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Preface

In parallel to the much-quoted enduring increase of processing power, we can

notice that that the effectiveness of the computer vision algorithms themselves is

enhanced steadily. As a consequence, more and more real-world problems can be

tackled by computer vision. Apart from their traditional utilization in industrial

applications, progress in the field of object recognition and tracking, 3D scene

reconstruction, biometrics, etc. leads to a wide-spread usage of computer vision

algorithms in applications such as access control, surveillance systems, advanced

driver assistance systems, or virtual reality systems, just to name a few.

If someone wants to study this exciting and rapidly developing field of computer

vision, he or she probably will observe that many publications primarily focus on

the vision algorithms themselves, i.e. their main ideas, their derivation, their

performance compared to alternative approaches, and so on.

Compared to that, many contributions place less weight on the rather “technical”

issue of the methods of optimization these algorithms employ. However, this does

not come up to the actual importance optimization plays in the field of computer

vision. First, the vast majority of computer vision algorithms utilize some form of

optimization scheme as the task often is to find a solution which is “best” in some

respect. Second, the choice of the optimization method seriously affects the perfor-

mance of the overall method, in terms of accuracy/quality of the solution as well as

in terms of runtime. Reason enough for taking a closer look at the field of

optimization.

This book is intended for persons being about to familiarize themselves with the

field of computer vision as well as for practitioners seeking for knowledge how to

implement a certain method. With existing literature, I feel that there are the

following shortcomings for those groups of persons:

• The original articles of the computer vision algorithms themselves often don’t

spend much room on the kind of optimization scheme they employ (as it is

assumed that readers already are familiar with it) and often confine themselves at

reporting the impact of optimization on the performance.
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• General-purpose optimization books give a good overview, but of course lack in

relation to computer vision and its specific requirements.

• Dedicated literature dealing with optimization methods used in computer vision

often focusses on a specific topic, like graph cuts, etc.

In contrast to that, this book aims at

• Giving a comprehensive overview of a large variety of topics of relevance in

computer vision-related optimization. The included material ranges from classi-

cal iterative multidimensional optimization to up-to-date topics like graph cuts

or GPU-suited total variation-based optimization.

• Bridging the gap between the computer vision applications and the optimization

methods being employed.

• Facilitating understanding by focusing on the main ideas and giving (hopefully)

clearly written and easy to follow explanations.

• Supplying detailed information how to implement a certain method, such as

pseudocode implementations, which are included for most of the methods.

As the main purpose of this book is to introduce into the field of optimization, the

content is roughly structured according to a classification of optimization methods

(i.e. continuous, variational, and discrete optimization). In order to intensify the

understanding of these methods, one or more important example applications in

computer vision are presented directly after the corresponding optimization

method, such that the reader can immediately learn more about the utilization of

the optimization method at hand in computer vision. As a side effect, the reader is

introduced into many methods and concepts commonly used in computer vision

as well.

Besides hopefully giving easy to follow explanations, the understanding is

intended to be facilitated by regarding each method from multiple points of view.

Flowcharts should help to get an overview of the proceeding at a coarse level,

whereas pseudocode implementations ought to give more detailed insights. Please

note, however, that both of them might slightly deviate from the actual implemen-

tation of a method in some details for clarity reasons.

To my best knowledge, there does not exist an alternative publication which

unifies all of these points. With this material at hand, the interested reader hopefully

finds easy to follow information in order to enlarge his knowledge and develop a

solid basis of understanding of the field.

Dachau Marco Alexander Treiber

March 2013
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Chapter 1

Introduction

Abstract The vast majority of computer vision algorithms use some form of

optimization, as they intend to find some solution which is “best” according to

some criterion. Consequently, the field of optimization is worth studying for

everyone being seriously interested in computer vision. In this chapter, some

expressions being of widespread use in literature dealing with optimization are

clarified first. Furthermore, a classification framework is presented, which intends

to categorize optimization methods into the four categories continuous, discrete,

combinatorial, and variational, according to the nature of the set from which they

select their solution. This categorization helps to obtain an overview of the topic

and serves as a basis for the structure of the remaining chapters at the same time.

Additionally, some concepts being quite common in optimization and therefore

being used in diverse applications are presented. Especially to mention are

so-called energy functionals measuring the quality of a particular solution by

calculating a quantity called “energy”, graphs, and last but not least Markov

Random Fields.

1.1 Characteristics of Optimization Problems

Optimization plays an important role in computer vision, because many computer

vision algorithms employ an optimization step at some point of their proceeding.

Before taking a closer look at the diverse optimization methods and their utilization

in computer vision, let’s first clarify the concept of optimization. Intuitively, in

optimization we have to find a solution for a given problem which is “best” in the

sense of a certain criterion.

Consider a satnav system, for example: here the satnav has to find the “best”

route to a destination location. In order to rate alternative solutions and eventually

find out which solution is “best,” a suitable criterion has to be applied. A reasonable

criterion could be the length of the routes. We then would expect the optimization

algorithm to select the route of shortest length as a solution. Observe, however, that

M.A. Treiber, Optimization for Computer Vision: An Introduction to Core Concepts
and Methods, Advances in Computer Vision and Pattern Recognition,

DOI 10.1007/978-1-4471-5283-5_1, © Springer-Verlag London 2013
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other criteria are possible, which might lead to different “optimal” solutions, e.g.,

the time it takes to travel the route leading to the fastest route as a solution.

Mathematically speaking, optimization can be described as follows: Given a

function f : S ! R which is called the objective function, find the argument x�

which minimizes f :

x� ¼ arg min
x2S

f ðxÞ (1.1)

S defines the so-called solution set, which is the set of all possible solutions for

our optimization problem. Sometimes, the unknown(s) x are referred to design
variables. The function f describes the optimization criterion, i.e., enables us to

calculate a quantity which indicates the “goodness” of a particular x.
In the satnav example, S is composed of the roads, streets, motorways, etc.,

stored in the database of the system, x� is the route the system has to find, and the

optimization criterion f ðxÞ (which measures the optimality of a possible solution)

could calculate the travel time or distance to the destination (or a combination of

both), depending on our preferences.

Sometimes there also exist one or more additional constraints which the solution

x� has to satisfy. In that case we talk about constrained optimization (opposed to

unconstrained optimization if no such constraint exists). Referring to the satnav

example, constraints could be that the route has to pass through a certain location or

that we don’t want to use toll roads.

As a summary, an optimization problem has the following “components”:

• One or more design variables x for which a solution has to be found

• An objective function f ðxÞ describing the optimization criterion

• A solution set S specifying the set of possible solutions x
• (optional) One or more constraints on x

In order to be of practical use, an optimization algorithm has to find a solution in

a reasonable amount of time with reasonable accuracy. Apart from the performance

of the algorithm employed, this also depends on the problem at hand itself. If we

can hope for a numerical solution, we say that the problem is well-posed. For
assessing whether an optimization problem can be solved numerically with reason-

able accuracy, the French mathematician Hadamard established several conditions

which have to be fulfilled for well-posed problems:

1. A solution exists.

2. There is only one solution to the problem, i.e., the solution is unique.
3. The relationship between the solution and the initial conditions is such that small

perturbations of the initial conditions result in only small variations of x�.

If one or more of these conditions is not fulfilled, the problem is said to be

ill-posed. If condition (3) is not fulfilled, we also speak of ill-conditioned problems.

Observe that in computer vision, we often have to solve so-called inverse

problems. Consider the relationship y ¼ TðxÞ , for example. Given some kind of
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observed data y , the inverse problem would be the task to infer a different data

representation x from y . The two representations are related via some kind of

transformation T. In order to infer x from y directly, we need to know the inverse of

T, which explains the name. Please note that this inverse might not exist or could be

ambiguous. Hence, inverse problems often are ill-posed problems.

An example of an inverse problem in computer vision is the task of image

restoration. Usually, the observed image I is corrupted by noise, defocus, or motion

blur. I x; yð Þ is related to the uncorrupted data R by I ¼ TðRÞ þ n, where T could

represent some kind of blur (e.g., defocus or motion) andndenotes an additive noise

term. Image restoration tries to calculate an estimate ofR (termed R̂ in the following)
from the sensed image I.

A way out of the dilemma of ill-posedness here is to turn the ill-posed problem

into a well-posed optimization problem. This can be done by the definition of a

so-called energy E, which measures the “goodness” of R̂ being an estimation of R.

Obviously, E should measure the data fidelity of R̂ to I and should be small if R̂
doesn’t deviate much from I, because usually R is closely related to I. Additional
(a priori) knowledge helps to ensure that the optimization problem is well-posed,

e.g., we can suppose that the variance of R̂ should be as small as possible (because

many images contain rather large regions of uniform or slowly varying bright-

ness/color).

In general, the usage of optimization methods in computer vision offers a variety

of advantages; among others there are in particular to mention:

• Optimization provides a suitable way of dealing with noise and other sources of

corruption.

• The optimization framework enables us to clearly separate between problem

formulation (design of the objective function) and finding the solution

(employing a suitable algorithm for finding the minimum of the objective

function).

• The design of the objective function provides a natural way to incorporate

multiple source of information, e.g., by adding multiple terms to the energy

function E, each of them capturing a different aspect of the problem.

1.2 Categorization of Optimization Problems

Optimization methods are widely used in numerous computer vision applications of

quite diverse nature. As a consequence, the optimization methods which are best

suited for a certain application are of quite different nature themselves. However,

the optimization methods can be categorized according to their properties. One

popular categorization is according to the nature of the solution set S (see e.g. [7]),
which will be detailed below.

1.2 Categorization of Optimization Problems 3



1.2.1 Continuous Optimization

We talk about continuous optimization if the solution set S is a continuous subset of
Rn. Typically, this can be a bounded region ofRn, such as a subpixel position x; y½ � in
a camera image (which is bounded by the image width W and height H : x; y½ �
2 0; . . . ;W � 1½ � � 0; . . . ;H � 1½ �Þ or an m-dimensional subspace of Rn where m
(e.g., a two-dimensional surface of a three-dimensional space – the surface of an

object). Here, the bounds or the subspace concept acts as constraints, and these are

two examples why continuous optimization methods often have to consider

constraints.

A representative application of continuous optimization is regression, where
observed data shall be approximated by functional relationship. Consider the

problem of finding a line that fits to some measured data points xi; yi½ � in a

two-dimensional space (see Fig. 1.1). The line l to be found can be expressed

through the functional relationship l : y ¼ mxþ t. Hence, the problem is to find the

parameters m and t of the function. A criterion for the goodness of a particular fit is

how close the measured data points are located with respect to the line. Hence, a

natural choice for the objective function is a measure of the overall squared

distance:

fl xð Þ ¼
X

i

yi � m � xi þ tð Þj j2

Continuous optimization methods directly operate on the objective function and

intend to find its minimum numerically. Typically, the objective function f xð Þ is

multidimensional where x 2 Rn with n > 1. As a consequence, the methods often

are of iterative nature, where a one-dimensional minimum search along a certain

search direction is performed iteratively: starting at an initial solutionxi�1, each step

i first determines the search direction ai and then performs a one-dimensional

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

Fig. 1.1 Depicting a set of data points (blue squares) and the linear regression line (bold red line)
minimizing the total sum of squared errors
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optimization of f xð Þ along ai yielding an updated solution xi. The next step repeats

this proceeding until convergence is achieved.

A further categorization of continuous optimization methods can be done

according to the knowledge of f xð Þwhich is taken into account during optimization:

some methods only use knowledge of f xð Þ, some additionally utilize knowledge of

its first derivativerf xð Þ (gradient), and some also make use of its second derivative,

i.e., the Hessian matrix H f xð Þ; xð Þ.

1.2.2 Discrete Optimization

Discrete optimization deals with problems where the elements of the solution set S
take discrete values, e.g., S � Zn ¼ i1; i2; . . . ; inf g; in 2 Z.

Usually, discrete optimization problems are NP-hard to solve, which, informally

speaking, in essence states that there is no known algorithm which finds the correct

solution in polynomial time. Therefore, execution times soon become infeasible as

the size of the problem (the number of unknowns) grows.

As a consequence, many discrete optimization methods aim at finding approximate

solutions, which can often be proven to be located within some reasonable bounds to

the “true” optimum. These methods are often compared in terms of the quality of the

solution they provide, i.e., how close the approximate solution gets to the “true”

optimal solution. This is in contrast to continuous optimization problems, which aim

at optimizing their rate of convergence to local minima of the objective function.

In practice it turns out that the fact that the solution can only take discrete values,

which acts as an additional constraint, often complicates matters when we effi-

ciently want to find a solution. Therefore, a technique called relaxation can be

applied, where the discrete problem is transformed into its continuous version: The

objective function remains unchanged, but now the solution can take continuous

values, e.g., by replacing Sd � Zn with Sc � Rn, i.e., the (additional) constraint that

the solution has to take discrete values is dropped. The continuous representation

can be solved with an appropriate continuous optimization technique. A simple way

of deriving the discrete solution x�d from the thus obtained continuous one x�c is to
choose that element of the discrete solution set Sd which is closest to x

�
c. Please note

that there is no guarantee that x�d is the optimal solution of the discrete problem, but

under reasonable conditions it should be sufficiently close to it.

1.2.3 Combinatorial Optimization

In combinatorial optimization, the solution set S has a finite number of elements,

too. Therefore, any combinatorial optimization problem is also a discrete problem.

Additionally, however, for many problems it is impractical to build S as an explicit

enumeration of all possible solutions. Instead, a (combinatorial) solution can be

expressed as a combination of some other representation of the data.
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To make things clear, consider to the satnav example again. Here,S is usually not
represented by a simple enumeration of all possible routes from the start to a

destination location. Instead, the data consists of a map of the roads, streets,

motorways, etc., and each route can be obtained by combining these entities

(or parts of them). Observe that this allows a much more compact representation

of the solution set.

This representation leads to an obvious solution strategy for optimization problems:

we “just” have to try all possible combinations and find out which one yields the

minimum value of the objective function. Unfortunately, this is infeasible due to the

exponential growth of the number of possible solutions when the number of elements

to combine increases (a fact which is sometimes called combinatorial explosion).
An example of combinatorial optimization methods used in computer vision are

the so-called graph cuts, which can, e.g., be utilized in segmentation problems:

consider an image showing an object in front of some kind of background. Now we

want to obtain a reasonable segmentation of the foreground object from the

background. Here, the image can be represented by a graph G ¼ V;Eð Þ , where
each pixel i is represented by a vertex vi 2 V , which is connected to all of its

neighbors via an edge eij 2 E (where pixels i and j are adjacent pixels; typically a

4-neighborhood is considered).

A solution s of the segmentation problem which separates the object region from

the background consists of a set of edges (where each of these edges connects a

pixel located at the border of the object to a background pixel) and can be called a

cut of the graph. In order to find the best solution, a cost cij can be assigned to each

edge eij, which can be derived from the intensity difference between pixel i and j: the
higher the intensity difference, the higher cij. Hence, the solution of the problem is

equal to find the cut which minimizes the overall cost along the cut. As each cut

defines a combination of edges, graph cuts can be used to solve combinatorial

optimization problems. This combinatorial strategy clearly is superior to enumerate

all possible segmentations and seek the solution by examination of every element of

the enumeration.

1.2.4 Variational Optimization

In variational optimization, the solution set S denotes a subspace of functions
(instead of values in “normal” optimization), i.e., the goal is to find a function

which best models some data.

A typical example in computer vision is image restoration, where we want to

infer an “original” image R x; yð Þ without perturbations based on a noisy or blurry

observation I x; yð Þ of that image. Hence, the task is to recover the function R x; yð Þ
which models the original image. Consequently, restoration is an example of an

inverse problem.

Observe that this problem is ill-posed by nature, mainly because the number of

unknowns is larger than the number of observations and therefore many solutions
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can be aligned with the observation. Typically, we have to estimateW � H pixel in

R and, additionally, some other quantities which model the perturbations like noise

variance or a blur kernel, but we have only W � H observations in I.
Fortunately, such problems can often be converted into a well-posed optimiza-

tion problem by additionally considering prior knowledge. Based on general

considerations, we can often state that some solutions are more likely than others.

In this context, the usage of the so-called smoothness assumption is quite common.

This means that solutions which are “smooth,” i.e., take constant or slowly varying

values, are to be favored and considered more likely.

A natural way to consider such a priori information about the solution is the usage

of a so-called energy functionalEas objective function (a more detailed description is

given below in the next section). Emeasures the “energy” of a particular explanation

R̂ of the observed data I. If E has low values, R̂ should be a good explanation of I.
Hence, seeking the minimum of E solves the optimization problem.

In practice E is composed of multiple terms. At first, the so-called external

energy models the fidelity of a solution R̂ to the observed data I. Obviously, R̂ is a

good solution if it is close to I . In order to resolve the discrepancy between the

number of observed data and unknowns, additional prior knowledge is introduced

in E . This term is called internal energy. In our example, most natural images

contain large areas of uniform or smoothly varying brightness, so a reasonable

choice for the internal energy is to integrate all gradients observed in I . As a

consequence, the internal energy acts as a regularization term which favors

solutions which are in accordance with the smoothness assumption.

To sum it up, the introduction of the internal energy ensures the well-posedness

of variational optimization problems. A smoothness constraint is quite common in

this context.

Another example are so-called active contours, e.g., “snakes,” where the course of

a parametric curve has to be estimated. Imagine an image showing an object with

intensity distinct from background intensity, but some parts of its boundary cannot be

clearly separated from the background. The sought curve should pass along the

borders of this object. Accordingly, its external energy is measured by local intensity

gradients along the curve. At the same time, object boundaries typically are smooth.

Therefore, the internal energy is based on first- and second-order derivatives. These

constraints help to fully describe the object boundary by the curve, even at positions

where, locally, the object cannot be clearly separated from the background.

A graphical summarization of the four different types of solution sets can be seen

in Fig. 1.2.

1.3 Common Optimization Concepts in Computer Vision

Before taking a closer look at the diverse optimization methods, let’s first introduce

some concepts which are of relevance to optimization and, additionally, in

widespread use in computer vision.
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With the help of energy functions, for example, it is possible to evaluate and

compare different solutions and thus use this measure to find the optimal solution.

The well-known MAP estimator, which finds the best solution by estimating the

“most likely” one, given some observed data, can be considered as one form of

energy minimization.

Markov Random Fields (MRFs) are a very useful model if the “state” of each

pixel (e.g., a label or intensity value) is related to the states of its neighbors, which

makes MRFs suitable for restoration (e.g., denoising), segmentation, or stereo-

matching tasks, just to name a few.

Last but not least, many computer vision tasks rely on establishing correspondences

between two entities. Consider, for example, an object which is represented by a set of

characteristic points and their relative position. If such an object has to be detected in a

query image, a common proceeding is to extract characteristic points for this image as

well and, subsequently, try to match them to the model points, i.e., to establish

correspondences between model and query image points.

In addition to this brief explanation, the concepts of energy functions, graphs,

and Markov Random Fields are described in more detail in the following sections.

1.3.1 Energy Minimization

The concept of so-called energy functions is a widespread approach in computer

vision. In order to find the “best” solution, one reasonable way is to quantify how

“good” a particular solution is, because such a measure enables us to compare

(x − x 0 )2 dx

(x − x 0 )

ax2 + bx + c

e x  tanh(c  x )

c

ln(x)
sin(x)

Fig. 1.2 Illustrating the different types of solution sets: continuous (blue two-dimensional region,

upper left), discrete (grid, upper right), combinatorial (combinations of four color squares,

lower left), and variational (space of functions, lower right)
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different solutions and select the “best”. Energy functions E are widely used in this

context (see, e.g., [6]).

Generally speaking, the “energy” is a measure how plausible a solution is. High

energies indicate bad solutions, whereas a low energy signalizes that a particular

solution is suitable for explaining some observed data. Some energies are so-called

functionals. The term “functional” is used for operators which map a functional

relationship to a scalar value (which is the energy here), i.e., take a function as

argument (which can, e.g., be discretely represented by a vector of values) and

derive a scalar value from this. Functionals are needed in variational optimization,

for example.

With the help of such a function, a specific energy can be assigned to each

element of the solution space. In this context, optimization amounts to finding the

argument which minimizes the function:

x� ¼ argmin
x2S

EðxÞ (1.2)

As already mentioned in the previous section, E typically consists of two

components:

1. A data-driven or external energy Eext , which measures how “good” a solution

explains the observed data. In restoration tasks, for example, Eext depends on the

fidelity of the reconstructed signal R̂ to the observed data I.
2. An internal energyEint, which exclusively depends on the proposed solution (i.e.,

is independent on the observed data) and quantifies its plausibility. This is the

point where a priori knowledge is considered: based on general considerations,

we can consider some solutions to be more likely than others and therefore

assign a low internal energy to them. In this context it is often assumed that the

solution should be “smooth” in a certain sense. In restoration, for example, the

proposed solution should contain large areas with uniform or very smoothly

varying intensity, and therefore Eint depends on some norm of the sum of the

gradients between adjacent pixels.

Overall, we can write:

E ¼ Eext þ λ � Eint (1.3)

where the parameter λ specifies the relative weighting between external and

internal energy. High values of λ tend to produce smoothly varying optimization

results (if Eint measures the smoothness of the solution), whereas low values of λ
favor results being close to the observed values.

Please observe that the so-called MAP (maximum a posteriori) estimation,

which is widely used, too, is closely related to energy minimization. MAP estima-

tion tries to maximize the probability p M Djð Þ of some model M , given some

observed data D (p M Djð Þ is called the posterior probability, because it denotes a
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probability after observing the data). However, it is difficult to quantify p M Djð Þ in
practice. A way out is to apply Bayes’ rule:

p M Djð Þ ¼ p D Mjð Þ � pðMÞ
pðDÞ (1.4)

where p D Mjð Þ is called the likelihood of the data and pðMÞ the prior, which
measures how probable a certain model is.

If we are only interested in finding the most likely model M� (and not in the

absolute value of the posterior at this position M� ), we can drop pðDÞ and,

additionally, take the logarithm of both sides of (1.4). As a common way to

model the probabilities are Gaussian distributions, taking the logarithm simplifies

calculations considerably, because it eliminates the exponentials. If we take the

negative logarithm, we have:

M� ¼ argmin � log p D Mjð Þ½ � � log pðMÞ½ �ð Þ (1.5)

If we set Eext ¼ � log p D Mjð Þ½ � and Eint ¼ � log pðMÞ½ � , we can see that the

structure of (1.5) is the same as we encountered in (1.2).

However, please note that MAP estimation is not completely equivalent to

energy-based optimization in every case, as there are many possibilities how to

model the terms of the energy functional, and the derivation from MAP estimation

is just one kind, albeit a very principled one. Because of this principled proceeding,

Bayesian modeling has several potential advantages over user-defined energy

functionals, such as:

• The parameters of probability distributions can be learned from a set of

examples, which in general is more accurate than just estimating or manually

setting weights of the energy functional, at least if a suitable training base is

available.

• It is possible to estimate complete probability distributions over the unknowns

instead of determining one single value for each of them at the optimum.

• There exist techniques for optimizing unordered variables (e.g., the labels

assigned to different regions in image segmentation tasks) with MAP

estimations, whereas unordered variables pose a serious problem when they

have to be compared in an energy function.

1.3.2 Graphs

The concept of graphs can be found in various vision applications. In the context of

optimization, graphs can be used to model the problem at hand. An optimization

procedure being based on a graph model can then utilize specific characteristics of

the graph – such as a special structure – in order to get a fast result. In the following,
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some definitions concerning graphs and their properties are introduced (a more

detailed introduction can be found in, e.g., [4]).

A graph G ¼ N;Ef g is a set of nodes N ¼ n1; n2; . . . ; nLf g , which are also

called vertices. The nodes are connected by edges, where the edges model the

relationship between the nodes: Two nodes ni and nj are connected by an edge eij
if they have a special relationship. All edges are pooled in the edge set E ¼ eij

� �

(see the left of Fig. 1.3 with circles as nodes and lines as edges for an example).

Graphs are suitable for modeling a wide variety of computer vision problems.

Typically, the nodes model individual pixels or features derived from the image,

such as interest points. The edges model the relationship between the pixels and

features. For example, an edge eij indicates that the pixels i and j influence each

other. In many cases this influence is limited to a rather small local neighborhood or

adjacent pixels. Consequently, edges are confined to nearby or, even more restric-

tive, adjoining pixels.

Additionally, an edge can feature a direction, i.e., the edge eij can point from

node ni to node nj, e.g., because pixel i influences pixel j, but not vice versa. In that

case, we talk about a directed graph (otherwise the graph is called undirected).
Moreover, a weight wij can be associated to an edge eij. The weights serve as a

measure how strongly two nodes are connected.

A path in a graph from node ni to node nk denotes a sequence of nodes starting at
ni and ending at nk, where two consecutive nodes are connected by an edge at a time

(see blue nodes/red edges in the middle part of Fig. 1.3). If ni is equal to nk, i.e., start
node and termination node are the same, the path is termed a cycle (right part of
Fig. 1.3). The length of the path is the sum of the weights of all edges along the path.

An important special case of graphs are trees. A graph is said to be a tree if it is
undirected, contains no cycles, and, additionally, is connected, which means that

there is a path between any two nodes of the graph (see left of Fig. 1.4). In a tree,

one node can be arbitrarily picked as root node (light red node in right tree of

Fig. 1.4). All other nodes have a certain depth from the root, which is related to the

number of edges along the path between them and the root (as depth increases, color

saturation of the circles decreases in the right part of Fig. 1.4).
Another subclass of graphs are bipartite graphs. A graph is said to be bipartite if

its nodes can be split into two disjoint subsets A and B such that any edge of the

Fig. 1.3 Exemplifying a graph consisting of nodes (circles), which are linked by edges (lines)
(left). In the graph shown in themiddle, the blue nodes form a path, which are connected by the red
edges. Right: example of a cycle (blue nodes, green edges)
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graph connects one node of A to one node of B . This means that for any edge,

exactly one of the nodes it connects is an element ofA and exactly one is an element

of B (see left part of Fig. 1.5, where the nodes are split by the edges into the blue
and the green subset). Bipartite graphs can be useful for so-called assignment

problems, where a set of features has to be matched to another feature set, i.e.,

for each feature of one set, the “best corresponding” feature of the other set has to

be found.

Last but not least, we talk about a matching M, ifM is a subset of the edge set E
with the property that each node of the bipartite graph belongs to at most one

edge of M (see right part of Fig. 1.5). If each node is connected by exactly one

edge 2 M, M is said to be a perfect matching. Observe that the red edge set of

the right graph of Fig. 1.5 is not a perfect matching, because some nodes are not

connected to any of the red edges.

1.3.3 Markov Random Fields

One example of graphs are so-called Markov Random Fields (orMRFs), which are

two-dimensional lattices of variables and were introduced for vision applications by

[3]. Over the years, they found widespread use in computer vision (see, e.g., [1] for

an overview).

In computer vision tasks, it is natural to regard each of those variables as

one pixel of an image. Each variable can be interpreted as one node ni of a graph
G ¼ N;Ef g consisting of a set of nodesN, which are connected by a set of edges E,
as described in the previous section. The value each pixel takes is referred to the

state of the corresponding node.

Fig. 1.4 Showing a tree example (left). Right: same tree, with specification of a root node

(light red). Depending on their depth, the nodes get increasingly darker

Fig. 1.5 Illustrating a bipartite graph (left), where the edges split the nodes into the two blue and
green subsets (separated by dashed red line). Right: the same bipartite graph, with a matching

example (red edges)
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In practice, the state of each node (pixel) is influenced by other nodes (pixels).

This influence is represented in the MRF through edges: if two nodes ni and nj
influence each other, they are connected by an edge eij . Without giving the exact

mathematical definition here, we note that the nature of MRFs defines that:

• Each node ni is influenced only by a well-defined neighborhood S nið Þ around it,

e.g., 4-neighborhood.

• If nj 2 S nið Þ , the relation ni 2 S nj
� �

is also true, i.e., if nj is within the local

neighborhood of ni , then the same observation holds vice versa: ni is located
within the neighborhood of nj.

A weight sij can be assigned to each edge eij . The sij determines how strong

neighboring nodes influence each other and are called pairwise interaction
potentials. Another characteristic of Markovian models is that a future state of a

node depends only on the current states of the nodes in the neighborhood. In other

words, there is no direct dependency (on past states of them).

Normally, the nodes N represent “hidden” variables, which cannot be measured

directly. However, each ni can be related to a variable oi which is observable. Each

ni; oið Þ pair is connected by an edge, too. A weight wi can be assigned to each of

these edges as well, and eachwi defines how strong the state of ni is influenced by oi.
Markov Random Fields are well suited for Bayesian-modeled energy functionals

as introduced in the previous section and in particular for reconstruction or restora-

tion problems: Given a measured image I, which is corrupted by noise, blur, etc.,

consider the task to reconstruct its uncorrupted version R. In order to represent this

problem with an MRF, we make the following assignments:

• Each node (hidden variable) represents one unknown of the optimization prob-

lem, i.e., the state of a particular node ni represents the (unknown) value R xi; yið Þ
of the pixel xi; yi½ � of the image to be reconstructed.

• EachR xi; yið Þ is related to the measured value at this position I xi; yið Þ, i.e., each oi
is assigned to one observed value I xi; yið Þ.

• The weightw xi; yið Þmodels how strong R xi; yið Þ is influenced by the observation
I xi; yið Þ . Therefore, high values of w ensure a high fidelity of the R to the

measured image data. This corresponds to the relative weighting of the external

energy (see parameter λ in (1.3)).

• The edges eij between the hidden variables can be considered as a way of

modeling the influence of the prior probability. One way to do this is to compare

the values of neighboring hidden variables (cf. the smoothness assumption,

where low intensity differences between adjacent pixels are considered more

likely than high differences). In doing so, the weights sij determine which

neighbors influence a particular hidden variable and how strong they do this.

Due to its simplicity, it is tempting to use a 4-neighborhood. In many cases, this

simple neighborhood proves to be sufficient enough for modeling reality, which

makes it the method of choice for many applications.

If we assume a 4-neighborhood, we can model the MRF graphically as

demonstrated in Fig. 1.6. The grid of hidden variables, where each variable represents
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a pixel, is shown on the left side of the figure. The right side of the figure illustrates a

(zoomed) part of the MRF (red) in more detail. The hidden variables are illustrated

via white circles. Each hidden variable is connected to its four neighbors via edges

with weights sx and sy (symbolized by white squares). An observed data value (gray

circles) is associated to each hidden variable with weight w (gray square). It is

possible to utilize spatially varying weightssx x; yð Þ,sy x; yð Þ, andw x; yð Þ, if desired, but
in many cases it is sufficient to use weights being constant over the entire MRF.

If the MRF models an energy functional, the following relationships are

frequently used: The external or data-driven energy Eext x; yð Þ of each pixel

depends on the difference between the state of the hidden variable and the

observed value:

Eext x; yð Þ ¼ w x; yð Þ � ρext R x; yð Þ � I x; yð Þð Þ (1.6)

The energy being based on the prior follows a smoothness assumption and

therefore penalizes adjacent hidden variables of highly differing states:

Eint x; yð Þ ¼sx x; yð Þ � ρint I x; yð Þ � I xþ 1; yð Þð Þ þ sy x; yð Þ�
ρint I x; yð Þ � I x; yþ 1ð Þð Þ (1.7)

In both (1.6) and (1.7), ρ denotes a monotonically increasing function, e.g., a

linear (total variation) penalty ρðdÞ ¼ dj j or a quadratic penalty ρðdÞ ¼ dj j2. In the

case of quadratic penalties, we talk about Gaussian Markov Random Fields

(GMRFs), because quadratic penalties are best suited when the corruption of the

observed signal is assumed to be of Gaussian nature.

However, in many cases, a significant fraction of measurements is disturbed by

outliers with gross errors, and a quadratic weighting puts too much emphasis on the

influence of these outliers. Therefore, hyper-Laplacian penalties of the type ρðdÞ ¼
dj jp; p < 1 are also common.

Fig. 1.6 Showing a graphical illustration of a Markov Random Field (left) and a more detailed

illustration of a part of it (right)
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The total energy associated to the current state of an MRF equals the sum of the

external as well as internal energy terms over all pixels:

EMRF ¼
X

x;y

Eint x; yð Þ þ
X

x;y

Eext x; yð Þ (1.8)

Minimization of these types of MRF-based energies used to be performed by a

method called simulated annealing (cf. [5]) when MRFs were introduced to the

vision community (see [3]). Simulated annealing is an iterative scheme which, at

each iteration, randomly picks a variable which is to be changed in this iteration. In

later stages, the algorithm is rather “greedy,” which means that it has a strong bias

toward changes which reduce the energy. In early stages, however, a larger fraction

of changes which does not immediately lead to lower energies is allowed. The

justification for this is that the possibility to allow changes which increase the

energy helps to avoid being “trapped” in a local minimum of the energy functional.

In the meantime, however, it was shown that another class of algorithm called

graph cuts is better suited for optimization and outperforms simulated annealing in

most vision applications (see, e.g., [2]). Here, the algorithm works on the graph

representation of the MRF and intends to find a “cut” which separates the graph into

two parts where the total sum of the weights of edges to be cut attains a minimum.

MRFs have become popular to model problems where a reasonable prior is to

assume that the function to be found varies smoothly. Therefore, it can be

hypothesized that each pixel has a high probability to take values identical or

very similar to its neighbors, and this can be modeled very well with an MRF.

Apart from the already mentioned restoration task, MRFs are also suited for

segmentation, because it is unlikely that the segmentation label (all pixels belong-

ing to the same region are “labeled” with identical value) changes frequently

between neighboring pixels, which would result in a very fragmented image. The

same fact applies for stereo matching tasks, where the disparity between associated

pixels, which is a measure of depth of the scene, should vary slowly spatially.

A variant of MRFs are so-called conditional random fields (CRF), which differ

from standard MRFs in the influence of the observed data values: More specifically,

the weights of the pairwise interaction potentials can be affected by the observed

values of the neighboring pixels (see Fig. 1.7). In that case, the prior depends not

Fig. 1.7 Illustrating the

structure of a so-called

conditional random field.

The influence of the observed

data values on the pairwise

interaction weights to

neighboring nodes is

indicated by red lines
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