meyn (Chaps. 6 and 8 ); Andrew Johnston (Chaps. 7 and 9); Sekhar
Tatikonda (Chap. 11); Ali Zaidi, Tobias Oechtering, and Mikael Skoglund (Chap. 11); and Aditya
Mahajan, Giacomo Como, and Nuno C. Martins, general collaborations with whom have been
reflected in the book.

Abhishek Gupta, Andrew Johnston, Naci Saldi, Charalambos Charalambous, Maxim Raginsky,
Emrah Akyol, and Daniel Quevedo read different versions of the book and provided substantial
technical comments which this final version has greatly benefitted from.

vii



viii Preface

The book has also benefitted from technical discussions with many of our colleagues and
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Chapter 1
Introduction

This chapter provides an introduction to the field of networked control and thereby
to this book. It highlights the main approaches taken to address issues unique to
networked control and describes the scope of coverage and the contents of the book.

1.1 Information and Control

The interaction between information and control is a phenomenon that arises in
every decision and control problem. On the one hand, any performance-driven
controller requires information on the unknowns that affect the operation of the
underlying system; on the other hand, the quality of the relevant information itself
is typically affected by the choice of the control action in a closed-loop system.
Further, the transmission of information over communication channels with high
fidelity and the process of shaping the source output and recovering the transmitted
signal at the other end can themselves be viewed as controller design problems. This
book is a comprehensive undertaking aimed at furthering our understanding of this
interaction in the context of decentralized and networked control systems.

Networked control refers to a decentralized control system in which the compo-
nents are connected through real-time communication channels or a data network.
Thus, there may be a data link between the sensors (which collect information), the
controllers (which make decisions), and the actuators (which execute the controller
commands); and the sensors, the controllers, and the plant themselves could be
geographically separated.

With such a networked structure, many modern control systems are decentral-
ized. Such systems feature multiple decision makers (e.g., sensors, controllers, and
encoders) which have access to different and imperfect information, either cooperate
with or compete against each other. Such systems are becoming ubiquitous, with
applications ranging from automobile and inter-vehicle communications designs,
control of surveillance and rescue robot teams for access to hazardous environments,

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 1,
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Plant

Station 4

Station 3

Station 2

Station 1

Fig. 1.1 A decentralized networked control system. Solid lines show the interaction between the
control stations and the plant Dashed lines depict the possible communication links between the
stations

remote surgery, space exploration and aircraft design, and control of economic
systems, among many other fields of applications most of which involve remote
control.

In such decentralized networked control problems, one major concern is the
characterization of the minimum amount of information transfer needed for a
satisfactory performance and particularly for stability of the overall system. This
information transfer would be between various components of the networked control
system. One necessity for satisfactory control performance is the ability for the
controllers to track the plant state under various constraints on the communication
(see Fig. 1.1). Another set of challenges is the determination of the data rate
required for the transmission of control signals, and the construction of dynamic
encoding, decoding, and control policies meeting some selected design criteria.
Another important problem is the establishment of effective coordination among
multiple sensors or multiple controllers/decision makers using minimum possible
information exchange. Even in cases when communication resources are not scarce,
a strong understanding of the fundamentals can be useful in constructing the
system architecture, and finally, such an insight can help reduce the computation
requirements and complexity.

Various forms of system architectures have been introduced and studied in the
networked control literature. To be able to analyze different scenarios, it is important
to identify and formalize the probabilistic description of the system and characterize
the underlying information structure. Further, it is equally important to precisely pin
down the objective in the system design, whether it is stochastic stability (in some
appropriate sense) or optimization. Learning and identifying an unknown system
through observations and actions is another important issue. Finally, the notion
of signaling–that controllers could communicate through actions–is another aspect
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which has to be taken into account. In all this, it is essential to understand both
the qualitative and the quantitative values of information for achieving different
objectives in such networked settings.

The above description of a networked control system lies at the intersection of
three disciplines of applied mathematics and engineering, namely, decentralized
control (in view of information structures and decision making under measurability
constraints), stochastic control (in view of decision making under uncertainty),
and communication, information, and quantization theories (in view of information
exchange among decision makers). Finally, probabilistic analysis (in view of being
the ultimate mathematical tool needed to conduct a study in all of these disciplines)
plays an essential role in the understanding, analysis, and synthesis of such systems.

Our aim in this book is to bridge these three disciplines in a precise and
rigorous manner, while also conveying practical messages to systems designers and
controller architects. The field of networked control has had accelerated growth
during the past decade, but many of the problems and challenges that arise were
actually obstacles identified already in the 1960s and the 1970s. What makes
the situation different today is the accumulation (since that time) of an arsenal of
more powerful results and tools from information theory, source coding theory,
and the theory of Markov chains, directly applicable to the problems at hand.
Furthermore, we have a richer pool of computational algorithms, and the computers
of the current generation have significantly more processing power. The field has
reached some state of maturity, and it seems timely to collect and present the main
results in a book form. Furthermore, it is also useful to revisit many of the results
of the 1970s and the 1980s and blend them in such a treatise with the current
developments, as they have by no means lost their relevance. And this is another
one of our goals here.

1.2 Coverage and the Intended Audience

Within the framework of networked control systems and in discrete time, five
essential concepts are visited recurrently in the book:

• The characterization of information structures in team problems defined in
terms of measurability relations in a given probability space. Comparison and
topological properties of information structures for stochastic team optimization
problems and identification of information structures which may lead to a
systematic program for generation of optimal policies.

• Stochastic stability of systems (state, controller, and encoders). Converse results
through information theoretic analysis and constructive algorithms via stochastic
drift equations. Stochastic stability corresponds to the existence of an equilibrium
distribution, ergodicity of a process, or existence of finite moments.
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• The operational differences between information theoretic settings (which, in
the classical sense, requires an infinite ensemble of messages to be transmitted
or encoded) and real-time settings in control which do not tolerate delay.
Use of information theory in establishing fundamental bounds on information
requirements.

• Optimal information transmission under causality and delay constraints, and
jointly optimal channel and controller design for real-time systems, under a
variety of information structures. Structural results as well as existence results
on optimal policies.

• The notion of signaling, its utilization in decentralized stabilization, and the
technical issues that are associated with it, such as the lack of convexity, the
dual effect of control, and non-neutrality.

These concepts and notions are interweaved throughout the book, constituting
the backbone of a comprehensive theory of networked control. Specific results are
built on that foundation and seamlessly presented throughout the book.

What is Not Covered

As indicated earlier, networked control systems, and multi-agent systems in general,
entail multiple decision makers that provide input into the system using only local
(decentralized) information. Throughout the book the underlying assumption is that
the agents act in unison, toward a common goal, that is, as members of a team, even
though they do not necessarily share the information they acquire. An extended
framework would be one where the agents’ goals are not aligned and may even
be conflicting, which then cannot be cast as a decentralized team problem. Such
problems belong to the realm of dynamic noncooperative stochastic games, where
appropriate solution concepts are the Nash equilibrium or Stackelberg equilibrium,
or a blend of the two, depending on whether there is a hierarchy in decision making
or not [32]. Such problems entail other intricate issues and their analysis requires a
different set of tools, beyond the scope of the coverage here.

Another direction in which the framework of this book can be broadened is
as follows: The treatment in the book is restricted to settings where there is an
underlying probability space and all the variables in the system are well-defined
random variables on this probability space given the policies of the decision makers.
Such a Bayesian setting does not include the probability-free settings occasionally
used in control theory (as in robust control with distribution-free disturbances with
norm constraints [28]) and in information theory and machine learning (as in coding
and learning for individual sequences [90]). As objective or loss functionals, such
settings typically admit a min-max type formulation instead of minimization of the
expected value of a loss function with respect to a probability measure. This book
does not consider such settings explicitly; however, the approaches presented here
are applicable to many such scenarios.
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Intended Audience for the Book

The intended audience is broad, including academic as well as industrial researchers
interested in control theory, information theory, statistics, and applied mathematics.
As indicated earlier, the book adopts a probability theory, information theory, and
decentralized stochastic control theory view to networked control problems. To
comfortably follow the material in the book, the reader should be familiar with linear
systems (at the first-year graduate level), basics of information theory, and measure-
theoretic stochastic processes (again at the first-year graduate level). The reader is
also expected to have a basic understanding of Markov chains and martingale theory.
For those who do not have the requisite background, appropriate references are
provided throughout the development in the book, and four appendices are included,
covering some of this material as well as others.

1.3 Contents of the Book

The book is comprised of twelve chapters, organized into three parts, as described
below. It also has four appendices, providing background material.

1.3.1 Part I. Information Structures in a Networked Control
System

This part is primarily concerned with the mathematical description of a networked
control system as a stochastic dynamic team. It provides a treatise on stochastic
dynamic teams and a detailed investigation of information structures. Comparison
of different information structures is also covered.

In Chapter 2, a general probability theoretic framework for stochastic team
decision problems is established, by defining and classifying information structures,
interaction dynamics, policy spaces, and objective functions. A number of examples
are included to provide a gentle introduction to the concepts. Team problems and
information structures are classified according to various criteria. Solution methods
for static teams are presented, with particular emphasis on convex cost functions.
Dynamic teams are considered further in Chap. 3.

Chapter 3 focuses on comparison of information structures and solution
approaches to a class of dynamic team problems. Under nonclassical informa-
tion structures, the notion of signaling is introduced and thoroughly discussed.
Witsenhausen’s counterexample is studied, along with its generalizations and a class
of dynamic team problems involving Gaussian sources and channels. Expansion
of information structures is presented as a general recipe for studying dynamic
teams with nonclassical information patterns. Witsenhausen’s characterization of
information structures is also presented in this chapter.
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Chapter 4 investigates the optimal design of information structures and studies
a number of topological properties of information structures modeled as observa-
tion channels under various topologies. Continuity, compactness, concavity, and
existence properties are studied for single-stage and multistage optimal stochastic
control problems. An introduction to quantizers is given. Quantizers are viewed
as a special class of measurement channels, and existence of optimal quantizers is
established. Furthermore, a partial ordering on the value of information channels
for the minimization of cost functions is studied (known as Blackwell ordering).
Applications to empirical consistency and learning are discussed.The results pre-
sented in this chapter are used extensively later in Part III.

1.3.2 Part II. Stabilization of Networked Control Systems

This part focuses on the stabilization of networked control systems, for both single-
sensor/controller and multi-sensor/controller systems, and comprises five chapters.

The chapters in this part introduce fundamental criteria that need to be satisfied
for stochastic stabilization. Constructive methods are presented which meet the
fundamental (converse) bounds. The constructive proofs utilize a drift approach
offered in a number of recent papers by us and our collaborators. Toward further
understanding the value of information channels in stochastic control, it is shown
that Shannon capacity provides a total ordering on the set of channels for the
existence of policies for stochastic stability and ergodicity properties.

Chapter 5 introduces policies and actions regarding the selection of quantizers
and controllers in networked control. It reviews fundamentals of information
theoretic notions. The chapter exhibits the important differences between the real-
time communication formulation and the traditional Shannon theoretic setup which
allows for large blocks of data (with unbounded block length) to be encoded and
transmitted. This distinction is highlighted in the context of distortion-constrained
quantizer design and the rate-distortion theory. The chapter also establishes funda-
mental lower bounds on information rates needed for various forms of stochastic
stabilization. These lower bounds are further studied in Chap. 9.

Chapter 6 is an important one for the general program of Part II, where random-
time state-dependent stochastic drift criteria for stabilization of Markov chains are
established together with a class of application areas in networked control systems.
Criteria for transience and other forms of stochastic stability are presented. Related
background material is reviewed in Appendix C.

In the context of stochastic stabilization of linear sources driven by noise with
unbounded support, controlled over information channels, Chap. 7 focuses on
finite-rate noiseless channels and provides the architectural setup for coding and
control policies. Chapter 8 investigates stabilization over erasure channels, discrete
memoryless channels with and without feedback as well as a class of continuous-
alphabet channels (Gaussian channels are further discussed in Chap. 11). A common
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theme in these chapters is the relationship between Shannon capacity and the
ergodicity of the controlled Markov process: For ergodicity (under additional
technical assumptions), Shannon capacity (with feedback) provides a boundary
condition in the space of communication channels for stochastic stabilization of
unstable linear systems. For finite moment stability, however, further conditions are
required both on the channels and on the tail distributions of the system noise. The
results in these chapters also include extensions to multidimensional and partially
observed settings.

Chapter 9 considers stabilization under a decentralized information structure for
multi-sensor and multi-controller systems. Existence results on stabilizing policies
under the decentralized information structure are obtained. In the absence of
noise, it is shown that multi-controller systems, unlike multi-sensor systems with
a centralized controller, entail a rate loss due to decentralization. The noisy cases
are also investigated and rate conditions are established for multi-sensor systems.

1.3.3 Part III. Optimization in Networked Control: Design
of Optimal Policies Under Information Constraints

The third, and final part of the book, comprising three chapters, studies simultaneous
design of optimal encoding and control policies for networked control systems.

Chapter 10 establishes the structure of optimal quantization policies under
various information structures for general cost functions. The coverage includes
both single decision maker and multiple decision maker formulations, with partial
as well as full observation. A dynamic programming approach is presented building
on classical results by Witsenhausen, and Walrand and Varaiya. The chapter also
presents optimal solutions for encoders and controllers under quadratic performance
measure for linear Gaussian systems controlled over discrete noiseless channels.

Chapter 11 obtains optimal solutions for encoders and controllers under quadratic
cost functions for linear Gaussian systems controlled over Gaussian channels,
proving also the existence of optimal solutions. Furthermore, the chapter identifies
conditions under which optimal coding and control policies are linear. Counterex-
amples on sub-optimality of linear policies are also presented.

Chapter 12 presents the notions of agreement and common knowledge and
addresses the question of how to achieve common knowledge. The chapter presents
a general framework for obtaining solutions to dynamic team problems under de-
centralized information structures based on dynamic programming and an evolving
common knowledge, and applies this primarily in the context of the belief sharing
information pattern. Information rates required for tractability of optimal solutions
are also presented. Finally, the chapter introduces a team cost-rate function, which
provides the minimum cost subject to a rate constraint on the information exchange
among members of a team.
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1.4 A Guide for the Reader or the Instructor

For students who have a background in stochastic processes at the first-year graduate
level and who are also familiar with the basics of information theory, the book can
be used as a textbook in a course on networked control systems or stochastic control
or multi-agent decision making. It could also be used in a special topics course or as
an independent resource.

For a graduate-level course on decentralized control where the students do not
have any background on communication theory at the graduate level, Chaps. 2, 3, 4,
9, 10, 11, and 12 together with the Appendices can be used as primary or supporting
material. A basic information theory background can be acquired from standard
textbooks, such as [103] or [151]. For further advanced topics on information theory,
the reader is referred to advanced texts such as [107] or [153].

Chapters 2, 3, 4, 6, 10, and 12 together with the Appendices can be used as
primary or supporting material in a graduate-level course on Stochastic Control with
limited information theory content.

For students who do not have a background at a graduate-level stochastic process
course, all chapters except Chaps. 4, 6 should be accessible.

For students who are familiar with information theory, but not stochastic control
and optimization, all chapters should be accessible with some further reading.
The stochastic control and optimization fundamentals could be supplemented by
resources such as [84, 194, 225, 269], and [14] on stochastic control and [55] and
[242] on optimization. The material in Chap. 6 can be supplemented by [271].
A further useful reference is [189].

A useful related book in the literature on networked control systems is the
text by Matveev and Savkin [266], which has partial overlap with the material in
Chaps. 7, 8, and 9 of this book, even though the approaches are different. The two
books can be used as complementary resources.
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Chapter 2
Networked Control Systems as Stochastic Team
Decision Problems: A General Introduction

2.1 Introduction

Networked control systems can be viewed as stochastic decision problems with
dynamic decentralized information structures or as stochastic dynamic teams, with
each subcontroller viewed as an agent in a dynamic team. The goal of this
introductory chapter is accordingly to introduce the reader to a general mathematical
formulation of stochastic teams, first with static and then with dynamic information
structures, and to discuss some salient features of these decision problems and
associated solution concepts through some simple but illustrative examples.

The chapter discusses both static stochastic teams (i.e., team decision problems
where the information signals received by the decision makers are not affected by
actions) and dynamic stochastic teams (where the information of at least one deci-
sion maker is affected by action). Sections 2.2, 2.3, and 2.6 deal with static teams,
whereas Sects. 2.4 and 2.5 discuss dynamic teams. Section 2.2 provides a general
formulation for static teams, which is followed by a complete analysis of a finite
stochastic team problem under various information patterns, in Sect. 2.3. Section 2.6
provides some general explicit results on existence, uniqueness, and characterization
of optimal solutions first for general static teams and then for special classes of
teams with Gaussian statistics: those with quadratic and exponentiated quadratic
costs.

Sections 2.4 and 2.5 can be viewed as the counterparts of Sects. 2.2 and 2.3
for dynamic teams. First a precise mathematical formulation for dynamic team
decision problems is given, in Sect. 2.4, along with various dynamic information
structures and appropriate solution concepts, and then an illustrative example of
a finite dynamic team is provided in Sect. 2.5, within the framework of which
some important features of optimal solutions in teams are discussed. The chapter
concludes with Sect. 2.7 which provides some bibliographical notes and guidelines
for further reading on the topics covered herein.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 2,
© Springer Science+Business Media New York 2013
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2.2 A Mathematical Framework For Static
Decision Problems

Multiple person stochastic decision problems could be formulated with varying
degrees of generality, abstraction, and rigor, depending on the types of problems to
be solved (i.e., the scope of coverage) and the level of mathematical sophistication
to be expected from the reader. Common to all possible formulations, however, is
the specification of five basic ingredients which are essential for a well-founded
mathematical treatment of decision making under uncertainty. These are:

1. The number of decision makers (synonymously, agents or controllers) and the
sets of alternative actions (synonymously, decisions or controls) available to
them

2. The uncertainty and its probabilistic description
3. The information acquired by each decision maker on the uncertainty and the

previous actions
4. The payoff (or loss) that accrues to each decision maker as a result of joint actions

(over the decision period) and realization of uncertainty
5. A solution concept whereby “best” or “satisfactory” decision rules can be

chosen

Before going into further specification of these entities, let us pause to introduce
some terminology and notation which will be needed in the sequel. We will refer
to a decision problem as static if the information available to each decision maker
is independent of the actions of other decision makers (this statement will be made
precise later in the section as well as in Sect. 3.8); otherwise, the decision problem
is said to be dynamic. We will refer to decision makers interchangeably as agents
or controllers, with the ith one denoted Ai, where i takes values in the set N :=
{1, . . . , N} which is called the agent (decision maker) set. The variable under the
control of each decision maker will be called the action (synonymously, decision
or control) variable and will be denoted by ui for Ai. Each ui will take values in
a given action set to be denoted by U i. Finally, the N -tuple (u1, . . . , uN) will be
denoted by u and the product action space U1 × · · · × UN by U.

Basic Ingredients of Static Decision Problems

In the static framework we will initially study the class of problems where the action
sets, U i, i ∈ N , are either (finitely or infinitely) countable or uncountable but finite
dimensional. In the latter case, we take the action set (space) to be isomorphic to the
Euclidean1 space R

mi , for some integer mi, i ∈ N ; furthermore, if there are any

1Some background material on sets and topological notions can be found in Appendix A.


