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To all of those families who are suffering from tandem repeat expansion disorders

DEDICATION
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PREFACE

Tandem repeats of DNA sequences provide a unique and abundant source of genomic 
variability and recent evidence suggests they can modulate a range of biological processes 
in a wide variety of different species. These classes of repetitive DNA are variously 
referred to as simple sequence repeats, satellite DNA (microsatellites, minisatellites and 
satellites) or variable number tandem repeats. A key aspect of tandem repeats is that 
they represent highly polymorphic and uniquely mutable genomic components which 
can (depending on their sequence, length and location) affect the structure and function 
of DNA, RNA and protein. 

This book addresses the role of tandem repeat polymorphisms (TRPs) in genetic 
plasticity, evolution, development, biological processes, neural diversity, brain function, 
dysfunction and disease. There are hundreds of thousands of unique tandem repeats in the 
human genome and their polymorphic distributions have the potential to greatly influence 
functional diversity and disease susceptibility. Recent discoveries in this expanding field 
are critically reviewed and discussed in a range of subsequent chapters, with a focus 
on the role of TRPs and their various gene products in evolution, development, diverse 
molecular and cellular processes, brain function and disease.

In the first chapter, I introduce these broad themes. This includes discussion of the 
specific proposal that TRPs could help solve the conundrum of ‘missing heritability’ 
produced by genome-wide association studies of various polygenic complex diseases 
which have only examined single nucleotide polymorphisms (SNPs). Subsequent chapters 
focus on key aspects of TRPs in health and disease. In the second chapter, David King 
shares his ideas regarding the role of simple sequence repeats in evolution, and provides 
a detailed discussion of repeat sequences as mutable sites providing genetic variability 
upon which natural selection can act. This theme is then extended by Noel Faux, who 
uses bioinformatic analyses of trinucleotide repeats encoding homopeptides to explore 
both the evolution and function of a wide variety of amino acid repeats located in diverse 
proteins across the phylogenetic spectrum. This bioinformatic exploration of the role of 
TRPs in normal biological functions is then extended by Sterling Sawaya and colleagues, 
who discuss evidence for the role of promoter microsatellites in modulating the expression 
of various human genes.
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Expansions in tandem repeats (‘dynamic mutations’) are known to cause many 
disorders, which mainly affect the nervous system, including Huntington’s disease (the 
most common polyglutamine disorder), spinocerebellar ataxias, Kennedy’s disease 
(spinobulbar muscular atrophy), dentatorubral-pallidoluysian atrophy, Friedreich ataxia, 
polyalanine disorders, fragile X syndrome and related disorders. Robert Richards, who 
helped coin the term dynamic mutations, and his colleague Clare van Eyk, have provided 
an overview of this large and clinically significant area of research. Whilst the plasticity 
of these tandem repeats occurs at the DNA level, evidence for both ‘gain of function’ 
and ‘loss of function’ pathogenic effects of repeat expansions (‘genetic stutters’) at RNA 
and protein levels is discussed using specific examples of these monogenic disorders. 

Danuta Loesch and Randi Hagerman review the exciting field that has evolved around 
the FMR1 gene, originally discovered due to its hosting of the large expansion of a 5’UTR 
trinucleotide (CGG) repeat which causes fragile X syndrome. Smaller ‘premutation’ 
repeat lengths have recently been shown by Hagerman and colleagues to cause fragile X 
tremor-ataxia syndrome (FXTAS), as well as contributing to other disorders. The focus 
then shifts to protein-coding trinucleotide repeats, with complementary chapters from 
Amy Robertson and Stephen Bottomley, as well as Saski Polling, Andrew Hill and Danny 
Hatters, exploring the biochemistry of expanded polyglutamine tracts and their roles in 
at least nine autosomal dominant neurodegenerative disorders. As Huntington’s disease 
(HD), which was first described by George Huntington in 1872 and genetically mapped 
over a century later, is the most common of these so-called polyglutamine disorders it 
has been most intensively researched. Henry Waldvogel and colleagues review data on 
the neuropathology and related symptomatology of HD, linking molecular and cellular 
aspects to pathogenesis at the systems level. Another extraordinary polyglutamine disorder 
is Kennedy’s disease (also known as spinobulbar muscular atrophy or SBMA). Jeffrey 
Zajac and Mark Tang discuss how polyglutamine polymorphism in the androgen receptor 
not only causes SBMA, but can contribute to other complex disorders via modulation 
of this sex hormone signaling system. A different neurodegenerative disease caused 
by a non-coding tandem repeat expansion is Friedreich ataxia. Corben and colleagues 
discuss how homozygosity of a GAA repeat expansion in an intron of the frataxin gene 
leads to downregulated expression and consequent neuropathology, motor and cognitive 
symptoms. In the final chapter, a unique group of disorders involving trinucleotide repeat 
expansions encoding polyalanine tracts, are reviewed by Cheryl Shoubridge and Jozef 
Gecz, providing insights into how expanded polyalanine in specific proteins leads to 
developmental abnormalities and neurocognitive dysfunction.

It is hoped that this book will help the reader to grasp the significance of TRPs in 
evolution, development, brain function and a variety of major clinical disorders. As 
we begin a new genetic revolution powered by next-generation sequencing, expanding 
knowledge of tandem repeats and their polymorphic variants will no doubt continue to 
enhance our understanding of genetic plasticity, neural diversity and disease.

Anthony J. Hannan, PhD 
Florey Neuroscience Institute,  

Melbourne Brain Centre  
University of Melbourne  

Parkville, Victoria, Australia
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CHAPTER 1

TANDEM REPEAT POLYMORPHISMS 
Mediators of Genetic Plasticity, Modulators of Biological 
Diversity and Dynamic Sources of Disease Susceptibility

Anthony J. Hannan
Florey Neuroscience Institutes, Melbourne Brain Centre, University of Melbourne, Parkville, Australia 

Abstract: Tandem repetitive DNA elements (tandem repeats), including microsatellites and 
simple sequence repeats, are extremely common throughout the genomes of a wide 
range of species. Tandem repeat expansions have been found to cause a range 
of monogenic diseases, such as Huntington’s disease, various ataxias and other 
neurological diseases. The human genome contains hundreds of thousands of distinct 

gene expression, RNA function and protein function. Tandem repeat polymorphisms 
(TRPs) provide a unique source of genetic variability that has an extended digital 
distribution, as opposed to the usual binary nature of single nucleotide polymorphisms. 
In this chapter I will review studies in which tandem repeats have been implicated 
in a multitude of molecular and cellular processes associated with the development, 
behavior and evolution of a variety of animal species, including mammals. Recent 
data suggesting that these repetitive sequences can increase the ‘evolvability’ of 
genomes provides further evidence that TRPs not only have functional consequences 
but also provide a rich source of genetic diversity that can facilitate evolutionary 
processes. I propose that a readily mutable subclass of tandem repeats may provide 
an important template for stochastic genetic variation, which could in turn generate 
diversity in epigenetics, development and organismal function, thus impacting upon 
evolution. Furthermore, the distinctive characteristics of TRPs also uniquely position 
them as contributors to complex polygenic disorders. Ultimately, there is much to 

tandem repeats and other repetitive DNA in a genome, as well as their transcribed 
and translated expression products. Applying such approaches not only to the human 
genome but to other species will yield new insights into the genetic regulation of a 
wide range of biological processes in healthy and diseased states.

Tandem Repeat Polymorphisms: Genetic Plasticity, Neural Diversity and Disease,  
edited by Anthony J. Hannan ©2012 Landes Bioscience and Springer Science+Business Media.
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INTRODUCTION

DNA sequencing technologies have led to a recent revolution in our understanding 
of the human genome, as well as the genomes of other animals and many other species. 
Tandemly repeated DNA sequences, or tandem repeats, are increasingly being recognized 
as much more than ‘genetic stutters’, but rather key structural and functional elements 
of the human genome, as well as the genomes of other species.1-4 The term tandem 
repeats encompasses satellite DNA (including minisatellites and microsatellites), 
simple sequence repeats (SSRs), as well as variable number tandem repeats (VNTRs). 
Tandem repeats are found commonly in exons, as well as introns and intergenic 
regions. Whilst the function of tandem repeats has only been explored in a relatively 
small number of genes, their abundance and locations suggest potentially widespread 
roles in the modulation of gene expression, RNA function, protein function and other 
molecular processes.1,5-10 Furthermore, tandem repeats located in transcribed regions of 
the genome, which may constitute a large proportion of the human genome11 have the 
capacity to alter the structure and function of both coding and noncoding RNA species. 
Those tandem repeats located in coding regions (and encoding amino acid repeats via 
trinucleotides, hexanucleotides, etc.) have additional potential roles in modulating the 
structure and function of the encoded proteins.

The importance of tandem repeats can be recognized in a number of different 
domains. The high degree of polymorphism in tandem repeats may confer a capacity to 
act as ‘tuning knobs’ for evolutionary processes.1-6,12 This capacity derives from the fact 
that tandem repeats are far more mutable than single nucleotides, meaning that tandem 
repeat polymorphisms (TRPs) can have an extended digital distribution2 as opposed 
to the binary possibilities presented by individual single nucleotide polymorphisms 
(SNPs). The mutability of tandem repeats has been proposed to add variability to 
brain development and function, thus providing a more dynamic template upon which 
natural selection may act.1

The capacity to compare the genomes of different individuals of a species has not 
only revealed high levels of conservation of many genes and intergenic regions, but 
also the extent of polymorphism.13 While much attention has been focused on SNPs, 
recent studies have revealed other important polymorphic DNA sequences, including 
TRPs2 and copy number variants (CNVs).14

EXPANSION OF TANDEM REPEATS IN RARE MONOGENIC DISORDERS 
WITH MENDELIAN INHERITANCE

The term ‘dynamic mutations’ has been used to describe the expansions of tandem 
repeats associated with a variety of diseases exhibiting Mendelian inheritance patterns.15 

dominant and recessive human disorders, including polyglutamine disorders (e.g., 
Huntington’s disease and some spinocerebellar ataxias), Friedreich ataxia, fragile X 
syndrome and myotonic dystrophy.16-18

At least nine diseases with expansions in tracts of CAG repeats encoding 
polyglutamine tracts in different genes have been found to lead to neurodegeneration 
and consequent neurological (and in some cases also psychiatric) symptoms.19-21 The 
recent discovery that spinocerebellar ataxia 8 (SCA8) and Huntington’s disease-like 
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2 (HDL2) might be caused by expression of a CAG/glutamine tract expansion on the 
antisense strand suggests that there may now be at least 11 polyglutamine diseases,22,23 
although the potential roles of RNA toxicity and other nonpolyglutamine pathogenic 
mechanisms in these diseases have not been ruled out.

Huntington’s disease (HD) is the most common of these polyglutamine diseases, 

expansion encoding an extended polyglutamine tract in the huntingtin protein and 
ultimately leading to a triad of cognitive, psychiatric and motor symptoms.24 HD has 
been the most intensely studied polyglutamine disease, leading to major new insights 

areas as well as some peripheral organs.25-27 The other polyglutamine diseases include 
six spinocerebellar ataxias (SCA1,2,3,6,7,17), as well as dentatorubral pallidolysian 
atrophy (DRPLA) and spinal and bulbar muscular atrophy (SBMA).18,28 The potential 
molecular mechanisms whereby abnormally expanded polyglutamine tracts induce 
cellular toxicity are reviewed elsewhere.20,21

A fascinating recent discovery of non-ATG-initiated translation associated with at 
least some tandem repeat expansions,29 has raised unexpected possibilities regarding 

suggests that a single tract of DNA could generate at least two transcripts, seven reading 
frames and ‘potentially nine toxic entities!’.30

proteins and mainly present as abnormalities of development.31,32 These polyalanine 
disorders do not appear to be neurodegenerative, thus setting them apart from those 
diseases caused by expanded polyglutamine, but rather seem to be caused by a disruption 
of the normal function of the polyalanine tracts within the respective proteins.32

Other disorders of tandem repeat expansion include some nonpolyglutamine 
spinocerebellar ataxias, Friedreich ataxia, fragile X syndrome, fragile X tremor-ataxia 
syndrome (FXTAS) and myotonic dystrophy.33-37 These disorders involve tandem repeats 
located in noncoding genomic regions and are therefore associated with abnormal gene 
expression, RNA structure and/or function.18,38-40

Collectively, these tandem repeat expansion disorders constitute a major personal, 
medical and economic burden, and therefore expanding our understanding and 
developing effective therapeutic approaches represents a clinical priority. Each disorder 
may require its own tailored therapeutic strategy, however it could be imagined that a 

wider group of neurodegenerative diseases. Furthermore, the study of these unique 
disorders, involving tandem repeat lengths beyond the normal range, may continue to 
provide insights into why tandem repeats have evolved, both in coding and noncoding 
regions of the human genome, and thus illuminate molecular and cellular processes 
in health and disease.

TANDEM REPEATS AS DYNAMIC MODULATORS OF DEVELOPMENT, 
BRAIN FUNCTION AND BEHAVIOR

Evidence has been provided for tandem repeats encoding homopeptide repeats 
in transcription factors as key regulators of developmental processes and subsequent 
anatomical diversity amongst various breeds of domestic dogs.41 This study and other 
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and cellular processes, including transcriptional regulation.1,7,42-44

Tandem repeats, and their unique polymorphic contributions to genetic plasticity 
have been proposed to contribute to the modulation of brain development and function.1 
Putative roles for tandem repeats in various neurotransmitter and neuromodulatory 
systems, affecting brain development, behavioural modulation as well as affective and 
cognitive function have been recently reviewed.2,16

What is the evidence that tandem repeats are common in genes that are important 
for neural development and function? Firstly, the fact that the vast majority of known 
monogenic tandem repeat expansion disorders affect the nervous system provides indirect 
evidence, with the caveat being that many of those disease genes are also expressed in 
nonneural tissues. Nevertheless, the vulnerability of the nervous system to expansions 
of tandem repeats (both protein coding and noncoding) suggests that these tandem 
repeats may be particularly important in neural processes such as neurodevelopment 
and brain function. Secondly, bioinformatic approaches have indicated that many genes 
hosting tandem repeats are associated with neural functions.1,45 Evidence for tandem 
repeats as modulators of behavioural processes has also been produced. For example, 
a TRP in the vasopressin receptor in prairie voles has been reported to modulate brain 
function and social behaviour.46

One implication of these and other studies is that TRPs could modulate normal 
human development, brain function, cognition and behavior.1 A reasonable starting 
point for testing such a general hypothesis is to examine some of the many genes 
that have been implicated in monogenic human diseases.16 The Huntington’s disease 
(HD) gene, encoding a glutamine repeat in the huntingtin (Htt) protein as discussed 
above, provides one example. In the healthy range (nonHD families) Htt is known 
to have around 5-34 CAG/glutamine repeats. This TRP in Htt is known to be under 
selective pressure during evolution.47 Furthermore, evidence from mice shows that Htt 
is important in development and brain function48,49 and that removal of the CAG repeat 
has functional consequences.50

1 is that 
healthy individuals who are polymorphic for their CAG/glutamine repeat in the Htt gene/
protein will show differences in brain development, structure and function. A corollary 
of this would be that individuals who are ‘gene-positive’ for a CAG-expansion causing 
HD may have abnormal brain development, due to the functional effects of the long 
polyglutamine in Htt, prior to any ‘toxic gain of function’ leading to neurodegenerative 
changes. Consequently, in order to fully understand HD we will need to comprehend 
the role of the polyglutamine tract in the spatiotemporally regulated functions of Htt. 
This could be extended to many more tandem repeats, and their polymorphic variants, 
located in and around neurally expressed genes.

A PROPOSED ROLE FOR TANDEM REPEAT POLYMORPHISMS  
IN COMMON POLYGENIC DISORDERS

Recent genome-wide association (GWA) studies do not fully account for the major 
genetic contributions to common polygenic disorders, and this has led to an active 
search for the ‘missing heritability’.51,52 The evidence for tandem repeat expansions as 
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contributors to monogenic disorders of Mendelian inheritance has been outlined above. 
However, this may represent only a small fraction of tandem repeat contributions to 
human disease. It has been proposed that many common polygenic disorders may involve 
TRPs as major contributors to so-called ‘missing heritability’.2 TRPs could thus play a 
key role in modulating disease susceptibility for a range of common polygenic disorders, 
including various psychiatric and neurological disorders.2 Recent evidence from studies 
of sporadic amyotrophic lateral sclerosis (ALS) supports the importance of TRPs as 
dynamic sources of genetic susceptibility in such complex polygenic diseases.53-55

The vast majority of GWA studies currently involve analysis of SNPs and therefore 
do not assay other major types of polymorphisms, such as TRPs. There are hundreds 
of thousands of distinct TRPs in the human genome, and this represents an extensive 
source of genetic variance possessing a dynamic and unique polymorphic range. SNPs 
are, with very few exceptions, binary in nature, whereas TRPs display extended digital 
distributions (multiallelic genotypes). An individual tandem repeat can thus exhibit 
a large array of polymorphic variants, which in turn extends the potential variety of 
genetic contributions to disease susceptibility.2

GWA studies will increasingly involve analyses of whole genome sequences, via the 
utilisation of next-generation sequencing technologies. It has been proposed that such 
new GWA studies involving whole-genome sequencing evaluate TRPs (using appropriate 
sequencing and bioinformatic protocols), as well as SNPs and other polymorphisms, for 

2 Rapid and 
accurate whole-genome sequencing has the potential to elucidate roles for TRPs in the 
dynamic modulation of biological evolution, development, function and dysfunction. 

as the full set of tandem repeats and other repetitive DNA elements in the genome, 
as well as their transcribed and translated expression products. The repeatome would 
naturally encompass the full extent of TRPs throughout populations of a given species.

TANDEM REPEAT INSTABILITY AS A SOURCE OF CELLULAR 
HETEROGENEITY AND PHENOTYPIC DIVERSITY IN THE DEVELOPING 
AND MATURE ORGANISM

Instability of tandem repeats during meiosis, and consequent variability of repeat 
length between generations, is thought to be responsible for genetic anticipation in 
tandem repeat-expansion disorders such as HD. Meiotic instability of tandem repeat 
length could also contribute to common polygenic disorders, where variability in repeat 
lengths could modulate genetic susceptibility between generations.2 Tandem repeats can 
also potentially change length during mitosis, and the most striking consequences of 
such repeat instability would be expected during development and may allow cellular 

1

One additional potential source of tandem repeat length variability could involve 
postmitotic instability. Evidence for such tandem repeat instability in postmitotic 
neurons has recently been found.56 Postmitotic instability of tandem repeats needs to 
be investigated in detail to establish its full extent, however it is already known that 
repeat instability (involving well described microsatellites) has been implicated in 
some sporadic cancers, which could result from postmitotic repeat length mutations.57
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TANDEM REPEAT POLYMORPHISMS AND EVOLUTION

The abundance and broad distribution of tandem repeats in the human genome 
suggests that these sequences may arise randomly as ‘genetic stutters’ and that evolution 
actively selects for such repetitive DNA sequences.3 Tandem repeats, and simple 
sequence repeats (SSRs) in particular, have been proposed to function as ‘tuning knobs’ 
during evolution.3,12,16

It has been observed that tandem repeat lengths are distributed in a digital manner, 
in contrast to the binary possibilities offered by SNPs; TRPs can thus act as ‘digital 
genetic modulators’ producing a continuously variable array of genotypes.1 Furthermore, 
recent experimental evidence from a yeast model demonstrates that tandem repeats can 

58,59 Tandem repeats could 
thus be mediators of genetic plasticity, providing a diverse and dynamic genomic 
template, and associated phenotypic diversity, upon which natural selection may act.1,12

I propose a further possibility, that TRPs provide a dynamic source of stochastic 

would be analogous to the role of ‘stochastic epigenetic variation’ recently proposed by 
Feinberg and Irizarry.60

variation might mediate phenotypic variability, without altering the mean phenotype, 

a population exposed to a changing environment.60 These two hypotheses may in fact 
be interconnected, as evidence from repeat expansion disorders indicates that tandem 
repeats can modulate epigenetic processes, including chromatin remodelling.34,39

CONCLUSION

Tandem repeats are being increasingly recognised as a major potential source of 
genetic plasticity and associated cellular and organismal diversity, in humans and many 
other species.1,3,61 Tandem repeat instability may mediate genomic plasticity and somatic 
variation, thus enhancing diversity at cellular, tissue and systems levels.1 Tandem repeat 
length instability, occurring either meiotically, mitotically or postmitotically, thus has 
the capacity to mediate functional diversity at molecular, cellular, physiological and 
behavioural levels.

Technical and bioinformatic challenges need to be met to facilitate thorough 
analyses of tandem repeats and their polymorphic variants at a whole genome level.62 
Understanding genetic plasticity involving other types of repetitive DNA, such as 

63 will also be a priority. These approaches promise to shed 
new light on the genetic regulation of developmental, physiological and evolutionary 
processes. Furthermore, systematic characterisation of the ‘human repeatome’ may 
provide fundamental new insights into the genetic basis of disease.
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