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Preface

The main purpose of this book is to provide a comprehensive state-of-the-art survey
of the newly emerging area of physically correct visual texture modeling. Multi-
dimensional visual texture is the appropriate paradigm for physically correct rep-
resentation of material visual properties. The book presents recent advance in the
texture modeling methodology used in computer vision, pattern recognition, com-
puter graphics, and virtual and augmented reality applications.

While texture analysis is a well-established research field, it is still predominantly
restricted to the simplest and most approximate texture representation—either gray-
scale or color textures. Several books devoted to such simple static texture analysis
have been published, but there is no book dedicated to either the area of more general
texture modeling or recent state-of-the-art textural representations.

Several features set our book apart from the few other visual texture books pub-
lished.

e The only book with comprehensive treatment of texture synthesis.

e The only book covering all known aspects of the most advanced visual surface
representation which can be recently applied—the Bidirectional Texture Function
(BTF).

e The right timing. This book arrives at a time of advanced computing and graph-
ics hardware which can process and store enormous amounts of data needed for
physically correct material modeling and recognition; likewise, recent GPU pro-
gramming progress allows users to utilize relatively intuitive and economical pro-
gramming. This allows for fast implementation, thereby enabling real industrial
applications of the presented methods.

e A complete reference. This self-contained book covers the entire pipeline from
material appearance representation, measurement, analysis, and compression, to
modeling, editing, visualization, and perceptual evaluation.

Recent progress in computing and acquisition technology of advanced visual
data, together with advances in theories of mathematical modeling, provide us with
timely opportunity to achieve new breakthroughs beyond the current state of com-
puter vision art. Finally, it is possible to measure not only the ordinary static color
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viii Preface

textures, but also the far more complicated and accurate high-dimensional visual
texture representations.

Natural visual textures provide ample information about local lighting field struc-
ture as well as the surface relief, accounting for such effects as self-occlusions,
self-shadowing, inter-reflection or subsurface scattering. Moreover, the appearance
of real materials dramatically changes with, for example, illumination and viewing
variations. The prevailing computer vision methodology uses only a small fraction
of this readily available and potentially rich information source, but we believe that
this emerging research area will soon have significant impacts on further progress in
artificial visual cognition and related applications. Our aim is thus to offer the first
book with this focus, in order to foster this development.

The book builds on the authors’ work in this field over two decades and was
inspired by positive feedback to several of our tutorials: Bidirectional Texture Func-
tion Modelling at CVPR 2010, San Francisco, Accurate Material Appearance Mod-
elling at SCIA 2011, Ystad, Advanced Textural Representation of Materials Appear-
ance at SIGGRAPH 2011, Hong Kong, and Advanced Nature Exteriors Modelling
at ICPR 2012, Tsukuba.

The book starts from the basic principles and builds on the fundamentals and
basic visual texture taxonomy introduced as a foundation for using the latest tech-
niques in texture modeling. The reader is expected to possess graduate level knowl-
edge in statistics and probability theory as well as competence in basic computer
graphics principles. However, it is also suitable for newcomers to the field of com-
puter graphics and computer vision, as well as for practitioners who wish to be
brought up to date on the state-of-the-art methodology of texture modeling. This
survey book will provide a useful reference and textbook for researchers, lecturers,
industry practitioners, and students interested in this new and progressive research
area.

We tried to keep the book as concise as possible to maintain its scope at an
acceptable level. Rather than explaining mathematical and implementation details
of all methods, we refer to the original publications. Our ambition was to provide
the reader with general knowledge about state-of-the-art visual texture modeling.
Attempting to rigorously explain, for example, the Markovian or mixture models
used in this book would require at least twice as many pages.

Prague, Czech Republic Michal Haindl
Jifi Filip
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Chapter 1
Motivation

Abstract Visual information is the most important information on which the major-
ity of all living organisms base their cognition and survival strategy. A visual scene
has two important cognitive categories, which are crucial for image understanding:
shapes and materials. This book focuses on the latter category—visual aspects of
surface materials which manifest themselves as visual textures. Visual texture is of
key importance for recognition of objects as well as for estimation of their proper-
ties. Pixels, as the basic elements of any digitized visual texture, are known to be
highly spatially, and spectrally correlated, but they are also correlated in the time or
viewing and illumination angular spaces. Representations of visual textures which
respect these multi-dimensional visual space correlations thus form an advantageous
foundation for any advanced visual information processing applied to both cognitive
(analysis) and modeling (synthesis) purposes.

1.1 Visual Texture Definition

The notion of texture comes from Latin word texere which means to weave; and tex-
tura is a weaving, web, structure. Its meaning may, according to Oxford or Webster’s
dictionaries, be any of these:

e The process or art of weaving; the fabricating or composing of schemes, writings,
etc. A woven fabric, or any natural structure having an appearance or consistence
as if woven.

e The character of a textile fabric (fine, coarse, close, loose, etc.) resulting from a
way in which it is woven.

e The constitution, structure, or substance of anything with regard to its constituents
or formative elements.

e Something composed of closely interwoven or intertwined threads, strands, or the
like elements.

e The essential part of something, an identifying quality.

e The size and organization of small constituent part of a body or substance; the
visual or tactile surface characteristics and appearance of something.

The exact meaning of texture depends on the application area. While in geology
it is a physical appearance or rock character, in material science it is a distribution

M. Haindl, J. Filip, Visual Texture, Advances in Computer Vision and Pattern Recognition, 1
DOI 10.1007/978-1-4471-4902-6_1, © Springer-Verlag London 2013
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2 1 Motivation

Fig. 1.1 Brodatz “texture”
D44 [1] and two of its cutouts

\

of crystallographic orientations, in soil research it describes the proportion of grain
sizes, in cosmology it is a type of a topological defect, for artists it is the look and
feel of the canvas, for graphic designers it is often any image mapped onto a surface,
etc.

Although the notion of visual texture is tied to the human semantic meaning and
texture analysis is an important area of image processing, there is no mathemati-
cally rigorous definition of texture that would be accepted throughout the computer
vision community. Sometimes even its interpretation is subjective. E.g., is the Bro-
datz [1] texture D44 (Fig. 1.1) really a texture? This image obviously violates the
homogeneity condition (see below), if not others as well. Rather than enlarging the
list of rather philosophical definitions of texture, we understand a textured image or
the visual texture to be a realization of a random field, and our effort is simply to find
its parameterizations in such a way that the real texture representing certain material
appearance measurements will be visually indiscernible from the corresponding ran-
dom field’s realization, whatever the observation conditions might be. Some work
distinguishes between texture and color. We regard such separation between spa-
tial structure and spectral information to be artificial and principally wrong because
there is no bijective mapping between grayscale and multi-spectral textures. Thus
our random field model is always multispectral.

The notion of a visual texture is based on several ingredients:

Homogeneity: A texture is homogeneous if its spatial covariance function is trans-
lation invariant.

Uniform structure: Texture consists of some uniformly arranged elements (texels
or textons). This arrangement is approximately the same everywhere within the
textured region.

Variable reflectance: Texture is manifested by locally variable reflectance even if it
is globally uniformly illuminated.

Scale dependency: Based on the resolution scale any surface material can appear as
smooth (low resolution) or textured (high resolution).

Regionality: Texture is a property of an image region.

Materiality: Texture represents a surface material appearance.
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Fig. 1.2 Visual textures represent an omnipresent natural part of the real world

Visual textures form a natural part of our environment as we are learning to un-
derstand, estimate and predict their properties solely based on their visual appear-
ance (Fig. 1.2); however, they are also an integral part of any plausible virtual world
(Fig. 1.3).

As appearance of the visual textures depends heavily on the lighting and view-
ing conditions (Fig. 1.4), this dependency should be taken into account in various
application scenarios.

This large range of the real-scene variable illumination and viewing condition
is illustrated in the fish-eye image from the Prague Metro (Fig. 1.5). The subway
station contains several materials (stone tiles, ceramic tiles, aluminum panels, stain-
less steel, lacquered iron, glass) and identical illumination lights placed at regular
distances. Reflectance variations are clearly visible on floor stone tiles and stainless
steel columns as well as on the aluminum wall panels. Even the textile overcoat and
leather handbag of the lady standing in the foreground show clear material illumi-
nation dependency.



