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Preface

There has been a great deal of interest in optimal control systems described by
stochastic and partial differential equations. These optimal control problems lead to
stochastic and partial differential inclusions. The aim of this book is to present a
unified theory of stochastic differential inclusions written in integral form with both
types of stochastic set-valued integrals defined as subsets of the space L2.�;Rn/

and as multifunctions with closed values in the space Rn. Such defined inclusions
are therefore divided into two types: stochastic functional inclusions (SFI.F;G/)
and stochastic differential inclusions (SDI.F;G/), respectively. The main results of
the book deal with properties of solution sets of stochastic functional inclusions and
some of their applications in stochastic optimal control theory and in the theory
of partial differential inclusions. In particular, apart from the existence of weak
solutions for initial value problems of stochastic functional inclusions, the existence
of their strong and weak viable solutions is also investigated. An important role
in applications is played by theorems on weak compactness of solution sets of
weak and viable weak solutions for the above initial value problems. As a result of
these properties, some optimal control problems for dynamical systems described
by stochastic and partial differential inclusions are obtained. Let us remark that
for a given pair .F;G/ of multifunctions, the sets X .F;G/ and S.F;G/ of all
weak solutions of SFI.F;G/ and SDI.F;G/, respectively, are defined as families
of systems .PF; x; B/ consisting of a filtered probability space PF, a continuous
process x D .xt /t�0, and an F-Brownian motion B D .Bt /t� satisfying these
inclusions. Immediately from the definitions of SFI.F;G/ and SDI.F;G/, it
follows that X .F;G/ � S.F;G/. It is natural to extend the results of this book
to the set S.F;G/ and consider weak solutions with x a càdlàg process instead of
a continuous one. These problems are quite complicated and need new methods.
Therefore, in this book, they are left as open problems.

The first papers dealing with stochastic functional inclusions written in integral
form are due to Hiai [38] and Kisielewicz [50–56,58,60–62]. Independently, Ahmed
[2], Da Prato and Frankowska [23], Aubin and Da Prato [9], and Aubin et al.
[10] have considered stochastic differential inclusions symbolically written in the
differential form dxt 2 F.t; xt /dt C G.t; xt /dBt and understood as a problem

ix



x Preface

consisting in finding a system .PF; x; B/ consisting of a filtered probability space
PF, a continuous process x D .xt /t�0, and an F-Brownian motion such that
xt D x0CR t

0
f�d�CR t

0
g�dB� with ft 2 .F ıx/t DW F.t; xt / and gt 2 .G ıx/t DW

F.t; xt / a.s. for t � 0. Stochastic functional inclusions defined by Hiai [38] and
Kisielewicz [51] are in the general case understood as a problem consisting in
finding a system .PF; x; B/ such that xt � xs 2 clLfJst .F ı x/C Jst .G ı x/g for
every 0 � s � t < 1, where Jst .F ıx/ and Jst .Gıx/ denote set-valued functional
integrals on the interval Œs; t � of F ıx andG ıx, respectively. It is evident that some
properties of stochastic functional inclusions written in integral form follow from
properties of set-valued stochastic integrals. Such properties are difficult to obtain
for stochastic differential inclusions written in differential form.

The first results dealing with set-valued stochastic integrals with respect to the
Wiener process with application to some set-valued stochastic differential equations
are due to Bocşan [22]. More general definitions and properties of set-valued
stochastic integrals were given in the above-cited papers of Hiai and Kisielewicz,
where set-valued stochastic integrals are defined as certain subsets of the spaces
L2.�;Rn/ and L2.�;X / of all square integrable random variables with values at
Rn and X , respectively, where X is a Hilbert space. In this book, such integrals
are called stochastic functional set-valued integrals. Unfortunately, such integrals
do not admit a representation by set-valued random variables with values in Rn

and X , because they are not decomposable subsets of L2.�;Rn/ and L2.�;X /,
respectively. Later, Jung and Kim [46] (see also [98]) defined a set-valued stochastic
integral as a set-valued random variable determined by a closed decomposable hull
of the above-mentioned set-valued stochastic functional integral. Unfortunately, the
authors did not obtain any properties of such integrals. In Chap. 3, we apply the
above approach to the theory of set-valued stochastic integrals of F-nonanticipative
multiprocesses and obtain some properties of such integrals.

The first results dealing with partial differential inclusions were in fact simple
generalizations of ordinary differential inclusions. They dealt with hyperbolic
partial differential inclusions of the form z

00

x;y 2 F.x; y; z/. Later on, partial

differential inclusions z
00

x;y 2 F.x; y; z; z
0

x; z
0

y/ were also investigated. Such partial
differential inclusions have been considered by Kubiaczyk [65], Dawidowski and
Kubiaczyk [24], Dawidowski et al. [25], and Sosulski [92,93], among others. Some
hyperbolic partial differential inclusions were considered in Aubin and Frankowska
[11]. A new idea dealing with partial differential inclusions was given by Bartuzel
and Fryszkowski in their papers [15–17], where partial differential inclusions of
the form Du 2 F.u/ with a lower semicontinuous multifunction F and a partial
differential operatorD are considered. The existence and properties of solutions of
initial and boundary value problems of such inclusions follow from classical results
dealing with abstract differential inclusions. As usual, certain types of continuous
selection theorems for set-valued mappings play an important role in investigations
of such inclusions.

The partial differential inclusions considered in this book have the forms
u

0

t .t; x/ 2 .LFGu/.t; x/Cc.t; x/u.t; x/ and .t; x/ 2 .LFGu/.t; x/Cc.t; x/u.t; x/,
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where c and  are given functions and LFG denotes the set-valued diffusion
generator defined by given multifunctions F and G. The first results dealing with
such partial differential inclusions are due to Kisielewicz [60, 61]. The initial and
boundary value problems of such inclusions are investigated by stochastic meth-
ods. Their solutions are characterized by weak solutions of stochastic functional
inclusions SFI.F;G/. Such an approach leads to natural methods of solving
some optimal control problems for systems described by the above type of partial
differential inclusions. It is a consequence of weak compactness with respect to the
convergence in distribution of sets of all weak solutions of considered stochastic
functional inclusions.

The content of the book is divided into seven parts. Chapter 1 covers basic
notions and theorems of the theory of stochastic processes. Chapter 2 contains
the fundamental notions of the theory of set-valued mappings and the theory of
set-valued stochastic processes. Chapter 3 is devoted to the theory of set-valued
stochastic integrals. Apart from their properties, it contains some important selection
theorems. The main results of Chap. 4 deal with properties of stochastic functional
and differential inclusions. In particular, it contains theorems dealing with weak
compactness with respect to convergence in distribution of solution sets of weak
solutions of initial value problems for stochastic functional inclusions. Chapter 5
contains some results dealing with viability theory for forward and backward
stochastic functional and differential inclusions, whereas Chaps. 6 and 7 are devoted
to some applications of the above-mentioned results to partial differential inclusions
and to some optimal control problems for systems described by stochastic functional
and partial differential inclusions.

The present book is intended for students, professionals in mathematics, and
those interested in applications of the theory. Selected probabilistic methods and
the theory of set-valued mappings are needed for understanding the text. Formulas,
theorems, lemmas, remarks, and corollaries are numbered separately in each chapter
and denoted by pairs of numbers. The first stands for the section number, the second
for the number of the formula, theorem, etc. If we need to quote some formula or
theorem given in the same chapter, we always write only this pair. In other cases,
we will use this pair with information indicated the chapter number. The ends of
proofs, theorems, remarks, and corollaries are denoted by �.

The manuscript of this book was read by my colleagues M. Michta and J. Motyl,
who made many valuable comments. The last version of the manuscript was read
by Professor Diethard Pallaschke. His remarks and propositions were very useful
in my last correction of the manuscript. It is my pleasure to thank all of them for
their efforts.

Zielona Góra, Poland Michał Kisielewicz
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Chapter 1
Stochastic Processes

In this chapter we give a survey of concepts of the theory of stochastic processes. It
is assumed that the basic notions of measure and probability theories are known to
the reader.

1 Filtered Probability Spaces and Stopping Times

Let .�;F ; P / be a probability space and F D .Ft /t�0 a family of sub-�-algebras
Ft of �-algebra F such that Fs � Ft for 0 � s � t < 1 . A system PF D
.�;F ;F; P / is said to be a filtered probability space. It is called complete if P
is a complete measure, i.e., 2B � F for every B 2 F such that P.B/ D 0 . We
say that a filtration F satisfies the usual conditions if F0 contains all P -null sets of
F and Ft D T

">0 FtC" for every t � 0 . If the last condition is satisfied, we say
that a filtration F is right continuous. We call a filtration F left continuous if Ft
is generated by a family fFs W 0 � s < tg for every t � 0, i.e., Ft D �.fFs W 0 �
s < tg/ for every t � 0. A filtration F is said to be continuous if it is right and left
continuous.

Remark 1.1. From a practical point of view, a filtered probability space PF D
.�;F ;F; P / is usually regarded as a probability model of a given experiment with
results belonging to � . The family F is treated as a set of informations on elements
of � , whereas the filtration contains all informations contained in F given up to
t � 0 . �

Given a filtered probability space PF and a metric space .X ; �/ , by an X -
random variable on PF we mean an .F ; ˇX /-measurable mapping X W � ! X ,
i.e., such that X�1.A/ 2 F for every A 2 ˇ.X / , where as usual, ˇ.X / denotes the
Borel �-algebra on X and X�1.A/ D f! 2 � W X.!/ 2 Ag . We shall also say that
X is a random variable on PF with values at X . In particular, if X D Rn then,
an X -random variable is also called an n-dimensional random variable. Given a

M. Kisielewicz, Stochastic Differential Inclusions and Applications,
Springer Optimization and Its Applications 80, DOI 10.1007/978-1-4614-6756-4 1,
© Springer Science+Business Media New York 2013

1



2 1 Stochastic Processes

random variable X W � ! X , we denote by FX the �-algebra generated by
X , i.e., the smallest �-algebra on � containing all sets X�1.U / for all open sets
U � X . It is easy to see that FX D fX�1.A/ W A 2 ˇ.X /g.

Remark 1.2. It can be verified that if X; Y W � ! Rn are given functions, then Y
is FX -measurable if and only if there exists a Borel-measurable function g W Rn !
Rn such that Y D g.X/. �

From a practical point of view, random variables can be applied to mathematical
modeling of static random processes. In the case of dynamic ones, instead of
random variables, we have to apply families X D .Xt/t�0 of random variables
parameterized by a parameter t � 0 usually treated as the time at which
the modeled dynamical process is taking place. Families X D .Xt/t�0 of n-
dimensional random variables Xt W � ! Rn are called n-dimensional stochastic
processes on PF. Such processes are called continuous if for a.e. ! 2 � mappings
RC 3 t ! Xt.!/ 2 Rn; called trajectories of X; are continuous. In a similar
way, we define càdlàg and càglàd stochastic processes on PF. An n-dimensional
process X is said to be a càdlàg process if for a.e. ! 2 � , its trajectory
RC 3 t ! Xt.!/ 2 Rn is right continuous and possesses the left-hand limit
Xt�.!/ for every t > 0. Similarly, a process X is called a càglàd process if for
a.e. ! 2 � , its trajectory RC 3 t ! Xt.!/ 2 Rn is left continuous and possesses
the right-hand limit XtC.!/ for every t > 0. If for every t � 0 , a random variable
Xt is Ft -measurable, then a process X is called F-adapted. Many more notions
and properties dealing with stochastic processes are given in Sect. 3.

Remark 1.3. It can be proved that all random variables X W � ! C and X W
� ! D with C D C.RC;Rn/ and D D D.RC;Rn/ , where C.RC;Rn/ and
D.RC;Rn/ denote the metric spaces of all continuous and càdlàg functions x W
RC ! Rn with appropriate metrics, can be described respectively as n-dimensional
continuous and càdlàg processes. �

A random variable T W � ! Œ0;1� on PF such that fT � tg 2 Ft for every
t � 0 is said to be an F-stopping time. If a filtration F is right continuous, then the
condition fT � tg 2 Ft in the above definition can be replaced by fT < tg 2 Ft
for every t � 0 . This follows from the following theorem.

Theorem 1.1. If a filtered probability space PF is such that F is right continuous,
then a random variable T W � ! Œ0;1� is an F-stopping time on PF if and only
if fT < tg 2 Ft for every t � 0 .

Proof. Let fT < tg 2 Fu for u > t and t � 0 . Since fT � tg D T
tC">u>tfT <

ug for every " > 0 and F is right continuous, we have fT � tg 2 Tu>t Fu D Ft
for t � 0 . Therefore, the condition fT < tg 2 Ft for t � 0 implies that fT �
tg 2 Ft for t � 0 . Conversely, if fT � tg 2 Ft for t � 0 , then we also have
fT < tg D S

"2Q
S
s2Q\Œ0;t�"�fT � sg 2 Ft , where Q is the set of all rational

numbers of the real line R . �
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Example 1.1. Let X D .Xt /t�0 be a càdlàg process and ƒ � R a Borel set. We
define a hitting time of ƒ for X by taking T .!/ D infft > 0 W Xt.!/ 2 ƒg
for ! 2 � . If ƒ is an open set, then by right continuity of X , we have fT <

tg � S
s2Q\Œ0;t /fXs 2 ƒg. If furthermore, X is F-adapted, then fXs 2 ƒg D

X�1
s .ƒ/ 2 Fs for s 2 Q \ Œ0; t/ . Therefore, for such a process X , one has

fT < tg 2 S
s2Q\Œ0;t / Fs D Ft for every t � 0 . From the above theorem, it

follows that if a filtration F is right continuous, then for the above process X and
an open set ƒ � R , a hitting time of ƒ for X is an F-stopping time.

Theorem 1.2. Let X D .Xt/t�0 be a càdlàg and F-adapted process on PF. Then
for every closed set ƒ � R , the random variable T W � ! R defined by T .!/ D
infft > 0 W Xt.!/ 2 ƒ or Xt�.!/ 2 ƒg for ! 2 � is an F-stopping time.

Proof. Let An D fx 2 R W dist.x;ƒ/ < 1=ng . It is easy to see that An is an
open set. But Xt�.!/ D lims!t;s<t Xs.!/ for ! 2 � . Therefore, fXt� 2 ƒg DT
n�1

S
s2Q\Œ0;t /fXs 2 Ang for t � 0 . Then fT � tg D fXt 2 ƒg[fXt� 2 ƒg D

fXt 2 ƒg [ T
n�1

S
s2Q\Œ0;t /fXs 2 Ang for t � 0 . By the properties of a family

X it follows that fXt 2 ƒg 2 Ft and
T
n�1

S
s2Q\Œ0;t /fXs 2 Ang 2 Ft for t � 0 .

Therefore, for every t � 0 one has fT � tg 2 Ft . �
The above result can be easily extended for n-dimensional càdlàg and F-adapted

processes.

Theorem 1.3. Let X D .Xt/t�0 be an n-dimensional càdlàg and F-adapted
process. Then for every domain D in Rn , the random variable T W � ! R

defined by T .!/ D infft > 0 W Xt.!/ 62 Dg for ! 2 � is an F-stopping time.

Proof. Let ƒ D RnnD . The set ƒ is closed and T .!/ D infft > 0 W Xt.!/ 2 ƒg
for ! 2 � . Hence, similarly as in the proof of Theorem 1.2, it follows that T is an
F-stopping time. �

The F-stopping time defined in Theorem 1.3 is said to be the first exit time of the
process X from D . Usually it is denoted by �XD , or simply by �D if X is fixed.

Remark 1.4. Immediately from the definition of stopping times it follows that for
all F-stopping times S and T on PF, also S ^ T , S _ T , S C T , and ˛S with
˛ > 1 are F-stopping times on PF. �

Given a filtered probability space PF D .�;F ;F; P / with F D .Ft /t�0 , the
�-algebra Ft can be thought as representing all (theoretically) observable events
up to and including time t . We would like to have an analogous notion of events
that are observable before a random time T . To get that, we have to define an F-
stopping time �-algebra FT induced by an F-stopping time T . It is defined by
setting FT D fA 2 F W A \ fT � tg 2 Ft ; for t � 0g. The present definition
represents “knowledge” up to time T . This follows from the following theorem.

Theorem 1.4. Let cad.F/ denote the family of all F-adapted càdlàg processes
X D .Xt /t�0 on PF. Then for every finite F-stopping time T , one has FT D
�.fXT W X 2 cad.F/g/.
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Proof. Let GT D �.fXT W X 2 cad.F/g/ and let A 2 FT . Define a process
X D .Xt /t�0 on PF by setting Xt D 1A �1ft�T g for t � 0. We have 1fT�T g D 1 .
Therefore, XT D 1A. By the above definition of a process X , we have X 2
cad.F/ , which implies that A 2 GT . Then FT � GT .

Let X 2 cad.F/ . We need to show that XT is FT -measurable. We can consider
X as a function X W Œ0;1/ � � ! R . Construct a function ' W fT � tg !
Œ0;1/ �� by setting '.!/ D .T .!/; !/ for ! 2 fT � tg . Since X 2 cad.F/ ,
then XT D X ı ' is a measurable mapping from .fT � tg;Ft \ fT � tg/ into
.R; ˇ.R// , where ˇ.R/ denotes the Borel �-algebra on R. Therefore, f! 2 � W
X.T .!/; !/ 2 Bg \ fT � tg 2 Ft for every t � 0 and B 2 ˇ.R/. Then XT is
FT -measurable. Thus GT � FT . �

The following result follows immediately from the above definitions of an F-
stopping time and an �-algebra FT .

Theorem 1.5. Let S and T be F-stopping times on PF such that S � T a.s.
Then FS � FT and FS \ FT D FS^T . �

2 Weak Compactness of Sets of Random Variables

Let .X ; �/ be a separable metric space and ˇ.X / a Borel �-algebra on X .
Denote by M.X / the space of all probability measures on ˇ.X / and let Cb.X / be
the space of all continuous bounded functions f W X ! R. We say that a sequence
.Pn/

1
nD1 of M.X / weakly converges to P 2 M.X / if limn!1

R
X f dPn DR

X f dP for every f 2 Cb.X /. We shall denote this convergence by Pn ) P . We
have the following theorem.

Theorem 2.1. The following conditions are equivalent to weak convergence of a
sequence .Pn/1nD1 of M.X / to P 2 M.X / :

(i) lim supn!1Pn.F / � P.F / for every closed set F � X .
(ii) lim infn!1Pn.G/ � P.G/ for every open set G � X .

Proof. Let Pn ) P . Hence it follows that lim supn!1Pn.F / � limn!1
R
X

fkdPn D R
X fkdP for every closed set F � X , where fk.x/ D  .k � dist.x; F //

with  .t/ D 1 for t � 0 ,  .t/ D 0 for t � 1 , and  .t/ D 1� t for 0 � t � 1 .
Passing in the above inequality to the limit with k ! 1 , we see that (i) is satisfied.
It is easy to see that (i) is equivalent to (ii). Indeed, by virtue of (i), for every open
set G � X we obtain lim supn!1 Pn.X n G/ � P.X n G/ , which implies that
lim infn!1Pn.G/ � P.G/ . In a similar way, we can see that from (ii), it follows
that lim supn!1Pn.F / � P.F / for every closed set F � X .

Assume that (i) is satisfied and let f 2 Cb.X /. We can assume that 0 < f .x/ <
1 for x 2 X . Then
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kX

iD1

i � 1

k
� P

�

x 2 X W i � 1
k

� f .x/ <
i

k

�

�
Z

X
f .x/dP

�
kX

iD1

i

k
� P

�

x 2 X W i � 1

k
� f .x/ <

i

k

�

:

For every Fi D fx 2 X W i=k � f .x/g , the right-hand side of the above inequality
is equal to

Pk�1
iD0 Pn.Fi /=k , and the left-hand side to

Pk�1
iD0 Pn.Fi /=k�1=k . This

and (i) imply

lim sup
n!1

Z

X
f .x/dPn � lim sup

n!1

k�1X

iD0
Pn.Fi /=k �

k�1X

iD0
P.Fi /=k � 1=kC

Z

X
f .x/dP:

Then lim supn!1
R
X f .x/dPn � R

X f .x/dP . Repeating the above procedure
with a function g D 1 � f , we obtain lim infn!1

R
X f .x/dPn � R

X f .x/dP .
Therefore,

Z

X
f .x/dP � lim inf

n!1

Z

X
f .x/dPn � lim sup

n!1

Z

X
f .x/dPn �

Z

X
f .x/dP :

Thus limn!1
R
X f .x/dPn D R

X f .x/dP for every f 2 Cb.X /. �

We can consider weakly compact subsets of the space M.X /. Let us observe that
we can define on M.X / a metric d such that weak convergence in M.X / of a
sequence .Pn/1nD1 to P is equivalent to d.Pn; P / ! 0 as n ! 1. Therefore, we
say that a set ƒ � M.X / is relatively weakly compact if every sequence .Pn/1nD1
of ƒ possesses a subsequence .Pnk /

1
kD1 weakly convergent to P 2 M.X /.

If P 2 ƒ then ƒ , is called weakly compact. We shall prove that for relative weak
compactness of a set ƒ � M.X / , it suffices that ƒ be tight, i.e., that for every
" > 0 there exist a compact set K � X such that P.K/ � 1�" for every P 2 ƒ.

Theorem 2.2. Every tight set ƒ � M.X / is relatively weakly compact.

Proof. Assume first that .X ; �/ is a compact metric space. By the Riesz theorem,
we have M.X / D f	 2 C �.X / W 	.f / � 0 for f � 0 and 	.1/ D 1g, where
1.x/ D 1 for x 2 X and C �.X / is the dual space of C.X /. Since C.X / D
Cb.X / , weak convergence of probability measures is in this case equivalent to
weak �-topology convergence on C �.X /. Then M.X / is weakly compact, because
every weakly �-closed subset of the unit ball of C �.X / is weakly �-compact.

In the general case, let us note that X is homeomorphic to a subset of a
compact metric space. Therefore, we can assume that X is a subset of a compact
metric space QX . For every probability measure 	 on .X ; ˇ.X // let us define on
. QX ; ˇ. QX // a probability measure Q	 by setting Q	. QA/ D 	. QA\ X / for QA 2 ˇ. QX /.
Let us observe that A � X belongs to ˇ.X / if and only if A D QA \ X for every
QA 2 ˇ. QX /.



6 1 Stochastic Processes

We shall show now that if ƒ � M.X / is tight, then every sequence .	n/1nD1
of ƒ possesses a subsequence weakly convergent to 	 2 M.X / . Assume
that a sequence .	n/

1
nD1 is given and let . Q	n/1nD1 be a sequence of probability

measures defined on ˇ. QX / by the sequence .	n/1nD1 such as above, i.e., by taking
Q	n. QA/ D 	. QA\X / for QA 2 ˇ. QX / and n � 1. It is clear that a sequence . Q	n/1nD1
possesses a subsequence . Q	nk/1kD1 weakly convergent to a probability measure

 on . QX ; ˇ. QX //. We shall show that there exists a probability measure 	 on
.X ; ˇ.X // such that Q	 D 
 and that a subsequence .	nk /

1
kD1 converges weakly

to 	. Indeed, by tightness of ƒ , for every r D 1; 2; : : : , there exists a compact set
Kr � X such that 	n.Kr/ � 1 � 1=r for every n � 1. It is clear that Kr is also a
compact subset of QX , and therefore, Kr 2 ˇ.X /\ˇ. QX / and Q	nk .Kr/ D 	nk.Kr/.
But Q	nk ) 
. Therefore, 
.Kr/ � lim supk!1 	nk .Kr/ � 1 � 1=r . Thus
E DW Sr�1 Kr � X and E 2 ˇ.X / \ ˇ. QX /. For every A 2 ˇ.X / , we have

A\E 2 ˇ. QX / because A\E D QA\ X \E D QA\E for every QA 2 ˇ. QX /. Put
	.A/ D 
.A\E/ for every A 2 ˇ.X /. It is clear that 	 is a probability measure on
.X ; ˇ.X // and Q	 D 
. Finally, we verify that 	nk ) 	. Indeed, let A be a closed
subset of X . Then A D QA\ X for every closed set QA � QX and Q	n. QA/ D 	n.A/.
Therefore, lim supk!1	nk .A/ D lim supk!1 Q	nk. QA/ � Q	. QA/ D 	.A/ , which
by virtue of Theorem 2.1, implies that 	nk ) 	 as k ! 1 . �

Let .Xn/1nD1 be a sequence of X -random variables Xn W �n ! X on a
probability space .�n;Fn; Pn/ for n � 1. We say that .Xn/1nD1 converges in
distribution to a random variable X W � ! X defined on a probability space
.�;F ; P / if the sequence .PX�1

n /1nD1 of distributions of random variables Xn W
�n ! X is weakly convergent to the distribution PX�1 of X . It is denoted by
Xn ) X . If Xn and X are defined on the same probability space .�;F ; P / , then
we can define convergence of the above sequence .Xn/1nD1 in probability and a.s.

to a random variable X . We denote the above types of convergence by Xn
P! X

and Xn ! X a.s., respectively. We have the following important result.

Corollary 2.1. If .Xn/1nD1 and X are as above, then Xn ) X if and only if
Enff .Xn/g ! Eff .X/g as n ! 1 for every f 2 Cb.X /, where En and E

are mean value operators taken with respect to probability measures Pn and P;

respectively.

Proof. By the definitions of convergence of sequences of random variables and
probability measures, it follows that Xn ) X if and only if

R
X f .x/ d

ŒP.Xn/
�1� ! R

X f .x/ d ŒP.X/�1� as n ! 1 for every f 2 Cb.X /. The
result follows now immediately from the equalities

R
X f .x/ d ŒP.Xn/�1� DR

�n
f .Xn/ dPn D Enff .Xn/g and

R
X f .x/ d ŒP.X/�1� D R

�
f .X/ dP D

Eff .X/g: �

Theorem 2.3. Let .X ; �/ be a Polish space, i.e., a complete separable metric
space, and .Pn/

1
nD1 a sequence of M.X / weakly convergent to P 2 M.X / as

n ! 1. Then there exist a probability space . Q�; QF ; QP / and X -random variables
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Xn and X on . Q�; QF ; QP / for n D 1; 2; : : : such that (i) Pn D PX�1
n for

n D 1; 2; : : : , P D PX�1, and (ii) �.Xn;X/ ! 0 a.s. as n ! 1.

Proof. Let Q� D Œ0; 1/, QF D ˇ.Œ0; 1// , and QP D 	, where 	 is Lebesgue measure
on ˇ.Œ0; 1//. To every finite sequence .i1; : : : ; ik/ for k D 1; 2; : : : of positive
integers we associate a set Si1;:::;ik 2 ˇ.X // with the boundary @Si1;:::;ik such that

1ı If .i1; : : : ; ik/ ¤ .j1; : : : ; jk/ , then Si1;:::;ik \ Sj1;:::;ik D ; for k D 1; 2; : : : ,
2ı S1

kD1 Si1;:::;ik D X and
S1
jD1 Si1;:::;ik ;j D Si1;:::;ik for k D 1; 2; : : : ,

3ı diam.Si1;:::;ik / � 2�k for k D 1; 2; : : : ,
4ı Pn.@Si1;:::;ik / D 0 and P.@Si1;:::;ik / D 0 for k; n D 1; 2; : : : .

By virtue of 1ı and 2ı , a family fSi1;:::;ik g is for every fixed k 2 N a disjoint
covering of X that is a subdivision of a covering for k0 < k. Such a system of
subsets can be defined in the following way. For every k and m D 1; 2; : : : , we
take balls �.k/m with radii not greater then 2�.kC1/ that cover X and are such that
Pn.@�

.k/
m / D 0 and P.@�.k/m / D 0 for every n; k;m 2 N. For fixed k 2 N

let D.k/
1 D �

.k/
1 , D.k/

2 D �
.k/
2 n �.k/1 , : : : D.k/

n D �
.k/
n nSn�1

iD1 �
.k/
i , and Si1;:::;ik D

D
.1/
i1

\D.2/
i2

\� � �\D.k/
ik

. It can be verified that such sets Si1;:::;ik satisfy the conditions
presented above.

Now for fixed k , let us introduce in the set of all sequences .i1; : : : ; ik/ the
lexicographic order and define in Œ0; 1/ intervals �i1;:::;ik and �.n/

i1;:::;ik
such that

(I) j�i1;:::;ik j D P.Si1;:::;ik / and j�.n/
i1;:::;ik

j D Pn.Si1;:::;ik / ,

(II) If .i1; : : : ; ik/ < .j1; : : : ; jk/ , then �i1;:::;ik and �.n/
i1;:::;ik

are on the left-hand

side of �j1;:::;jk and �.n/
j1;:::;jk

, respectively,

(III)
S
.i1;:::;ik /

�i1;:::;ik D Œ0; 1/ and
S
.i1;:::;ik /

�
.n/
i1;:::;ik

D Œ0; 1/ for n � 1 .

Such intervals are defined in a unique way. For every .i1; : : : ; ik/ such that
o
Si1;:::;ik¤ ; , select a point xi1;:::;ik 2 o

Si1;:::;ik , where
o
Si1;:::;ik denotes the interior of

Si1;:::;ik . For every ! 2 Œ0; 1/ , k D 1; 2; : : : , and n D 1; 2; : : : we define Xk
n .!/

and Xk.!/ by setting Xk
n .!/ D xi1;:::;ik if ! 2 �

.n/
i1;:::;ik

and Xk.!/ D xi1;:::;ik

if ! 2 �i1;:::;ik . For every k; n; p � 1 we have �.Xk
n .!/;X

kCp
n .!// � 1=2k and

�.Xk.!/;XkCp.!// � 1=2k . Therefore, Xn.!/ D limk!1Xk
n .!/ and X.!/ D

limk!1Xk.!/ exist. Furthermore, Pn.Si1;:::;ik / D j�.n/
i1;:::;ik

j ! j�i1;:::;ik j D
P.Si1;:::;ik / as n ! 1. Therefore, for every ! 2 o

�i1;:::;ik there is nk such that

! 2
o

�.n/
i1;:::;ik for n � nk . Then Xk

n .!/ D Xk.!/ and therefore,

�.Xn.!/;X.!//� �.Xn.!/;Xk
n .!//C�.Xk

n .!/;X
k.!//C�.Xk.!/;X.!//� 2=2k

for n � nk . Thus for every ! 2 �0 DW T1
kD1

S
i1;:::;ik

o
�i1;:::;ik we get Xn.!/ !

X.!/ as n ! 1. It is easy to see that P.�0/ D 1.
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Finally, we shall show that PX�1
n D Pn for n D 1; 2; : : : and PX�1 D P .

Let us first observe that QP .fXkCp
n 2 Si1;:::;ik g/ D QP .fXkCp

n 2 o
Si1;:::;ik g/ D

Pn.Si1;:::;ik /. Furthermore, every open set O � X can be defined as the union
of a countable disjoint family of sets Si1;:::;ik . Then by Fatou’s lemma, it follows
that lim infp!1 P.X

p
n /

�1.O/ � Pn.O/ for every open set O � X . Therefore, by
virtue of Theorem 2.1, we have P.Xp

n /
�1 ) Pn as p ! 1 , which implies that

PX�1
n D Pn . Similarly, we also get PX�1 D P . �

Consider now the case X D C , where C is the space of all continuous functions
x W Œ0;1/ ! Rd with a metric � defined by �.x1; x2/ D P1

nD1 2�nŒ1 ^
max0�t�n jx1.t/�x2.t/j� for x1; x2 2 C . It can be verified that .C; �/ is a complete
separable metric space. We prove the following theorem.

Theorem 2.4. Let .Xn/
1
nD1 be a sequence of C -random variables Xn on a

probability space .�n;Fn; Pn/ for n D 1; 2; : : : such that

(i) limN!1 supn�1 Pn.fjXn.0/j > N g/ D 0 and
(ii) limh#0 supn�1 Pn.fmaxt;s2Œ0;T �;jt�sj�h jXn.t/ � Xn.s/j > "g/ D 0

for every T > 0 and " > 0. Then there exist an increasing subsequence .nk/1kD1
of .n/1nD1 , a probability space . Q�; QF ; QP / , and C -random variables QXnk and QX
for k D 1; 2; : : : on . Q�; QF ; QP / such that PX�1

nk
D P QX�1

nk
for k D 1; 2; : : : and

�. QXnk ; QX/ ! 0 a.s. as k ! 1.

Proof. We shall show that conditions (i) and (ii) imply that the set ƒ D fPX�1
n W

n � 1g is a tight subset of M.C /. Let us recall that by the Arzelà–Ascoli theorem,
a set A � C is relatively compact in .C; �/ if and only if the following conditions
are satisfied:

(I) A is uniformly bounded, i.e., supx2A maxt2Œ0;T � jx.t/j < 1 for every T > 0,
(II) A is uniformly equicontinuous, i.e., limh#0 supx2A V T

h .x/ D 0 for every T >0,

where V T
h .x/ D maxt;s2Œ0;T �;jt�sj�h jXn.t/ � Xn.s/j . By virtue of (i), for every

" > 0 , there exists a number a > 0 such that PX�1
n .fx W jx.0/j � ag/ > 1 � "=2

for n � 1. By (ii), for every " > 0 and k D 1; 2; : : : there exists hk > 0

such that hk # 0 and PX�1
n .fx W V T

hk
.x/ > 1=kg/ � "=2kC1 for every n � 1.

Therefore, we have PX�1
n .

T1
kD1fx W V T

hk
.x/ � 1=kg/ > 1 � "=2. Taking K" D

fx 2 C W jx.0/j � ag \
�T1

kD1fx W V T
hk
.x/ � 1=kg

�
, we can easily see that K"

satisfies conditions (I) and (II). Therefore, K" is a compact subset of C such that
PX�1

n .K"/ > 1 � " for n � 1. Then the set ƒ is a tight subset of M.C /. Hence,
by virtue of Theorems 2.2 and 2.3, there exist an increasing subsequence .nk/1kD1
of .n/1nD1 , a probability space . Q�; QF ; QP / , and C -random variables QXnk and QX
for k D 1; 2; : : : on . Q�; QF ; QP / such that conditions (i) and (ii) of Theorem 2.3 are
satisfied, i.e., such that PX�1

nk
D P QX�1

nk
and �. QXnk ; QX/ ! 0 a.s. as k ! 1 . �
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Remark 2.1. Theorem 2.4 holds if instead of a condition (ii) of this theorem, the
following condition is satisfied for every " > 0:

lim
ı!0

sup
n�1

X

j<ı�1

P

��

max
jı�s�.jC1/ı jXn.s/� X.jı/j > "

��

D 0: (2.1)

Proof. Let us note that Theorem 2.4 holds if we consider its condition (ii) with 3"
instead of ". For every ı 2 .0; 1/ and s; t 2 Œ0; T � such that jt � sj < ı there is an
integer 0 � j < ı�1 such that s; t 2 Œjı; .j C 1/ı� or s ^ t 2 Œjı; .j C 1/ı� or
s _ t 2 Œjı; .j C 1/ı�. Therefore, for every ı 2 .0; 1/ and s; t 2 Œ0; T � such that
jt � sj < ı one has s; t 2 S

0�j<ı�1 Œjı; .j C 1/ı�. Thus for every ı 2 .0; 1/ and
n � 1 we have

max
s;t2Œ0;T �;jt�sj<ı

jXn.s/� Xn.t/j

� sup
n
jXn.s/� Xn.t/j W s; t 2

[

j<ı�1

Œjı; .j C 1/ı�
o

� sup
n
jXn.s/� Xn.jı/j W s 2

[

j<ı�1

Œjı; .j C 1/ı�
o

C sup
n
jXn.t/ � Xn.jı/j W t 2

[

j<ı�1

Œjı; .j C 1/ı�
o
:

Therefore,

P

��

max
s;t2Œ0;T �;jt�sj<ı

jXn.s/� Xn.t/j>3"
��

�
X

j<ı�1

P

��

max
jı�s�.jC1/ı jXn.s/ �Xn.jı/j > "

��

:

Then condition (ii) of Theorem 2.4 is satisfied for every " > 0 if condition (2.1) is
satisfied. �

Remark 2.2. If X and Y are given random variables defined on a probability space
.�;F ; P / with values in a metric space .X ; �/ , then X and Y are said to have
equivalent distributions if PX�1.A/ D 0 if and only if PY �1.A/ D 0 for A 2
ˇ.X /. �

In what follows, we shall need the following results.

Lemma 2.1. Let .X ; �/ and .Y;G/ be a metric and a measurable space, respec-
tively, and ˆ W X ! Y a .ˇ.X /;G/-measurable mapping, where ˇ.X / is a Borel
�-algebra on X . If X and QX are X -random variables defined on a probability
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space .�;F P/ and Q�; QF ; QP /, respectively, such that PX�1 D P QX�1 , then
P.ˆ ıX/�1 D P.ˆ ı QX/�1.
Proof. Let Z D ˆıX and QZ D ˆı QX . For every A 2 G one has P.fZ 2 Ag/ D
P.fˆıX 2 Ag/ D P.X�1.ˆ�1.A/// D QP . QX�1.ˆ�1.A/// D QP .fˆı QX 2 Ag/ D
QP.f QZ 2 Ag/ . Then P.ˆ ıX/�1 D P.ˆ ı QX/�1. �

Lemma 2.2. Let .X ; �/ and .Y; d/ be metric spaces, and let Xn and X be
X -random variables defined on probability spaces .�n;Fn Pn/ and .�;F P/;
respectively for n D 1; 2; : : : such that Xn ) X as n ! 1. For every continuous
mapping ˆ W X ! Y one has ˆ ıXn ) ˆ ıX as n ! 1.

Proof. By virtue of Theorem 2.1, for every open set G � X one has lim infn!1
P.Xn/�1.G/ � PX�1.G/. By continuity of ˆ , for every open set U � Y ,
a set ˆ�1.U/ is an open set of X . Taking in particular in the above inequality
G D ˆ�1.U/; we obtain lim infn!1 P.Xn/�1.ˆ�1.U// � PX�1.ˆ�1.U//. But
P.Xn/�1.ˆ�1.U// D PnŒ.X

n/�1.ˆ�1.U//� D P.ˆ ı Xn/�1.U/ and PX�1.ˆ�1
.U// D P ŒX�1.ˆ�1.U//� D P.ˆıX/�1.U/ for every open set U � Y . Therefore,
for every open set U � Y one has lim infn!1 P.ˆıXn/�1.U/ � P.ˆıX/�1.U/�;
which by Theorem 2.1 and the definition of weak convergence of sequences of
random variables implies that ˆ ıXn ) ˆ ıX as n ! 1. �

3 Stochastic Processes

Throughout this section we assume that PF D .�;F ;F; P / is a complete filtered
probability space with a filtration F D .Ft /t�0 satisfying the usual conditions.
We shall consider a family X D .Xt /t�0 of X -random variables Xt on PF with
X D R or X D Rd . Such families are called one- or d -dimensional stochastic
processes on PF. It is easy to see that such stochastic processes can be regarded as
functions X W RC � � ! R and X W RC � � ! Rd , respectively, such that
X.t; �/ is an R- or Rd -random variable. We can also consider stochastic processes
with the index set I � RC instead of RC. If I D N , we call X a discrete
stochastic process on PF. Given a d -dimensional stochastic process X D .Xt/t�0
on PF and fixed ! 2 � , we call a mapping RC 3 t ! Xt.!/ 2 Rd a trajectory
or a path of X corresponding to ! 2 �. We can characterize stochastic processes
by properties of their trajectories. In particular, a process X D .Xt/t�0 defined on
PF is said to be:

1. Continuous if almost all its paths are continuous on RC.
2. Right (left) continuous on RC if almost all its paths are right (left) continuous

on RC.
3. A càdlàg process if it is right continuous and almost all its paths have at every
t > 0 a left limit lims!t;s<t Xs .
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4. A càglàd process if it is left continuous and almost all its paths have at every
t � 0 a right limit lims!t;s>t Xs.

Stochastic processes X D .Xt/t�0 and Y D .Yt /t�0 defined on PF are called:

5. Indistinguishable if P.fXt D Yt W t � 0g/ D 1.
6. Y is a modification of X if P.fXt D Ytg/ D 1 for every t � 0.

The properties of the above types of “equivalence” of two stochastic processes
are quite different. If X and Y are modifications, then for every t � 0 , there exists
a null set �t � � such that if ! 62 �t , then Xt.!/ D Yt.!/ . Since the interval
Œ0;1/ is uncountable, the set ƒ D S

t�0 �t could have any probability between
0 and 1 , and it could be even unmeasurable. If X and Y are indistinguishable,
however, then there exists a null set ƒ � � such that if ! 62 ƒ , then Xt.!/ D
Yt.!/ for all t � 0. In other words, the paths of X and Y are the same for all
! 62 ƒ . We have ƒ 2 F0 � Ft for all t � 0. In some special cases, the above
types of “equivalence” are equivalent.

Theorem 3.1. Let X and Y be two stochastic processes, with X a modification
of Y . If X and Y are right continuous, then they are indistinguishable.

Proof. Let �0 � � be such that all paths of X and Y corresponding to ! 2
� n �0 are right continuous on RC and P.�0/ D 0. Let ƒt D fXt ¤ Ytg
and ƒ D S

t2Q ƒt , where Q denotes the set of all rational numbers of RC. We
have P.ƒ/ D 0 and P.�0 [ ƒ/ D 0. Then Xt.!/ D Yt.!/ for t 2 Q and
! 62 �0 [ƒ. For fixed t 2 RC , we can select a sequence .tn/1nD1 of Q such that
tn ! t as n ! 1. We can assume that the tn decrease to t through Q. Then we
get Xt.!/ D limn!1Xtn.!/ D limn!1 Ytn.!/ D Yt .!/ for ! 62 �0 [ ƒ and
every t � 0. �

A d -dimensional stochastic process X D .Xt /t�0 on PF is said to be:

(i) F-adapted if Xt is .Ft ; ˇ.Rd //-measurable for every t � 0.
(ii) Measurable if a mapping X W RC � � ! Rd defined by X.t; !/ D Xt.!/

for .t; !/ 2 RC �� is .ˇ.RC/˝ F ; ˇ.Rd //-measurable.
(iii) F-nonanticipative if it is measurable and F-adapted.
(iv) F-progressively measurable if for all t � 0 , a restriction to It � � of a

mapping X W RC � � ! Rd defined in (ii) with It D Œ0; t � is .ˇ.It / ˝
Ft ; ˇ.Rd //-measurable.

(v) F-predictable or simply predictable if it is measurable with respect to a �-
algebra P.F/ generated by all F-adapted càglàd processes on PF.

(vi) F-optional or simply optional if it is measurable with respect to a �-algebra
O.F/ generated by all F-adapted càdlàg processes on PF.

It can be verified that P.F/ � O.F/ � ˇ.RC/ ˝ F . Therefore, each predictable
process is optional, and both are measurable. It is clear that every F-progressively
measurable process is F-nonanticipative. Let us note that for a given stochastic
process X D .Xt /t�0 on PF , we may identify each ! 2 � with its path RC 3
t ! Xt.!/ 2 Rd . Thus we may regard � as a subset of the space Q� D .Rd /Œ0;1/
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of all functions from Œ0;1/ into Rd . Then the �-algebra F will contain the
�-algebra B , generated by sets f! 2 � W !.t1/ 2 A1; : : : ; !.tk/ 2 Akg for all
t1; : : : ; tk 2 RC and all Borel sets Ai � Rd for i D 1; 2; : : : ; k and k 2 N.
The space .Rd /Œ0;1/ contains some important subspaces such as C D C.RC;Rd /,
CC D CC.RC;Rd / , and C� D C�.RC;Rd / of respectively all continuous, right
continuous, and left continuous functions x W RC ! Rd . A special role in such
an approach to stochastic processes is played by an evaluation mapping defined for
every fixed t � 0 by setting et W .Rd /Œ0;1/ 3 x ! x.t/ 2 Rd . We can define on
the space X D .Rd /Œ0;1/ a �-algebra of cylindrical sets, denoted by G.X /, as a
�-algebra generated by a family fet W t � 0g, i.e., G.X / D �.fet W t � 0g/. In a
similar way, we can define a filtration .Gt /t�0 by taking Gt D �.fes W 0 � s � tg/.
We have the following important result.

Theorem 3.2. The �-algebra G.C/ of cylindrical sets of C coincides with the �-
algebra ˇ.C/ of Borel sets of C.

Proof. We have only to verify that ˇ.C/ � G.C/. Let us observe that a family of
sets fx 2 C W max0�t�n jx.t/ � x0.t/j � "g with fixed x0 2 C , " > 0 and
n D 1; 2; : : : is a base of neighborhoods in C. On the other hand, we have fx 2 C W
max0�t�n jx.t/ � x0.t/j � "g D T

r2Q;0�r�nfx 2 C W x.r/ 2 U.x0.r/; "/g , where

U.a; "/ D fx 2 Rd W jx � aj � "g. Therefore, fx 2 C W max0�t�n jx.t/ � x0.t/j �
"g 2 G.C/, which implies that ˇ.C/ � G.C/. �

Remark 3.1. The above result is also true for the space D of all d -dimensional
càdlàg functions on Œ0;1/, i.e., ˇ.D/ D G.D/ , where G.D/ denotes the �-algebra
of cylindrical sets of D. �

Corollary 3.1. A stochastic process X D .Xt/t�0 on PF can be regarded as an
.Rd /Œ0;1/-random variable on PF , i.e., as a mapping from � into .Rd /Œ0;1/ that is
.F ;G.X //-measurable. In particular, by virtue of Theorem 3.2 and Remark 3.1, a d -
dimensional continuous (càdlàg) process X D .Xt/t�0 on PF can be considered
as a mapping from � into C (D ) that is .F ; ˇ.C//- ( .F ; ˇ.D//)-measurable. �

Remark 3.2. Given a d -dimensional continuous (càdlàg) stochastic process X D
.Xt/t�0 on PF by PX�1 , we denote the distribution of C-random (D-random)
variable X W � ! C (X W � ! D), i.e., a probability measure defined by
.PX�1/.A/ D P.X�1.A// for A 2 ˇ.C/ (A 2 ˇ.D/). �

Corollary 3.2. Let X D .Xt /t�1 and QX D . QXt/t�1 be d -dimensional continuous
stochastic processes on probability spaces .�;F ; P / and . Q�; QF ; QP /; respectively,
such that PX�1 D P QX�1. For every .s; x/ 2 RC �Rd such that Xs D x , P -a.s.,
one has QXs D x , QP -a.s.

Proof. The result follows immediately from Lemma 2.1. Indeed, assume that there
is .s; x/ 2 RC � Rd such that Xs D x , P -a.s. Taking, in particular, X D
C.RC;Rd /, Y D Rd , and ˆ D es in Lemma 2.1, where es is an evolution
mapping corresponding to s � 0, we obtain P.es ı X/�1 D P.es ı QX/�1. Hence,
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for Ax D fxg � Rd , it follows that P.es ı X/�1.Ax/ D P.es ı QX/�1.Ax/. Then
P.fXs D xg/ D QP.f QXs D xg/, which implies that QP.f QXs D xg/ D 1. �

Corollary 3.3. Let Xn D .Xn
t /t�0 and X D .Xt /t�0 be d -dimensional con-

tinuous stochastic processes on probability spaces .�n;Fn; Pn/ and .�;F ; P /;,
respectively, for n D 1; 2; : : : . If a sequence .Xn/1nD1 converges weakly in
distribution to X , then Xn

s ) Xs as n ! 1 for every s � 0.

Proof. The result follows immediately from Lemma 2.2. Indeed, assume that a
sequence .Xn/1nD1 converges weakly in distribution to X , and let s � 0. Taking,
in particular, X D C.RC;Rd /, Y D Rd , and ˆ D es in Lemma 2.2, one obtains
es ıXn ) es ıX as n ! 1. Then Xn

s ) Xs as n ! 1. �

Remark 3.3. A finite-dimensional distribution of a d -dimensional stochastic pro-
cess X D .Xt/t�0 on PF is defined as a probability measure 	t1;:::;tk on ˇ.Rkd /

for k D 1; 2; : : : defined by 	t1;:::;tk .A1�� � ��Ak/ D P.fXt1 2 A1; : : : ; Xtk 2 Akg/
for ti 2 Œ0;1/ and Ai 2 ˇ.Rd / for i D 1; 2; : : : ; k. �
Remark 3.4. If d -dimensional continuous (càdlàg) stochastic processes X D
.Xt/t�0 and QX D . QXt/t�0 on PF and QP QF, respectively, have the same dis-
tributions, then PX�1 D P QX�1 is equivalent to 	t1;:::;tk .A1 � � � � � Ak/ D
Q	t1;:::;tk .A1�� � ��Ak/ for every ti 2 Œ0;1/ and Ai 2 ˇ.Rd / for i D 1; 2; : : : ; k. �

We have the following important theorems due to Kolmogorov.

Theorem 3.3 (Extension theorem). Let 	t1;:::;tk be for all t1; : : : ; tk 2 Œ0;1/ and
k 2 N a probability measure on ˇ.Rkd / such that (i) 	t�.1/;:::;t�.k/ .A�.1/ � � � � �
A�.k// D 	t1;:::;tk .A1 � � � � � Ak/ for all permutations � D .�.1/; : : : ; �.k// of
f1; 2; : : : ; kg and (ii) 	t1;:::;tk .A1 � � � � �Ak/ D 	t1;:::;tk ;tkC1;:::;tkCm

.A1 � � � � �Ak �
Rd � � � � � Rd

„ ƒ‚ …
m

/ for all m 2 N. Then there exist a probability space .�;F ; P /

and a d -dimensional stochastic process X D .Xt /t�0 on .�;F ; P / such that
	t1;:::;tk .A1 � � � � � Ak/ D P.fXt1 2 A1; : : : ; Xtk 2 Akg/ for ti 2 Œ0;1/ and
Ai 2 ˇ.Rd / with i D 1; 2; : : : ; k and k 2 N. �
Theorem 3.4 (Existence of continuous modification). Suppose a d -dimensional
stochastic process X D .Xt/t�0 on PF is such that for all T > 0 , there exist
positive constants ˛, ˇ , and � such that

EŒjXt �Xsj˛� � � jt � sj1Cˇ

for s; t 2 Œ0; T �. Then there exists a continuous modification of X . �
We shall now prove the following theorem.

Theorem 3.5. Let .Xn/1nD1 be a sequence of d -dimensional continuous stochastic
processes Xn D .Xn

t /t�0 on a probability space .�n;Fn; Pn/ for n D 1; 2; : : :

such that:


