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Preface

This book grew out of my research on the history of mathematics over the past
40 years. Time and again, the path of my investigation led me to the consideration
of work by Frobenius that played an important role in the historical development
I was attempting to understand. I finally decided it would be appropriate to bring
these research experiences together into a book on the mathematics of Frobenius,
especially since little has been written about him despite the fact that he made many
important contributions to present-day mathematics—as suggested by the many
theorems and concepts that bear his name.

Initially, the focus of the book was dictated by my earlier research experiences
and interests involving Frobenius. These had all involved his work on the theory
and application of linear algebra, including the application involved in his creation
of the theory of group characters and representations; and so the initial working title
was “Frobenius and the History of Linear Algebra.” As the reader will see, much of
Frobenius’ work did indeed involve linear algebra somewhere along the way; but I
began to realize that to focus exclusively on this aspect of his work would present
a distorted picture of his mathematical activities and their significance, as well as
of the sources of his inspiration and the reasons so much of his work has become a
part of basic mathematics. His creation of representation theory may have been his
most important achievement, but he also did work of lasting significance in many
other areas of mathematics. Frobenius was an algebraist at heart, but he looked for
interesting problems of an essentially algebraic or formal nature in a broad spectrum
of areas of nineteenth- and early twentieth-century mathematics. To do him and his
work justice, the scope of the book had to be broadened into a more well-rounded
intellectual biography; and that is what I have attempted. Whence the first part of
the title of the book: “The Mathematics of Frobenius.”

The second part of the title also requires clarification. I have attempted to present
the mathematics of Frobenius “in context” in two senses. The first of these involves
providing the reader with the historical background necessary to understand why
Frobenius undertook to solve a particular problem and to appreciate, by seeing what
had been done before, the magnitude of his achievement, as well as what he owed
to his predecessors. In addition to the backgrounds peculiar to various particular
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problems, it was also necessary to say something about Frobenius’ educational
background, namely his training in the Berlin school of mathematics presided over
by Weierstrass (Frobenius’ dissertation advisor and principal supporter), Kronecker,
and Kummer. Of particular importance is the work done by Weierstrass and
Kronecker on the theory of equivalence (respectively, congruence) of families of
bilinear (respectively quadratic) forms. As we shall see, from their work Frobenius
learned both theorems and concomitant disciplinary ideals that together motivated
and informed much of his early work. In addition, from Kummer’s groundbreaking
work on ideal complex numbers, and Kronecker’s interest in extending it, as well
as from Dedekind’s quite different extension by means of his theory of algebraic
numbers and ideals, Frobenius acquired the background that motivated much of
his work on the theory of numbers and abstract group theory. Thus considerable
attention is given to these arithmetic developments.

I have also attempted to present Frobenius’ mathematics “in context” in the sense
that I have sought to trace the various ways in which his work was subsequently
applied, developed, and ultimately incorporated into present-day mathematics. By
presenting the mathematics of Frobenius in context in both these senses, my hope is
that the reader will come away not only with an enriched appreciation of Frobenius’
work but also with a glimpse of the broad swath of diverse and important strands
of eighteenth- to twentieth-century mathematics that results from the contextual
approach and that ranges from the work of Lagrange and Laplace on terrestrial and
celestial mechanics in the last decades of the eighteenth century, which involved
them with the theory of systems of linear differential equations, to the theory of
complex abelian varieties in the mid-twentieth century. This is the “Journey through
Eighteenth- to Twentieth-Century Mathematics” of the subtitle.

The book has been divided into three parts. Part I is devoted to an overview
of Frobenius’ entire mathematical career and thus serves as an introduction to the
main body of the book. Here, within the context of Frobenius’ educational and
professional career, his contributions to mathematics and the attendant backgrounds
are briefly sketched and their subsequent impact on the development of mathematics
indicated. It is my hope that the reader will come away from Part I with a broad
sense of Frobenius’ many contributions to mathematics, of the institutional and
personal connections that affected his work, of the broad scope and progression of
his mathematical interests, and of the ways in which his work has been incorporated
into present-day mathematics. Of course, in order to gain more than just a vague
sense, in order to fully appreciate what Frobenius accomplished, how it grew out of
or was motivated by earlier work, and how it has affected present-day mathematics,
a reading of the chapters in Parts II and III is necessary. The two chapters that form
Part II deal with the development of linear algebra up to and including the work
of Weierstrass and Kronecker and are essential background for all that is to follow.
The chapters of Part III deal in depth with Frobenius’ major works, a subset of the
works discussed in Part I. These chapters range over many areas of mathematics and
can be read independently of one another, with little loss of continuity thanks to the
overview provided by Part I. Thus, for example, a reader particularly interested in
Frobenius’ arithmetic work could turn next to Chapters 8 and 9, where this work is
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treated. Readers wishing to know more about his work on group characters and
representations could start with Chapter 12. I have provided a detailed table of
contents to guide readers to those parts of Frobenius’ work of special interest to
them.

In addition to a detailed table of contents, I have provided an extensive index that
will enable readers to look for a specific topic that may not be included in the table
of contents. The index can also be used to find the meaning of unfamiliar terms,
such as “Dedekind characters,” the “containment theorem of Frobenius,” or “winter
semester” in German universities. If several pages are given for an entry, the page
number containing the explanation of the term is given in boldface. The index is also
helpful for tracking down various recurring themes of the book, such as “generic
reasoning,” “disciplinary ideals of Berlin school” (also found under Kronecker,
who articulated them), and “multiple discoveries” involving Frobenius. By the
latter term I mean instances in which Frobenius and one or more mathematicians
independently made essentially the same discovery or developed similar ideas. As
the index shows, Frobenius was involved in many instances of multiple discovery.
The entry for Frobenius is particularly extensive and should prove useful in locating
various sorts of information about him, such as a listing of all the evaluations
Weierstrass made of him and his work, as well as all evaluations Frobenius made
of other mathematicians or mathematical theories. In addition, there is a listing
of all mathematicians influenced by Frobenius and a listing of all mathematicians
who influenced him in the broad sense that includes mathematicians who provided
him with useful ideas and results, as well as mathematicians whose work, due to
deficiencies, motivated him to develop a theory that removed them.

My interest in Frobenius began circa 1970 with an attempt to reconstruct the
origins of his remarkable theory of group characters [266]. I knew that he had been
in correspondence with Dedekind, who had introduced him to group determinants.
Important excerpts of Dedekind’s side of the correspondence had been published
by E. Noether in Dedekind’s collected works [119, pp. 414–442], but Frobenius’
side of the correspondence seemed lost to posterity until the year after my paper
[266] appeared, when Clark Kimberling announced his fortuitous discovery of the
Dedekind–Frobenius correspondence [339, §8], which runs to over 300 pages.
At my request he kindly provided me with a copy of the correspondence, which
showed that my reconstruction of how Frobenius had created his theory of group
characters needed to be significantly modified. The result was my paper [268],
which quoted extensively (in translation) from the correspondence. Much of that
material is incorporated into this book. In addition, the correspondence during 1882
has proved enlightening in discussing Frobenius’ work on density theorems, which
was done in 1880 but not published until 1896. By the time I investigated Frobenius’
work on density theorems, two unpublished transcriptions of the correspondence
had been made, the first by the late Walter Kaufmann-Bühler, and the second,
building upon the first, by Ralf Haubrich. They kindly sent me copies of drafts
of their transcriptions, which greatly facilitated a careful reading of the entire
correspondence. The Dedekind–Frobenius correspondence was initially housed at
the Clifford Memorial Library of the University of Evansville, and I am grateful to
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the library for permission to use the correspondence in my publications. In 1995,
the correspondence was moved to its present location in the archives of the library
of the Technical University at Braunschweig, the institution where Dedekind spent
almost all of his mathematical career.1 All of the citations from Frobenius’ letters
are from this archival source. The citations from Dedekind’s letters that are printed
in his collected works are so indicated by footnotes.

Besides the individuals and institutions mentioned above, I am indebted to many
others who, at one point or other during the past 40 years, assisted me with some
aspect of my work on Frobenius. Although I am sure I have now forgotten some, I
do wish to express my gratitude to those I have remembered: Armand Borel, Keith
Conrad, Harold Edwards, Walter Feit, Jeremy Gray, Rob Gross, Walter Ledermann,
Franz Lemmermeyer, Peter Neuman, Wilfried Parys, Klaus Peters, Peter Roquette,
Michael Rosen, David Rowe, Yvonne Schetz, Hans Schneider, Shlomo Sternberg,
and Dan Weiner. I am also grateful to the NSF Science and Technology Studies
program for providing the financial support that enabled me to initiate my efforts to
write a book on Frobenius.2 My greatest debt of all is to Jean-Pierre Serre. To begin
with, shortly before my interests turned toward Frobenius, he took on the burden of
editing Frobenius’ mathematical works for publication. Frobenius’ Mathematische
Abhandlungen appeared in 1968 [232] and has facilitated my study of his work
ever since. In addition, throughout my career as historian of mathematics he has
encouraged my efforts and generously given his time to critically evaluate and
respond with many helpful suggestions to drafts of various parts of my work. His
contributions to the writing of this book in particular have been manifold. Some
of these are reflected in the index but many are not. Among the latter, I would
mention that the decision to transform my book from “Frobenius and the History
of Linear Algebra” into a book that attempts to deal with all of Frobenius’ major
mathematical contributions was sparked by his remark, on hearing of my plans
to write the first sort of book, that I should really look into Frobenius’ work on
theta functions, since C.L. Siegel had told him that Frobenius had done important
work in this area. (That Siegel was right can be seen from Chapter 11.) Initially I
dismissed Serre’s suggestion of a more inclusive work on the grounds of personal
inadequacy, but his suggestion remained in the back of my mind and eventually led
to the following book, imperfect as it may prove to be.

Finally, I wish to express my gratitude to David Kramer, whose scrupulous and
informed copyediting of the book has resulted in many significant improvements.

Boston, MA, USA Thomas Hawkins

1Frobenius’ letters to Dedekind are archived under the reference Universitätsarchiv Braunschweig
G 98 : 10. G 98. Frobenius’ letters are under G 98 : 10.
2 Through grant SES-0312697.



Contents

Part I Overview of Frobenius’ Career and Mathematics

1 A Berlin Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Student Years: 1867–1870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Postdoctoral Years: 1870–1874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Professor at the Zurich Polytechnic: 1874–1892 . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Berlin Professor: 1892–1917 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Part II Berlin-Style Linear Algebra

4 The Paradigm: Weierstrass’ Memoir of 1858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1 Generic Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Part I
Overview of Frobenius’ Career

and Mathematics



Chapter 1
A Berlin Education

Ferdinand Georg Frobenius was born in Berlin on 26 October 1849.1 He was
a descendant of a family stemming from Thüringen, a former state in central
Germany and later a part of East Germany. Georg Ludwig Frobenius (1566–1645),
a prominent Hamburg publisher of scientific works, including those written by
himself on philology, mathematics, and astronomy, was one of his ancestors. His
father, Christian Ferdinand, was a Lutheran pastor, and his mother, Christiane
Elisabeth Friedrich, was the daughter of a master clothmaker.

Frobenius grew up in Berlin and attended high school there at the Joachimstali-
sche Gymnasium, where he distinguished himself as one of its most outstanding
students [22, p. 190]. He began his university studies in Göttingen, where he
enrolled for the “summer semester” of 1867. In German universities the summer
semester runs from about mid-April to mid-July and the winter semester from about
mid-October through February. Thus the winter semester corresponds roughly to
the fall semester in an American university and the summer semester to the spring
semester. Frobenius took two courses in analysis at Göttingen and a course in
physics given by the well-known physicist Wilhelm Weber. His primary interest
was already in mathematics, and it is likely that his intention from the outset
was to do what he ended up doing: enrolling for the winter semester 1867 at the
University of Berlin and pursuing his study of mathematics there for six semesters
through completion of his doctorate. This would have been a reasonable course
of action because at the time, the University of Berlin was the leading center for
mathematics in Germany and one of the major centers for mathematics in the
world.

1The following biographical details about Frobenius are drawn from [4, 22, 553].

T. Hawkins, The Mathematics of Frobenius in Context, Sources and Studies in the History
of Mathematics and Physical Sciences, DOI 10.1007/978-1-4614-6333-7 1,
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4 1 A Berlin Education

1.1 Student Years: 1867–1870

In his invaluable study of mathematics in Berlin [22], K.-R. Biermann has
characterized the period 1855–1892, which he calls the “Kummer–Weierstrass–
Kronecker era,” as a historical high point for instruction and research in mathematics
at the university, what one who was there (Adolf Kneser) described as the “heroic
period” [22, p. 75]. Indeed, thanks largely to the concerted efforts of the above
three mathematicians, a bona fide school of mathematics emerged during these
years. Frobenius became a devoted member of this school, and his choice of
research problems and the manner in which he approached them was colored by
his experiences at Berlin, which resonated with his own mathematical proclivities.
Figure 1.1 shows a youthful Frobenius as he may have looked during his student
and postdoctoral years at the University.

A closer look at the Berlin school is now in order. It will be helpful to begin
by indicating the three principal categories of lecturers at a German university.
The highest category was that of ordentlicher Professor, which I have translated
as “full professor.” The full professors had substantial salaries and powers within
the university, e.g., to recommend new faculty appointments and to direct doctoral
dissertations. Then there was the category of “extraordinary professor” (ausseror-
dentlicher Professor), which I have translated as assistant professor, since the salary
was modest and came with no powers within the university. The lowest category
consisted of the “private lecturers” (Privatdozenten), which I have translated as
“instructors.” How someone with a doctorate became an instructor by writing a

Fig. 1.1 Frobenius as he
may have looked during the
early years of his career,
when he absorbed and began
applying the teachings of the
Berlin school of mathematics.
Image courtesy of
ETH-Bibliothek Zürich, and
located in its Image Archive
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Habilitationsschrift is indicated in the next section. There were other lecturers
outside these categories as well; an example is provided by Kronecker, as will be
seen below.

At Berlin, the two full professors of mathematics at the university in 1867 were
Eduard Kummer (1810–1893) and Karl Weierstrass (1815–1897). After impressing
Jacobi and Dirichlet with work in analysis, Kummer had achieved more widespread
fame for his groundbreaking theory of ideal complex integers associated to the
ordinary complex integers of Z[ωp], ωp a primitive pth root of unity for the prime
number p (see Section 9.1.2). He had begun his work on this theory in 1846, but
by 1867, when Frobenius arrived, his research interests had shifted to geometry
(ray systems). As for Weierstrass, he had gone from the relative obscurity of a high-
school mathematics teacher into the mathematical limelight by virtue of his solution,
in 1854, to the Jacobi inversion problem for hyperelliptic integrals in any number
of variables (see Section 10.1). Kummer’s first administrative accomplishment after
his appointment to a Berlin professorship in 1855 was to pull the strings necessary
to get Weierstrass to Berlin the following year.

Mention should also be made of Carl Borchardt (1817–1880) [22, pp. 61–62].
Borchardt had obtained his doctorate under Jacobi’s direction at the University of
Königsberg (1843) and subsequently became his friend. Jacobi was in poor health
at the time and Borchardt accompanied him to Italy, where (in Rome) they met
Jacob Steiner (1796–1863) and P.G. Lejeune Dirichlet (1805–1859), who were then
both full professors at the University of Berlin. Borchardt became an instructor
at the university in 1848. In 1855, Dirichlet, about to leave for a professorship
at Göttingen, persuaded Borchardt, who was independently wealthy, to take over
the editorship of “Crelle’s Journal”—the Journal für die reine und angewandte
Mathematik—which had been founded in 1829 by August Crelle, who had edited it
until his death in 1855. Borchardt also became a member of the Berlin Academy of
Sciences in 1855, at the recommendation of Dirichlet, perhaps in part as a reward for
assuming the task of editing Crelle’s Journal, which was in effect the journal of the
Berlin school of mathematics. That is, members of the academy, such as Kronecker,
Kummer, and Weierstrass, tended to publish in the proceedings of the academy, but
their students aspired to publication in Crelle’s Journal. For example, from 1871
until 1893, when Frobenius became a Berlin professor and member of the academy,
virtually all of his mathematical output was published in that journal.

Borchardt remained editor until his death in 1880, and during his tenure the
quality of papers accepted increased. After over a decade as editor he had considered
retiring, but when in 1869 Alfred Clebsch, then at the University of Göttingen,
founded the rival Mathematische Annalen, Borchardt, sensing the competitive
challenge, decided to continue as editor. Borchardt also became a close friend to
Weierstrass, whom Borchardt had made a point of meeting in 1854, after Weierstrass
had solved the Jacobi inversion problem for hyperelliptic integrals. Borchardt was
one of the few people whom Weierstrass addressed with the familiar “Du” form.

By 1857 Weierstrass had solved the inversion problem for general abelian
integrals, but he held back his results because he had discovered that Riemann
had already published his quite different solution to the problem that same year.
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Fig. 1.2 Weierstrass, through
his work, teaching, and
support was to exert the
greatest influence on
Frobenius of any
mathematician. Of his many
doctoral students, Frobenius
was to become the most
accomplished. Photo courtesy
of Mathematisches
Forschungsinstitut,
Oberwolfach, Germany

Weierstrass then set for himself the goal of understanding Riemann’s results and
their relation to his own. Riemann’s solution was couched in terms of what are now
called Riemann surfaces and were not as rigorously founded as Weierstrass wished.
His next goal was to develop his own solution in the light of his understanding of
Riemann’s results. This he did not do in print but, gradually, through the medium
of his lectures on abelian integrals and functions at Berlin. Frobenius probably
attended Weierstrass’ lectures on this subject as given in the summer semester
1869.2 Some important aspects of Weierstrass’ lectures are discussed in Section 11.1
because of their relevance to Frobenius’ work. Part of the foundations for the theory
of elliptic and abelian functions was supplied by the general theory of functions
of one or more complex variables, which Weierstrass also developed in lectures.
Although Weierstrass’ primary area of research was complex analysis, he also
thought about and occasionally published in other areas. These included the theory
of the transformation of quadratic and bilinear forms, to which he devoted two
important papers (1858, 1868) that were to prove of great consequence to Frobenius
(as indicated below). Weierstrass, who became Frobenius’ mentor and dissertation
advisor, is pictured in Fig. 1.2.

2A listing of the semesters in which Weierstrass lectured on abelian integrals and functions is given
in vol. 3 of his Mathematische Werke, the volume containing of a version of these lectures.
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The third member of the Berlin mathematical triumvirate was Leopold Kronecker
(1823–1891). Although Kronecker had studied mathematics at Berlin and obtained
a doctorate under the direction of Dirichlet in 1845, he did not pursue a traditional
academic career thereafter. Instead he managed the considerable wealth of his
family while at the same time indulging his interests in mathematics. These interests
were shaped more by Kummer than by Dirichlet. Kummer had known Kronecker
since his high-school days at the gymnasium in Liegnitz (now Legnica, in Poland),
where he was then teaching, and the bond between them had developed into a
friendship based on a mutual interest in mathematics. As Frobenius wrote many
years later, “In so far as Kronecker was a student, he was Kummer’s student
. . .” [202, p. 710]. Indeed, one of Kronecker’s goals was to extend a version of
Kummer’s theory of ideal numbers from the context of Q(ωp) to that of far more
general fields.3

Kronecker’s interest in algebra, and in particular in algebraic equations, had been
stimulated by the posthumous publication in 1846 of Évariste Galois’ “Memoir
on the conditions for the solvability of equations by radicals” [239]. Kronecker,
however, did not find Galois’ group-theoretic conditions for solvability satisfy-
ing [613, pp. 121ff.]. Galois had not described the nature of a polynomial f (x)
solvable by radicals; he had only characterized the associated (Galois) group G by
the property (stated here in modern terms) of the existence of a chain of subgroups
G ⊃ G1 ⊃ G2 ⊃ ·· · ⊃ Gk = 1 such that Gi is a normal subgroup of Gi−1 and the
factor group Gi−1/Gi is abelian. Kronecker wanted to characterize the equations
solvable by radicals in a manner relating more directly to their coefficients and
roots. Galois’ results showed that it sufficed to do this for abelian equations, i.e.,
polynomial equations with abelian Galois group. Kronecker obtained many results
of considerable interest, including what has become known as the Kronecker–Weber
theorem: if f (x) ∈Q[x] is abelian, then all its roots are rational functions of roots of
unity.4

By the time Frobenius arrived in Berlin, Kronecker, who is pictured in Fig. 1.3,
had been residing there for a dozen years and was very much engaged in the
mathematical life of the university. He was a member of the Berlin Academy of
Sciences, and at Kummer’s suggestion, he claimed the right accorded members of
presenting lectures at the university. Indeed, along with Kummer and Weierstrass,
he was involved in the 2-year lecture cycle that had been devised to provide students,
within that time span, with a broad and up-to-date education in what were deemed
the main areas of mathematics. Thus, although Kronecker was not a full professor,
and so could not officially direct doctoral theses or run the Berlin mathematics

3According to Frobenius [202, p. 712], in 1858 Kronecker sent a (now lost) manuscript containing
some such extension to Dirichlet and Kummer. In 1882, on the occasion of the fiftieth anniversary
of Kummer’s doctorate, he presented a sketch of his ideas as they stood then [363], but they were
difficult to follow. Edwards [150] has given a possible reconstruction of what Kronecker had in
mind.
4See Frobenius’ discussion of this and related results [202, pp. 712–713].
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Fig. 1.3 Through his
publications Kronecker was
to exert a strong influence on
Frobenius, who found in
Kronecker’s sketchy
communications many
problems to investigate and
resolve. Photo courtesy of
Mathematisches
Forschungsinsitut,
Oberwolfach, Germany

seminar, he played an important role in the educational program of the Berlin school.
Reflecting his primary interests in algebra and the theory of numbers, Kronecker’s
lectures covered such areas as the theory of algebraic equations, number theory,
the theory of determinants (including much that would now be classified as linear
algebra), and the theory of simple and multiple integrals [22, p. 81]. It was probably
through Kronecker that the young Frobenius learned about Galois’ memoir [239],
which he seems to have carefully studied along with the related works by Abel.
Indeed, as we shall see in the following section, Frobenius’ first paper beyond his
dissertation involved the ideas of Abel and Galois, albeit interpreted within the
context of Weierstrassian complex function theory. Kronecker was to exert a major
influence on the directions taken by Frobenius’ research.

Kummer’s lectures covered analytic geometry, mechanics, the theory of surfaces,
and number theory. His polished lectures were relatively easy to follow and never
ventured beyond well-established theories, unlike both those of Kronecker, whose
lectures were very difficult to follow, and those of Weierstrass, whose lectures
were challenging but more accessible, the result of an ongoing effort to present the
material in a rigorous and appropriate manner. In addition to abelian integrals and
functions, Weierstrass’ lectures were on such topics as the foundations of the theory
of analytic functions, elliptic integrals and functions, the calculus of variations, and
applications of elliptic functions to problems in geometry and mechanics. In his
lecture cycle Weierstrass strove to present a rigorous development of mathematical
analysis that took nothing for granted [22, p. 77]. Although other courses in
mathematics were taught by assistant professors, instructors, and other special
lecturers, Frobenius managed to take all his mathematics courses from Kummer,
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Weierstrass, and Kronecker.5 In addition to courses in mathematics, he took courses
in physics and philosophy.

Kronecker’s role within the Berlin school was not at all limited to teaching. The
Berlin Academy of Sciences afforded him a forum for mathematical discourse with
his colleagues. As Frobenius later wrote,

Nothing gave him more pleasure than to share his views on mathematical works or problems
with his colleagues. Insatiable in his craving for scientific discourse, he could hold forth
on his ideas until deep into the night with those who listened with intelligence and
comprehension; and he who could not be convinced could be certain that already the next
morning he would find a write-up of the matter discussed [202, p. 711].

Although in later years, relations between Kronecker and Weierstrass became
strained to the breaking point [22, pp. 100ff.], during the period 1868–1875, when
Frobenius was in Berlin, the situation was quite different. Even after years of
strained relations, Weierstrass retained vivid, fond memories of the early years
when he and Kronecker freely exchanged mathematical ideas [202, p. 711]. Several
examples of such mutual interaction will be given in the following chapters because
they inspired work by Frobenius. By far the most important example of their mutual
interaction involved the theory of the transformation of quadratic and bilinear forms,
the subject of Part II.

In Part II, I set the stage for, and then present, the work of Weierstrass and
Kronecker that informed the Berlin school’s approach to what would now be
classified as linear algebra. As we shall see, much of Frobenius’ work in the
early years after his departure from Berlin in 1874 involved, in one way or
another, Berlin style linear algebra. In developing and applying linear algebra to
diverse mathematical problems drawn from analysis and arithmetic, Frobenius made
extensive use of Weierstrass’ theory of elementary divisors and the disciplinary
ideals implicit in it and made explicit by Kronecker. Weierstrass’ theory originated
in his interest in the eighteenth-century discussion by Lagrange and Laplace of
mechanical problems leading to a system of linear differential equations, which in
modern notation would be expressed by Bÿ+ Ay = 0, where A,B are symmetric
matrices, B is positive definite, and y =

(
y1 · · · yn

)t
. Lagrange and Laplace had

inherited the method of algebraic analysis that had revolutionized seventeenth-
century mathematics. They perfected the method and made brilliant applications
of it to terrestrial and celestial mechanics. In their hands, mathematical analysis
became both elegant and general in its scope, but it retained the tendency to reason
with algebraic symbols as if they had “general” values, a tendency that obscured
the possibility of special relations or singularities that need to be considered in
order to attain truly general results. In this way they came to believe that the above
system of equations would yield stable solutions only if it were assumed, in addition,
that the roots of f (s) = det(sB − A) are real and distinct. Building upon work
of Cauchy, Dirichlet, and Jacobi, Weierstrass showed in 1858 that the additional

5This is clear from the vita at the end of his doctoral dissertation [171, p. 34], as is the fact that his
other courses at Berlin were in physics and philosophy.
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assumptions were unnecessary, that by means of rigorous, nongeneric reasoning it
could be established that (in the language of matrices introduced later by Frobenius)
a real nonsingular matrix P exists such that PtBP = I and PtAP = D, where D is a
diagonal matrix. From this result the correct form for the solutions to Bÿ+Ay = 0
then followed, and their stability was established.

Weierstrass presented his results in a paper published by the Berlin Academy
in 1858. He had couched his results in the language of the transformation of
quadratic forms so as to relate them to the work of Cauchy and Jacobi, which
had been motivated by the principal axes theorems of mechanics and the theory of
quadric surfaces. Cauchy had been the earliest critic of the generic reasoning of the
eighteenth century, whereas Jacobi continued, despite Cauchy’s example, to pursue
his characteristically elegant form of algebra on the generic level. Jacobi’s work on
the simultaneous transformation of pairs of quadratic forms into sums of squared
terms raised the question as to when, in nongeneric terms, two pairs of quadratic
or bilinear forms can be transformed into one another. Weierstrass discovered that
the method he had employed in his 1858 paper could be generalized to apply to all
nonsingular pairs of bilinear forms so as to give necessary and sufficient conditions
for the transformation of one nonsingular pair into another. The result was his theory
of elementary divisors, which he presented to the Berlin Academy in a paper of
1868. It will be helpful to briefly explain Weierstrass’ theory at this point so as to
make the later sections of Part I intelligible to readers unfamiliar with the language
of elementary divisors.

Following Frobenius (Section 7.5), I will identify pairs of bilinear forms Φ =
xtBy and Ψ = xtAy with their coefficient matrices B,A. Such a pair can be
simultaneously transformed into another pair B̃, Ã if nonsingular matrices P,Q
exist such that PAQ = Ã and PBQ = B̃. In this case, the pairs (B,A) and (B̃, Ã)
are said to be equivalent. A pair (B,A) is nonsingular if detB �= 0. Weierstrass’
main theorem was that two nonsingular pairs are equivalent if and only if they
have the same “elementary divisors.” To understand what elementary divisors
are, observe that pairs (B,A) and (B̃, Ã) are clearly equivalent precisely when
the matrix families sB − A and sB̃− Ã, s a complex variable, are equivalent. By
means of determinant-theoretic considerations, Weierstrass introduced a sequence
of polynomials En(s), . . . ,E1(s) associated to sB−A, which, thanks to Frobenius
(Chapter 8), can be seen to be the invariant factors of sB−A with respect to the
polynomial ring C[s]. That is, the Smith normal form of sB−A over C[s] is the
diagonal matrix with En(s), . . . ,E1(s) down the diagonal. They satisfy Ei(s) |Ei+1(s)
and det(sB− A) = ∏n

i=1 Ei(s). The Ei(s) of course factor into linear factors over
C, and so Weierstrass wrote Ei(s) = ∏k

j=1(s− a j)
mi j , where a1, . . . ,ak denote the

distinct roots of ϕ(s) = det(sB−A) and mi j is a nonnegative integer. The factors
(s − ai)

mi j with mi j > 0 are Weierstrass’ elementary divisors. They are thus the
powers of the distinct prime factors of each invariant factor Ei(s) in the polynomial
ring C[s]. In order to prove his main theorem, Weierstrass showed that given sB−A
(with detB �= 0), P,Q may be determined such that W = P(sB−A)Q has a simple
form from which its elementary divisors can be immediately ascertained. The matrix
W is essentially the same as the familiar Jordan canonical form of sB−A, which
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was introduced independently by Camille Jordan at about the same time. The
determinant of each “Jordan block” of W equals an elementary divisor (s−ai)

mi j of
sB−A with mi j giving the dimension of the block.

For a corollary to his theory, Weierstrass returned to the context of his paper of
1858: pairs (B,A) of symmetric matrices; but he was now able to replace his earlier
hypothesis that B is definite with the weaker one that B is nonsingular. His corollary
was that two such symmetric pairs, (B,A) and (B̃, Ã), are congruent in the sense
that a nonsingular P exists such that PtBP = B̃ and PtAP = Ã if and only if sB−A
and sB̃− Ã have the same elementary divisors. His corollary provided a rigorous
counterpoint to Jacobi’s generic theorem that a symmetric pair is congruent to a
pair of diagonal matrices. It should also be noted (as Frobenius did) that Weierstrass’
theory also provided necessary and sufficient conditions that two matrices A and Ã
be similar in the sense that A = S−1ÃS for some nonsingular matrix S. It is only
necessary to apply Weierstrass’ main theorem to pairs with B = B̃ = I.

Kronecker was not a member of the Berlin Academy in 1858 when Weierstrass
presented his paper on pairs of quadratic forms, and he was apparently unfamiliar
with it when, in 1866, while working with Weierstrass’ encouragement on the
problem of a viable generalization to abelian functions of the notion of elliptic
functions admitting a complex multiplication, he became interested in the problem
of the congruent transformation of the special families sB − Bt , where B is any
2n× 2n matrix, into a normal form. This problem had emerged from his method
of attacking the complex multiplication problem and seems to have overshadowed
the original problem in his mind. He dealt with it in the generic spirit of Jacobi, but
when he became aware of Weierstrass’ paper of 1858 and his subsequent theory of
elementary divisors, he abandoned the generic approach and took upon himself the
highly nontrivial task of extending Weierstrass’ theory to singular pairs (A,B), i.e.,
the problem of determining a set of invariants for any matrix pair (B,A) that would
provide necessary and sufficient conditions for two such pairs to be equivalent. (The
invariant factors Ei(s) alone are insufficient to this end.)

Kronecker worked on this problem during 1868–1874 (see Section 5.6), while
Frobenius was in Berlin, and he succeeded in solving it, although he only sketched
his solution for symmetric pairs (see Theorem 5.13) and then, returning to his work
of 1866, he developed from scratch the necessary and sufficient conditions for sB+
Bt and sB̃+ B̃t to be congruent: Pt(sB−Bt)P = sB̃+ B̃t , detP �= 0. It was in these
communications to the Berlin Academy that Kronecker—embroiled in a quarrel
with Camille Jordan stemming from the latter’s criticism of Weierstrass’ theory of
elementary divisors—explicitly articulated two disciplinary ideals that were implicit
in Weierstrass’ and his own work on the transformation of forms. Frobenius knew
of this work and these ideals, and as we shall see (especially in Chapters 6 and 7),
they served to motivate and inform his choice of research problems, the solutions to
which involved the creation of mathematics of lasting significance (as indicated in
subsequent chapters of Part I).

Weierstrass’ paper on elementary divisors appeared in the proceedings of the
Berlin Academy during Frobenius’ second year at the university, although it is
unlikely that he was then aware of it. Weierstrass, however, had already become
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aware of him. One of the customs at Berlin was for one of the full professors to
pose a mathematical prize problem. In 1868, during Frobenius’ second semester
at Berlin, it was Weierstrass who posed the problem. Seven students submitted
solutions, and one of them was Frobenius. He did not win the prize, but he did
receive an honorable mention and a prize of 50 thaler [22, p. 88].6 What had
impressed Weierstrass was the uncommon facility for mathematical calculations
his solution displayed [22, p. 190], a talent his other teachers had also observed.
Whether the 18-year-old also had a talent for independent, original mathematical
thought, however, remained to be seen. It was in the Berlin Mathematics Seminar
that this talent seems to have first revealed itself. The Berlin Mathematics Seminar,
the first seminar in pure mathematics in a German university, had been instituted by
Kummer and Weierstrass in order to help students learn to think independently about
the mathematics they had been learning [22, p. 72]. The seminar was open only to
a limited number of pre- and postdoctoral students who were deemed qualified to
benefit from it. No doubt Frobenius’ solution to the prize problem was a major factor
in his acceptance into the seminar at the beginning of his second year. In fact, he
participated in the seminar for four semesters [171, p. 34] and so throughout his
final 2 years as a student.

It was in the seminar that Weierstrass realized that Frobenius was much more
than a mindless calculator. As he explained in 18727:

At first he [Frobenius] attracted the attention of his teachers by virtue of his extraordinary
facility with mathematical calculations, which enabled him, already as a second-semester
student, to solve a prize question posited by the faculty. However, it soon became clear that
he possessed to a high degree the mental aptitude and capability necessary for original
mathematical research. As a member of the mathematics seminar he produced various
works, which would have been worthy of publication and were certainly not inferior in
value to many recent publications. In the seminar, when it came to scientific matters, he
always proved himself to be an independent thinker, although he was otherwise unassuming
and almost childlike in manner. What was dictated to him in lectures he zealously made
his own, but rather than being content with that, he always used what he had learned to
determine his own scientific endeavors.

Weierstrass had further opportunity to observe Frobenius’ talents as the director of
his doctoral dissertation.

Incidentally, Frobenius’ choice of Weierstrass over Kummer as dissertation
advisor is not surprising. During the 9-year period 1867–1874 when Frobenius
was in Berlin, 13 doctoral degrees were awarded, and eight of them were done
under Weierstrass’ direction. During this period, Weierstrass’ area of research was
no doubt perceived as more in the mainstream. Indicative of this is the fact that
Lazarus Fuchs (1833–1902), who had received his doctorate under Kummer’s

6In 1875 Frobenius published a paper [176] that was an outgrowth of the work he had done on the
prize problem.
7The occasion was a proposal to the Prussian minister of culture of a new associate professorship
in mathematics, with Frobenius as the choice to fill the new position. The entire document is given
by Biermann [22, pp. 189ff.]; the quotation below is from pp. 190–191.
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direction in 1858, created quite a stir in Berlin in the period 1865–1868, when, after
attending Weierstrass’ lectures on abelian integrals and functions in 1863, he had
applied Weierstrass’ treatment of algebraic differential equations to an important
class of linear homogeneous differential equations, thereby displaying the capacity
for independent mathematical research needed to be habilitated as an instructor
(Privatdozent) at the university. Eventually, Frobenius was drawn into the enterprise
of developing Fuchs’ theory, but not until after he had completed his doctoral
dissertation and received his doctorate.

The subject of Frobenius’ dissertation appears to have been of his own devising.
Its starting point was the Cauchy integral formula

f (z) =
1

2π i

∫

Cρ

f (w)
w− z

dw.

For f analytic in a suitable region including the circle Cρ defined by |w|= ρ , it was
well known that the integral formula could be used to derive the Laurent expansion
of f by expanding the kernel 1

w−z in a geometric series and integrating f (w)
w−z term

by term. Frobenius’ idea was to consider other expansions of this kernel, suitably
chosen so that term-by-term integration of the uniformly convergent expansion
would yield series expansions for f (z) of the form∑cnFn(z) with the coefficients cn

given by integrals analogous to those that occur in the Laurent expansion. Frobenius’
dissertation revealed a mathematician with a broad knowledge of complex analysis
and the related theory of hypergeometric series and differential equations combined
with an extraordinary ability to manipulate complicated analytical expressions so as
to achieve interesting, original, and conclusive results, although these results were
not really part of the mainstream mathematics of his day.8

Frobenius officially obtained his doctorate on 28 July 1870, and he had clearly
impressed the Berlin faculty.9 Weierstrass described his dissertation as “a first-rate
work,” one that was “distinguished by thoroughgoing studies” and “outstanding”
in its form of presentation. It left Weierstrass convinced that its author “possesses
a definite talent for independent research.” Frobenius’ oral doctoral examination
(on 23 June 1870) was equally impressive. According to the records, Weierstrass
asked the candidate questions on the theory of abelian functions and integrals and
their theoretical basis in complex function theory—material that was central to
Weierstrass’ cycle of lectures at the university—and Frobenius showed himself to
be “completely familiar with this difficult theory”— and was even able to present
with detailed exactitude both complicated proofs and derivations, much to the
satisfaction of the examining committee. Kummer then took over the questioning,

8A good description of Frobenius’ impressive results can be found in Meyer Hamburger’s review
[259] of the German version of the Latin dissertation that Frobenius published three months later
[172].
9See [22, p. 85], where the quotations below about Frobenius’ dissertation and doctoral examina-
tion are given in the original German.
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which covered questions about the application of the theory of elliptic functions
in number theory and mechanics and ended with some questions about geometric
problems. Here too the committee found the candidate well informed throughout.
Unlike a typical mathematics doctoral candidate nowadays, Frobenius was also
questioned in philosophy (by Harms) and physics (by Dove). He was judged to
have a “deep and thorough” understanding of Kant’s Critique of Pure Reason and to
have satisfactorily answered Dove’s questions relating to phenomena in the theory
of heat. His overall performance earned him a pass summa cum laude.

A doctoral candidate had to submit three theses, one of which he would be
asked to defend at his oral doctoral examination. Frobenius’ three theses [171,
p. 34] were (in English translation from the Latin10): “(1) Kant did not support
his thesis concerning time and space by sufficiently weighty arguments; (2) The
theory of definite integrals ought to precede the treatment of differential calculus;
(3) It is better for the elements of higher analysis to be taught in the schools than
the elements of the more recent synthetic geometry.” Judging by the committee’s
remarks about Frobenius’ understanding of Kant’s Critique of Pure Reason, it would
seem that the committee chose the first thesis. The other two theses are of interest
because they were essentially pedagogical in nature. They indicate Frobenius’ early
concern for the teaching of mathematics—what should be taught and how it should
be presented. As we shall see, Frobenius proved to be an excellent teacher, and his
creative mathematical work was always characterized by a concern for a clear and
rigorous presentation in a form he deemed the most appropriate. These pedagogical
tendencies of his mathematical output were probably reinforced by his exposure to
Weierstrass’ lectures. I believe they were one of the reasons why Frobenius’ work
proved to be influential.

1.2 Postdoctoral Years: 1870–1874

After obtaining his doctorate, as was the custom, Frobenius took, and passed, the
examination required to become a secondary school teacher.11 He also received an
invitation from the University of Freiburg to habilitate there so as to become an in-
structor. To become an instructor, a further published proof of independent original
mathematical work—called a Habilitationsschrift—was required. Undoubtedly on
the basis of a glowing report from Weierstrass, Freiburg was offering him a generous
remuneration and the promise of rapid advancement; but Frobenius declined the
offer due to family matters. Instead, he spent a probationary year teaching at the
Joachimstalische Gymnasium in Berlin, where he had himself studied, and he
proved to be an excellent high-school teacher. An experienced schoolmaster who
carefully observed him during that year reported that he possessed an unmistakable

10I am grateful to my colleague Dan Weiner for supplying the translations.
11The information in this paragraph is drawn from a document published by Biermann [22, p. 191].
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inborn pedagogical talent. Having thus passed his probationary year with great
success, he was given a regular teaching position at another high school in Berlin
(the Sophienrealschule).

Despite his teaching duties, Frobenius sought to pursue a career as a mathe-
matician. As a first step, within three months of passing his doctoral examination,
he submitted a German language version of his dissertation to Crelle’s Journal
[172]. That it was accepted for publication was certainly due to the influence of
Weierstrass, who praised the dissertation for its “many new ideas and results” [22,
p. 191]. Still, the dissertation topic was not part of mainstream mathematics; it
was something of a mathematical dead end. Frobenius seemed to realize this, for
he never returned to the subject. Instead, he turned to a subject that had recently
become of considerable interest in Berlin due to the work of Lazarus Fuchs (1833–
1902) mentioned above: the application of the new complex function theory to the
study of linear differential equations.

Stimulated by the landmark papers of Gauss (1812) and Riemann [495] on
the hypergeometric differential equation, Fuchs combined Weierstrassian power
series techniques and Weierstrass’ theory of algebraic differential equations with
the monodromy method introduced by Riemann to study, in groundbreaking papers
of 1865–1868, linear homogeneous differential equations.12 Fuchs had initially
published his results in 1865, in the proceedings of the Gewerbeschule [236] (later
to become the Berlin Technical Institute), where he was teaching. Weierstrass was
impressed with Fuchs’ results, seeing in them proof of the latter’s capability for
independent, original mathematical work [22, p. 94]. As a result, in 1866, Fuchs
was appointed as an instructor at the university, his 1865 paper [236], with a version
published in Crelle’s Journal in 1866 [237], serving as Habilitationsschrift. He
remained in that position until 1868 (the year after Frobenius arrived in Berlin),
when he left for a professorship at the University of Greifswald. The instructorship
vacated by Fuchs was filled by L. Wilhelm Thomé (1841–1910), who had received
his doctorate under Weierstrass’ direction in 1865.13 Thomé was regarded an “an
indispensable replacement for Fuchs” [22, p. 95], and in 1870, he was made an
assistant professor. Thomé was indeed a replacement for Fuchs, since beginning in
1872, he began publishing papers related to Fuchs’ theory and its generalization.
Frobenius was familiar with the work of Fuchs and Thomé, and it was to Fuchs’
theory that he decided to turn for a new direction in research.

Fuchs had studied linear differential equations of the form

L(y) = y(n) + q1(z)y
(n−1) + · · ·+ qn(z)y = 0, (1.1)

12In discussing Fuchs’ work, as well as the related work of Frobenius, I have drawn upon Gray’s
more definitive account [255, Chs. II–III].
13Thomé should not be confused with Carl Johannes Thomae (1840–1921), who also worked in
complex function theory but had received his doctorate from Göttingen in 1864 and then spent two
semesters attending Weierstrass’ lectures in Berlin before becoming an instructor in Göttingen in
1866. In 1874 he became a full professor at the University of Freiburg, where he spent the rest of
his career.
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where y(k) = dky/dzk, and the coefficient functions qi(z) are meromorphic in a
simply connected region of the complex plane and have at most a finite number
of poles there. Thus the total number of singular points of the coefficients is
finite. As Fuchs showed, the singular points of the coefficient functions are the
only possible points of singularity of the solutions. One of his main achievements
was to characterize those equations (1.1) with the property that in a neighborhood
of a singular point z = a of the coefficients, all solutions, when multiplied by
(z− a)ρ , for some complex number ρ , remain bounded. These later became known
as linear differential equations of the Fuchsian class. Fuchs was able to establish a
fundamental set of solutions in a neighborhood of such a singular point.

Fuchs made an observation in his paper [237, §6] that seems to have piqued
Frobenius’ interest in his theory. Fuchs observed that due to earlier work of Puiseux,
it followed that the class of linear homogeneous differential equations all of whose
solutions are algebraic was contained within the class of differential equations he
had studied. Although Fuchs did not mention it, his observation suggested the
problem of characterizing those differential equations of the Fuchsian class for
which all solutions are algebraic functions. By 1871, Frobenius was thinking about
this problem [173, p. 65]. One reason may have been due to work of Kummer’s
former student H.A. Schwarz (Ph.D., 1864), who since 1869 was a professor at the
Zurich Polytechnic (now the Eidgenössische Technische Hochschule Zürich). In
August 1871, Schwarz announced that he had solved the problem of determining
the hypergeometric differential equations for which all solutions are algebraic
functions. The solution involved some beautiful mathematics, and Weierstrass and
his circle in Berlin were no doubt discussing Schwarz’s work.14 The hypergeometric
equations were special second-order equations of the Fuchsian class.

Schwarz’s work may have encouraged Frobenius to think about the analogous
but far more formidable problem for nth-order equations of Fuchsian type. I believe
this general problem appealed to him because he found it analogous to the problem
solved by Galois in his “Memoir on the conditions for solvability of equations by
radicals” [239]: characterize those polynomial equations f (x) = 0 that can be solved
“algebraically,” i.e., by means of radicals. The problem implied by Fuchs’ paper was
to characterize those linear differential equations L(y) = y(n) + q1(z)y(n−1) + · · ·+
qn(z)y = 0 that can be integrated algebraically (as Frobenius later put it [177]) in
the sense that all solutions are algebraic functions. Such differential equations even
resembled polynomials with the kth powers xk of the unknown being replaced by
a kth derivative y(k) of the unknown function y. And the problem of characterizing
the algebraically integrable ones seems analogous to the problem solved by Galois,
namely to characterize those polynomial equations that are algebraically solvable in
the sense of solvable by radicals.

It was natural for Frobenius, an algebraist at heart, but a student of Weierstrass as
well, to look to Galois’ theory for function-theoretic analogues of what he regarded
as the most important elements of Galois work—the theory of the Galois group

14For an account of Schwarz’s work see [255, pp. 70–77].
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associated to a polynomial and the concept of the irreducibility of a polynomial
(with respect to a field of known coefficients) [172, p. 65]—in order to deal with the
problem of characterizing algebraically integrable equations L(y) = 0. Frobenius
and—independently and quite differently—Sophus Lie were among the earliest
mathematicians to consider how to apply Galois’ ideas to differential equations.15

The starting point of the theory of groups in Galois’ work was his construction
of what later became known as a Galois resolvent V associated to a polynomial
f (x) of degree n with “known” coefficients and no multiple roots. Expressed using
modern terminology, the assumption is that f (x) ∈K[x], where K⊃Q is the field
of “known quantities.” Let a1, . . . ,an denote the roots of f (x) and L=K(a1, . . . ,an)
the associated splitting field. Galois began by sketching a proof that constants
c1, . . . ,cn can be chosen from K in various ways, including as integers, such that
V = c1a1+ · · ·+cnan takes on n! distinct numerical values when the roots a1, . . . ,an

are subjected to all n! possible permutations. Using this property of V , he was able
to show that every root of f (x) is a rational function of V with known coefficients,
i.e., as we would put it, L=K(V ). Galois used V to define a set G of permutations
of the roots a1, . . . ,an defining what he called the “group of the equation f (x) = 0.”
This group corresponds to the Galois group in the modern sense, although Galois’
definition of it was complicated.16

Getting back to Frobenius, he realized that Galois’ construction of the Galois
resolvent V could be extended to the context of the above-mentioned problem
suggested by Fuchs’ paper. That is, if L(y) = 0 is a differential equation of the
Fuchsian class with singular point z = a ∈ C and if all its solutions are algebraic
functions of z, then, Frobenius realized, this means that a polynomial in y,

f (y,z) = am(z)y
m + · · ·+ a1(z)y+ a0(z), (1.2)

of degree m ≥ n, n the order of L(y) = 0, exists with rational functions ak(z)
as coefficients such that in accordance with Weierstrass’ theory, the m roots
yk(z) defined locally by power series in z − a and satisfying f (yk(z),z) = 0 in
a neighborhood of z = a are all solutions to L(y) = 0; furthermore, n of these

15Regarding Lie, see [276, Ch. 1]. For an accessible exposition of the modern approach to applying
Galois’ ideas to the theory of differential equations of the Fuchsian class, see [377].
16Let g(x) ∈ K[x] denote the minimal polynomial of V with m = degg(x). Then since
K(a1, . . . ,an) =K[V ], each root ai of f (x) is uniquely expressible as a polynomial in V , ai = φi(V ),
where φ (x)∈K[x] has degree at most m−1. If V ′,V ′′, . . .,V (m−1) are the other roots of the minimal
polynomial g(x), then G consists of m permutations σ1, . . .,σm of a1, . . . ,an with σk the mapping
that takes the root ai = φi(V ) to φi(V (k)), which is also a root ai′ of f (x), so σk : ai → ai′ for
i = 1, . . . ,n and k = 0, . . . ,m−1. In the nineteenth century, permutations in the sense of mappings
of a finite set of symbols were called “substitutions.” In the example at hand, σk substituted the
arrangement (or permutation) a1′ , . . .,an′ for the original arrangement a1, . . . ,an. Readers interested
in a more detailed and historically accurate portrayal of Galois’ ideas, including a detailed working
out of Galois’ sketchy remarks about the construction and properties of V , should consult Edwards’
lucid exposition of Galois’ memoir [148], which includes as appendix an annotated English
translation of the memoir.


