
Advances in Computer Vision and Pattern Recognition

Unsupervised 
Process Monitoring 
and Fault Diagnosis 
with Machine 
Learning Methods

Chris Aldrich
Lidia Auret



Advances in Computer Vision and Pattern
Recognition

For further volumes:
http://www.springer.com/series/4205

http://www.springer.com/series/4205




Chris Aldrich • Lidia Auret

Unsupervised Process
Monitoring and Fault
Diagnosis with Machine
Learning Methods

123



Chris Aldrich
Western Australian School of Mines
Curtin University
Perth, WA, Australia

Department of Process Engineering
University of Stellenbosch
Stellenbosch, South Africa

Series Editors
Sameer Singh
Research School of Informatics
Loughborough University
Loughborough
UK

Lidia Auret
Department of Process Engineering
University of Stellenbosch
Stellenbosch, South Africa

Sing Bing Kang
Microsoft Research
Microsoft Corporation
Redmond, WA
USA

ISSN 2191-6586 ISSN 2191-6594 (electronic)
ISBN 978-1-4471-5184-5 ISBN 978-1-4471-5185-2 (eBook)
DOI 10.1007/978-1-4471-5185-2
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013942259

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Although this book is focused on the process industries, the methodologies
discussed in the following chapters are generic and can in many instances be
applied with little modification in other monitoring systems, including some of
those concerned with structural health monitoring, biomedicine, environmental
monitoring, the monitoring systems found in vehicles and aircraft and monitoring
of computer security systems. Of course, the emphasis would differ in these other
areas of interest, e.g. dynamic process monitoring and nonlinear signal processing
would be more relevant to structural health analysis and brain–machine interfaces
than techniques designed for steady-state systems, but the basic ideas remain intact.
As a consequence, the book should also be of interest to readers outside the process
engineering community, and indeed, advances in one area are often driven by
application or modification of related ideas in a similar field.

In a sense, the area of process monitoring and the detection and analysis of
change in technical systems are an integral part of the information revolution,
as the use of data-driven methods to construct the requisite process or systems
models becomes dominant over first-principle or higher knowledge approaches.
This revolution has changed the world as we know it and will continue to do so
in as yet unforeseen ways.

Rightly or wrongly, there is a perception that the mining engineering environment
is conservative as far as research spending is concerned, reluctant to embrace future
technologies that do not have an immediate proven impact on the bottom line, also
as far as process automation is concerned. However, this is rapidly changing, with
large mining companies investing considerable sums of money in the development
of advanced process automation systems with no immediate benefit. These new
automation systems will have to sense changes in their environment and be able
to react to these changes, consistently, safely and economically. Apart from the
development of advanced sensors, process monitoring technologies would play a
central role in the success of these automated mining systems. For example, in
underground mining, these systems would have to be able to differentiate between
mineral and the surrounding gangue material in real time or be able to differentiate
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between solid rock and rock that might be on the verge of collapse in a mining
tunnel. Humans have mixed success in these tasks, and current automation systems
are too rudimentary to improve on this.

These new diagnostic systems would have to cope with the so-called Big Data
phenomenon, which will inevitably also have an impact on the development and
implementation of the analytical techniques underpinning them. In many ways, Big
Data can simply be seen as more of the same, but it would be unwise to see it simply
as a matter that can be resolved by using better hardware. With large complex data
sets, the issues of automatically dealing with unstructured data, which may contain
comparatively little useful information, become paramount. In addition, these data
streams are likely to bring with them new information not presently available, in
ways that are as yet unforeseen. Just like video data can simply be seen as a series of
images, if taken at a sufficiently high frequency, these data can reveal information
on the dynamic behaviour of the system that a discontinuous series of snapshots
cannot. It is easy to see that in some cases this could make a profound difference on
our understanding of the behaviour of the system.

In the same way that Big Data can be seen as data, just more of it, machine
learning can arguably be seen as statistics, simply in a different guise, as in many
ways it is without a doubt. However, looking into the future, as systems rapidly
grow in complexity, the ability of machines to truly learn could also be influenced
in unforeseen ways. By analogy, one could consider a novice chess player, who has
learnt the rules of chess and knows how to detect direct threats to his individual
pieces on the board. However, it is only by experience that he learns to recognize
the unfolding of more complex patterns or emergent behaviour that would require
timely action to avoid or exploit.

Perth, WA, Australia Chris Aldrich
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Chapter 1
Introduction

1.1 Background

Technological advances in the process industries in recent years have resulted in
increasingly complicated processes, systems and products that pose considerable
challenges in their design, analysis, manufacturing and management for successful
operation and use over their life cycles (Maurya et al. 2007). As a consequence,
not only do the maintenance and management of complex process equipment
and processes, and their integrated operation, play a crucial role in ensuring
the safety of plant personnel and the environment, but they are also crucial to
the timely delivery of quality products in an environmentally responsible way.
Since the management of process plants remains a largely manual activity, the
timely detection of abnormal events and diagnosis of its probable causes to enable
appropriate supervisory control decisions and actions to bring the process back to a
normal, safe operating state become all the more important. Without a doubt, there
is still major scope for process improvement in all these aspects of plant operation,
including safety, profitability and environmental responsibility, as discussed in more
detail below.

1.1.1 Safe Process Operation

Industrial statistics show that about 70 % of industrial accidents are caused by
human errors (Venkatasubramanian et al. 2003). Recent events have shown that
large-scale plant accidents are not just a thing of the past. Two of the worst ever
chemical plant accidents, namely, Union Carbide’s, Bhopal, India, accident and
Occidental Petroleum’s Piper Alpha accident, happened relatively recently (1980s).
Such catastrophes have a significant impact on safety, the environment and the
economy. The explosion at Kuwait Petrochemical’s Mina Al-Ahmedhi refinery in

C. Aldrich and L. Auret, Unsupervised Process Monitoring and Fault Diagnosis with
Machine Learning Methods, Advances in Computer Vision and Pattern Recognition,
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2 1 Introduction

June 2000 resulted in damages estimated at $400 million. Likewise, the explosion
of the offshore oil platform of Petrobras, Brazil, in March 2001 resulted in losses
estimated at $5 billion (Venkatasubramanian et al. 2003).

Although the occurrence of major industrial accidents such as mentioned above
is not common, minor accidents are very frequent and occur almost daily, resulting
in many occupational injuries and sickness and costing billions of dollars every year
(Venkatasubramanian et al. 2003). This suggests that there is still a long way to go to
enhance the performance of human operators to improve their diagnostic capability
and good judgment.

1.1.2 Profitable Operation

Industrial processes are under increased pressure to meet the changing demands of
society. For example, in the mining sector, processes have to be adapted to deal with
more complex or refractory ores, as more accessible resources dwindle. The same
applies in the oil industry, where the search for large repositories is increasingly
focusing on deep-sea beds, as many of the world’s largest fields, from Ghawar in
Saudi Arabia to Prudhoe Bay in Alaska, are becoming depleted. At present, deep-
sea rigs are capable of reaching down more than 12 km – twice as deep as a decade
ago.

With globalization and increased competition, profit margins of companies are
under pressure, and companies have to be more responsive to varying customer
demands, without sacrificing product and process quality. This has led to the
development of quality control management methodologies, like Six Sigma and ISO
9000, and other management programs to assist organizations in addressing some
of these challenges.

In addition, modern process operations have become more complex owing to
plant-wide integration and high-level automation of a large variety of process
tasks (Jämsä-Jounela 2007). For example, recycling of process streams is widely
established to ensure efficient material and energy usage. Process plants have
become intricate virtual information networks, with significant interactions among
various subsystems and components. Such interconnectivity facilitates the integra-
tion of operational tasks to achieve broader business strategic goals but invariably
complicates other tasks, like planning and scheduling, supervisory control and
diagnosis of process operations.

1.1.3 Environmentally Responsible Operation

More recently, regulatory frameworks have become more stringent to force better
control of the environmental risks posed by industrial activities. Likewise, safety and
health policies and practices are now priority issues in the modern process plants.
As a result, systematic frameworks have been initiated, including process hazard
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analysis and abnormal event management and product life cycle management.
Process hazard analysis and abnormal event management are aimed at ensuring
process safety, while product life cycle management places obligatory stewardship
responsibilities on an organization throughout the life cycles of its entire product
range, that is, from conception to design and manufacture, service and disposal
(Venkatasubramanian 2005).

1.2 Trends in Process Monitoring and Fault Diagnosis

1.2.1 Instrumentation

As a result, companies are making substantial investments in plant automation
as a means to achieve their operational and business goals. This includes heavy
investment in instrumentation to enable real time monitoring of process units and
streams. New sensor technologies such as acoustic or vibrational signal monitoring
and computer vision systems have been introduced in, among other, milling plants,
multiphase processes, food processing and combustion processes (Zeng and Forss-
berg 1992; Das et al. 2011; Chen et al. 2012; Germain and Aguilera 2012). In large
process plants, these instruments have enabled the observation of many hundreds or
even thousands of process variables at high frequency (Venkatasubramanian et al.
2003). As a consequence, huge volumes of data are increasingly being generated
in modern process plants. These data sets do not only contain massive numbers of
samples but can also contain very large numbers of variables.

For example, in spectroscopy, data are obtained by exposing a chemical sample
to an energy source and recording the resulting absorbance as a continuous trace
over a range of wavelengths. Digitization of the trace at appropriate intervals
(wavelengths) forms sets of variables that in pyrolytic mass spectroscopy, near-
infrared spectroscopy and infrared spectroscopy yield approximately 200, 700
and 1,700 such variables for each chemical sample, respectively (Krzanowski
and Marriott 1994). In these cases, the number of variables usually exceeds the
number of samples by far. Similar features arise with the measurement of acoustic
signals, such as may be the case in online monitoring of process equipment
(Zeng and Forssberg 1992) and potentiometric measurements to monitor corrosion.
Likewise, where image analysis is used to monitor particulate feeds or products
in comminution systems, power plants or metallurgical furnaces, each pixel in the
image could represent a variable, which could easily lead to millions of variables
where high-resolution two-dimensional images are concerned.

1.2.2 Information Technology Hardware

The well-documented sustained exponential growth in computational power and
communication has led to profound change in virtually all areas of technology in
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recent decades and will apparently continue to do so in the foreseeable future.
In 1965, Gordon Moore, a co-founder of Intel, first observed that the density of
components in computer chips had doubled each year since 1958, and this trend was
likely to continue for at least a decade. In 1975, Dr Moore modified his prediction,
observing that component density was doubling every 2 years. As a consequence,
the performance of personal computers has also roughly doubled every 18 months
since then, conforming to what has becoming known as Moore’s law.

More recently, in what might be referred to as Koomey’s law, Koomey et al.
(2011) have shown that since the era of the vacuum tube, computers have also
approximately doubled their electrical efficiency every 1.6 years since the mid-
1940s. This trend reinforces the continued explosive growth in mobile computing,
sensors and controls (Koomey et al. 2011).

The cost of computer memory is showing as pronounced a decrease as that of
the other computer components, with roughly cost halving annually. For example,
whereas at the beginning of the decade, 40 GB was the highest hard disk drive
capacity generally available in personal computers, this has increased to 3 TB at
present.

These developments have had a considerable impact on the development and
maintenance of advanced process monitoring and control technologies. For exam-
ple, unlike a mere decade ago, it is now possible to maintain complex instrumen-
tation and process monitoring systems remotely via the Internet. This has led to
a breakthrough in the application of instruments, such as the implementation of
Blue Cube’s inline diffuse reflectance spectrophotometer in remote areas, where
calibration of the instrument is maintained from the company’s headquarters in
Stellenbosch, South Africa. The same applies to Stone Three’s maintenance of their
computer vision monitoring systems for particulate feeds on belts.

1.2.3 Academic Research into Fault Diagnostic Systems

Figure 1.1 shows recent trends in academic research into fault diagnosis, indicating
publications associated with fault diagnosis and neural networks (ANN); expert
systems (XS); kernel methods and support vector machines (SVM); multivariate
methods, including principal components and latent variables (PCA); artificial
immune systems and immunocomputing (AIS/IC); and others, not including the
previous categories (OTHER) in the IEEE Xplore digital library.

Publications related to fault diagnosis and expert systems have remained more or
less constant over the last two decades, since expert systems are mostly associated
with qualitative fault diagnosis, while the other approaches are typically associated
with data-driven fault diagnosis, which show a sharp rise, especially from 2006
to 2010. Although the publications considered here were selected to belong more
or less exclusively to a particular category (e.g. SVM would indicate papers
containing “support vector” or “kernel”, but not “neural network”) together with
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Fig. 1.1 Trends in academic research related to fault diagnosis based on number of publications
in the IEEE Xplore digital library from 1991 to 2010

“fault diagnosis”, the trends should still only be interpreted in an approximate
qualitative manner, and some overlap between the categories was unavoidable. Even
so, the overall trends indicate the strong growth in data-driven methods in fault
diagnosis as well as the strong growth in machine learning in this area.

1.2.4 Process Analytical Technologies and Data-Driven
Control Strategies

In turn, the above developments have led to further investment in advanced
knowledge-based or data-driven process control strategies, collectively referred
to as intelligent control systems, to enhance the information content of the data.
Fortunately, advances in the information sciences have yielded data processing and
analytical techniques that are very promising with respect to targeted applications
in process control.

1.3 Basic Fault Detection and Diagnostic Framework

A fault can be defined as anomalous behaviour causing systems or processes to
deviate unacceptably from their normal operating conditions or states. In process
plants, faults can be categorized according to their sources, i.e. sensor faults
affecting process measurements, actuator faults leading to errors in the operation
of the plant, faults arising from erroneous operating policies or procedures as well
as system component faults arising from changes in process equipment. These faults
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Fig. 1.2 A basic outline of the fault diagnosis problem

can arise abruptly, for example, with the sudden failure of process equipment,
or faults can evolve over time, such as associated with gradual wear and tear of
equipment or sensor drift.

The primary objective of fault diagnosis is the timely detection of aberrant
process or system behaviour, identification of the causes of the fault and elimination
of these causes with as little disruption to the process as possible. This is typically
accomplished by comparing the actual behaviour of the process with a model
representing normal or desirable process behaviour. The detection of process faults
is based on monitoring of the deviation between the actual process behaviour and
that predicted by the model, with a fault condition flagged when these deviations
exceed certain predetermined limits. Once a fault is detected, identification of the
root cause(s) of the problem is generally based on an inverse model. Correction of
the problem depends on engineering expertise and is typically less well automated
than the detection and identification problems. Figure 1.2 shows a schematic outline
of the fault detection and identification problem.

1.4 Construction of Diagnostic Models

From a philosophical point of view, all fault diagnostic activities depend on models
in one form or another. Models are simply compact representations of knowledge,
which can either be explicit or tacit. Explicit knowledge exists in the form of
documented equations, facts, rules, heuristics, etc. In contrast, tacit knowledge is
more difficult to define and consists of all those things that humans know how to do,
but not necessarily how to explain (Polanyi 1958). From a process perspective, it is
the best practices, experience, wisdom and unrecordable intellectual property that
reside within individuals and teams.
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Fig. 1.3 Process fault
diagnostic models as
representations of process
knowledge

Figure 1.3 shows a diagrammatic representation of approaches to fault diagnostic
models based on different forms of knowledge. According to this diagram, process
fault diagnostic methods can be categorized into models based on formal knowledge
(causal models, observers), data (multivariate statistical process control) as well as
manual approaches based on the tacit knowledge of human operators.

Classically, models have been derived from first principles or phenomenolog-
ical models, requiring extensive knowledge of the behaviour of the process and
interactions between the components of the process. These include Fickian or non-
Fickian diffusion models used in the description of transport processes in leaching
or adsorption process, heat conduction in warm plates, etc. Unfortunately, complete
knowledge of real processes is often not available or very expensive to acquire.
Under these circumstances, explicit knowledge in the form of data or process
observations can be used to construct suitable models.

In some instances, tacit process knowledge or operator experience is also used to
detect faults in plants. Tacit knowledge is subjective heuristic knowledge that cannot
be expressed in words or numbers, often because it is context specific. For example,
in froth flotation processes used in the recovery of metals, expert operators are often
called upon to diagnose the condition of the process based on the appearance of the
flotation froth. Similarly on food processing, the taste of the food is also sometimes
used as an early indicator of the quality of the final product.

These alternative approaches to fundamental modelling based on explicit models
derived from data or externalization of tacit knowledge have grown remarkably
in the last half of the twentieth century based on learning from experience, such
as operator knowledge or process data. Learning from data represents a paradigm
shift from classical scientific inquiry in which phenomena were explained in terms
of materials within a well-defined metric system. Instead, problems are cast in
terms of data representation, information and knowledge. For example, a dominant
theme that has emerged from the twenty-first-century computational biotechnology
is the upgrade of information content in biological data, with strong parallels to the
process control perspective (Aldrich 2000; Ogunnaike 1996; Venkatasubramanian
2005). Deriving knowledge from data can be achieved by statistical inferencing or



8 1 Introduction

planned experimental campaigns. An alternative and suitable approach that uses
few or no assumptions and exploits the ever-growing volumes of process data
accumulating in plant data bases is machine learning. Machine learning is concerned
with developing machines and software that can discover patterns in data by learning
from examples. It brings together insights and tools of mathematics, theoretical
and applied computational sciences and statistics. In particular, it overlaps with
many approaches that were proposed separately within the statistical community, for
example, decision trees (Breiman et al. 1984; Quinlan 1986). Process fault diagnosis
can also be cast as a machine learning problem, as outlined in more detail below.

1.5 Generalized Framework for Data-Driven
Process Fault Diagnosis

The data-driven construction of models for process fault diagnosis can be cast in
a general framework consisting of a number of elements as indicated in Fig. 1.4.
These include a data matrix representing the process or system being monitored (X);
a feature matrix extracted from the data matrix (F), from which diagnostic variables
are derived for process monitoring and fault diagnosis; a reconstructed data matrix
(bX ) serving as a basis for fault identification, as well as an indication of the quality
of the extracted features; and, finally, a residual matrix (E) serving additionally as a
monitoring space.

More formally, the problem can be considered given a set of sample vectors
fxgNiD1 2 <M , drawn from the random vector X, find the mapping =: <M!<q

and @:!<M , such that for all iD 1, 2, : : : , N, =.xi / D f i and @.y i / D bxi � xi ,
where ff gNiD1 2 <q denote the corresponding set of reduced sample vectors or
features drawn from the random vector F. M and q denote the dimensionalities of
the original and the feature vector or reduced latent variable space, respectively. For
data visualization, qD 2 or 3 would be normal; otherwise, q�M.

Derivation of the mappings = and @ can be done by optimizing one of several
possible criteria, such as the minimum mean square error or maximum likelihood
criterion. For instance, with principal component analysis, the forward mapping
= is computed by eigendecomposition of the covariance matrix of the samples.

Fig. 1.4 A general
framework for data-driven
fault diagnosis
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The reverse mapping (@) is automatically derived from the forward mapping =.
Similarly, in other linear latent variable models, such as independent component
analysis, the reverse mapping is first computed from which the forward mapping can
then be obtained via pseudo-inverses. Nonlinear methods can be more problematic,
since mappings may not be easy to find with nonlinear transformation, and @ is
usually identified first, after which = is defined by some projection operator.

These elements can be generated in various ways. For example, the data matrix
can contain measurements of physical process variables in steady-state systems or
could arise from the embedding or lagging of coordinates in dynamical systems
(trajectory matrix). It could also be a component of a decomposed data matrix
associated with multiscale methods.

An overview of data-driven methods to establish process fault diagnostic models
is given in Chap. 2. In this book, this generalized diagnostic framework is treated
from a machine learning perspective, where feature extraction is viewed as an
unsupervised learning problem. Three machine learning paradigms are considered
in this context, viz. neural networks, tree-based methods and kernel methods, as
discussed in more detail in Chaps. 3, 4 and 5. In the remainder of the book, case
studies and applications of the methodologies to different classes of fault conditions
are considered.

1.6 Machine Learning

Machine learning is automatic computing based on logical and binary operations to
learn tasks from examples. It can also be seen as the study of computational methods
designed to improve the performance of machines by automating the acquisition
of knowledge from experience or data. Different machine learning paradigms
include artificial neural networks (multilayer perceptrons, self-organizing maps,
radial basis function neural networks, etc.); instance-based learning (case-based
reasoning, nearest neighbour methods, etc.); rule induction; genetic algorithms,
where knowledge is typically represented by Boolean features, sometimes as the
conditions and actions of rules; statistics; as well as analytical learning. The
field of machine learning has originated from diverse technical environments and
communities.

1.6.1 Supervised and Unsupervised Learning

A distinction can be made between supervised, unsupervised and reinforcement
learning and combinations thereof. In supervised learning, the training data consist
of a set of exemplars fx;ygNiD1, each of which is a pair comprising an input and
an output vector, x 2 <M , y 2 <p . If the output is continuous, a regression

http://dx.doi.org/10.1007/978-1-4471-5185-2_2
http://dx.doi.org/10.1007/978-1-4471-5185-2_3
http://dx.doi.org/10.1007/978-1-4471-5185-2_4
http://dx.doi.org/10.1007/978-1-4471-5185-2_5
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Fig. 1.5 An example of semi-supervised learning where unlabelled data (red and blue markers)
are used in conjunction with labelled data (black and white markers) for learning the distribution
of two classes

function is learnt; otherwise, if the output is discrete, a classification function is
learnt. In unsupervised learning problems, unlabelled data are used, i.e. fxgNiD1.
In this case, the outputs represent the structure of the data, which is determined
by a cost function to be minimized. In contrast, reinforcement learning uses a scalar
reward signal to evaluate input–output pairs by trial and error to discover the optimal
outputs for each input. This approach is most suited to problems where optimal
input–output mappings are not available a priori, but where any given input–output
pair can be evaluated. In this sense, reinforcement learning can be considered to
be intermediary to supervised and unsupervised learning, since the use of a reward
signal represents some form of supervision.

1.6.2 Semi-supervised Learning

Semi-supervised learning (Zhu et al. 2003; Zhao 2006) is another intermediary to
supervised and unsupervised learning and comprises the solution of supervised
learning tasks given labelled und unlabelled data are generated by the same
distribution or underlying process.

More formally, consider a set of L independently distributed examples,
x1;x2; : : : ;xL 2 X , with corresponding labels y1; y2; : : : ; yL 2 Y: In addition,
there are W unlabelled samples available x1CW , x2CW , : : : , xLCW 2X. Semi-
supervised learning attempts to make use of all the data to improve a classification
model. This could be accomplished by clustering the unlabelled data and then
labelling the clusters with the labelled data, moving the decision boundary away
from high-density regions or learning an underlying manifold where the data are
located, as indicated in Fig. 1.5. Semi-supervised learning is transductive, when the
correct labels are inferred for x1CW ;x2CW ; : : : ;xLCW only and inductive when
the correct mapping X!Y is learnt (Vapnik 2006), as shown in Fig. 1.6.

Other approaches to machine learning are linked to the structure of the models. In
deep learning, neural network models with a large multiple of layers (deep layering)


