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Preface

This is the joint proceedings of the two conferences:

1. Infinite Analysis 11—Frontier of Integrability—
University of Tokyo, Japan in July 25th to 29th, 2011,

2. Symmetries, Integrable Systems and Representations
Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011.

As both of the conferences had been organized in the occasion of 60th anniver-
sary of Prof. Michio Jimbo, the topics covered in this proceedings are very large.
Indeed, it includes combinatorics, differential equations, integrable systems, proba-
bility, representation theory, solvable lattice models, special functions etc. We hope
this volume might be interesting and useful both for young researchers and experi-
enced specialists in these domains.

We shall mention about the financial supports we had; the conference at Tokyo
was supported in part by Global COE programme “The research and training center
for new development in mathematics” (Graduate School of Mathematical Science,
University of Tokyo), and the conference at Lyon was supported by Institut Uni-
versitaire de France, GDR 3395 ‘Théorie de Lie algébrique et géométrique’, GDRE
571 ‘Representation theory’, Université Lyon 1 and Université Paris 6.

Kenji Iohara
Sophie Morier-Genoud

Bertrand Rémy

Lion, France

vii



Contents

A Presentation of the Deformed W1+∞ Algebra . . . . . . . . . . . . . . . 1
N. Arbesfeld and O. Schiffmann

Generating Series of the Poincaré Polynomials of Quasihomogeneous
Hilbert Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A. Buryak and B.L. Feigin

PBW-filtration over Z and Compatible Bases for VZ(λ) in Type An and Cn 35
Evgeny Feigin, Ghislain Fourier, and Peter Littelmann

On the Subgeneric Restricted Blocks of Affine Category O at the
Critical Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Peter Fiebig

Slavnov Determinants, Yang–Mills Structure Constants, and Discrete KP 85
Omar Foda and Michael Wheeler

Monodromy of Partial KZ Functors for Rational Cherednik Algebras . . 133
Iain G. Gordon and Maurizio Martino

Category of Finite Dimensional Modules over an Orthosymplectic Lie
Superalgebra: Small Rank Examples . . . . . . . . . . . . . . . . . . 155
Caroline Gruson and Vera Serganova

Monoidal Categorifications of Cluster Algebras of Type A and D . . . . . 175
David Hernandez and Bernard Leclerc

A Classification of Roots of Symmetric Kac-Moody Root Systems and
Its Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Kazuki Hiroe and Toshio Oshima

Fermions Acting on Quasi-local Operators in the XXZ Model . . . . . . . 243
Michio Jimbo, Tetsuji Miwa, and Feodor Smirnov

The Romance of the Ising Model . . . . . . . . . . . . . . . . . . . . . . . 263
Barry M. McCoy

ix



x Contents

A
(1)
n -Geometric Crystal Corresponding to Dynkin Index i = 2 and Its

Ultra-Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Kailash C. Misra and Toshiki Nakashima

A Z3-Orbifold Theory of Lattice Vertex Operator Algebra and
Z3-Orbifold Constructions . . . . . . . . . . . . . . . . . . . . . . . . 319
Masahiko Miyamoto

Words, Automata and Lie Theory for Tilings . . . . . . . . . . . . . . . . 345
Jun Morita

Toward Berenstein-Zelevinsky Data in Affine Type A, Part III: Proof of
the Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Satoshi Naito, Daisuke Sagaki, and Yoshihisa Saito

Quiver Varieties and Tensor Products, II . . . . . . . . . . . . . . . . . . 403
Hiraku Nakajima

Derivatives of Schur, Tau and Sigma Functions on Abel-Jacobi Images . . 429
Atsushi Nakayashiki and Keijiro Yori

Padé Interpolation for Elliptic Painlevé Equation . . . . . . . . . . . . . . 463
Masatoshi Noumi, Satoshi Tsujimoto, and Yasuhiko Yamada

Non-commutative Harmonic Oscillators . . . . . . . . . . . . . . . . . . . 483
Hiroyuki Ochiai

The Inversion Formula of Polylogarithms and the Riemann-Hilbert
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Shu Oi and Kimio Ueno

Some Remarks on the Quantum Hall Effect . . . . . . . . . . . . . . . . . 497
Vincent Pasquier

Ordinary Differential Equations on Rational Elliptic Surfaces . . . . . . 515
Hidetaka Sakai

On the Spectral Gap of the Kac Walk and Other Binary Collision
Processes on d-Dimensional Lattice . . . . . . . . . . . . . . . . . . . 543
Makiko Sasada

A Restricted Sum Formula for a q-Analogue of Multiple Zeta Values . . . 561
Yoshihiro Takeyama

A Trinity of the Borcherds Φ-Function . . . . . . . . . . . . . . . . . . . 575
Ken-Ichi Yoshikawa

Sum Rule for the Eight-Vertex Model on Its Combinatorial Line . . . . . 599
Paul Zinn-Justin



A Presentation of the Deformed W1+∞ Algebra

N. Arbesfeld and O. Schiffmann

Abstract We provide a generators and relation description of the deformed W1+∞-
algebra introduced in previous joint work of E. Vasserot and the second author. This
gives a presentation of the (spherical) cohomological Hall algebra of the one-loop
quiver, or alternatively of the spherical degenerate double affine Hecke algebra of
GL(∞).

1 Introduction

In the course of their work on the cohomology of the moduli space of U(r)-
instantons on P

2 in relation to W -algebras and the AGT conjecture (see [6])
E. Vasserot and the second author introduced a certain one-parameter deformation
SHc of the enveloping algebra of the Lie algebra W1+∞ of algebraic differential
operators on C

∗. The algebra SHc—which is defined in terms of Cherednik’s dou-
ble affine Hecke algebras—acts on the above mentioned cohomology spaces (with a
central character depending on the rank n of the instanton space). For the same value
of the central character, SHc is also strongly related to the affine W algebra of type
gln, and has the same representation theory (of admissible modules) as the latter.
The same algebra SHc arises again as the (spherical) cohomological Hall algebra
of the quiver with one vertex and one loop, and as a degeneration of the (spherical)
elliptic Hall algebra (see [6, Sects. 4, 8]. It also independently appears in the work
of Maulik and Okounkov on the AGT conjecture, see [5].

The definition of SHc given in [6] is in terms of a stable limit of spherical degen-
erate double affine Hecke algebras, and does not yield a presentation by generators
and relations. In this note, we provide such a presentation, which bears some resem-
blance with Drinfeld’s new realization of quantum affine algebras and Yangians.
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2 N. Arbesfeld and O. Schiffmann

Namely, we show that SHc is generated by families of elements in degrees −1,0,1,
modulo some simple quadratic and cubic relations (see Theorems 1, 2).

The definition of SHc is recalled in Sect. 2. In the short Sect. 3 we briefly recall
the links between SHc and Cherednik algebras, resp. W-algebras. The presentation
of SHc is given in Sect. 4, and proved in Sect. 5. Although we have tried to make
this note as self-contained as possible, there are multiple references to statements
in [6] and the reader is advised to consult that paper (especially Sects. 1 and 8) for
details.

2 Definition of SHc

2.1 Symmetric Functions and Sekiguchi Operators

Let κ be a formal parameter, and let us set F =C(κ). Let us denote by ΛF the ring
of symmetric polynomials in infinitely many variables with coefficients in F , i.e.

ΛF = F [X1,X2, . . .]S∞ = F [p1,p2, . . .].
For λ a partition, we denote by Jλ the integral form of the Jack polynomial associ-
ated to λ and to the parameter α = 1/κ . The integral form Jλ is characterized by the
following relation:

Jλ ∈
⊕

(1n)<μ�λ

Fmμ + |λ|!m(1n)

where mμ denotes the monomial symmetric function associated to a partition μ.
It is well-known that {Jλ} forms a basis of ΛF (see e.g. [7], or [6, Sects. 1.3,

1.6]). The polynomials Jλ arise as the joint spectrum of a family of commuting
differential operators {D0,l}, l ≥ 1 called Sekiguchi operators. We will not need the
expression of D0,l as a differential operator, but only their eigenvalues on the basis
of Jack polynomials (which, of course, fully characterizes them):

D0,l(Jλ)=
∑

s∈λ
c(s)l−1Jλ (1)

where s runs through the set of boxes in the partition λ, and where c(s) = x(s)−
κy(s) is the content of s. Here x(s), y(s) denote the x and y-coordinates of the box
s, when λ is drawn according to the continental convention. For example, for the
box s in the partition (5,42,2,1) depicted below

s
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we have x(s)= 3 and y(s)= 1 hence c(s)= 3− κ .
We denote by Dl,0 ∈ End(ΛF ) the operator of multiplication by the power-sum

function pl .

2.2 The Algebras SH+ and SH>

Let SH+ be the unital subalgebra of End(ΛF ) generated by {D0,l ,Dl,0 | l � 1}. For
l ≥ 1 we set D1,l = [D0,l+1,D1,0]. This relation is still valid when l = 0, and we
furthermore have

[D0,l ,D1,k] =D1,k+l−1, l � 1, k � 0. (2)

We denote by SH> the unital subalgebra of SH+ generated by {D1,l | l � 0},
and by SH0 the unital subalgebra of SH+ generated by the Sekiguchi operators
{D0,l | l � 1}. It is known (and easy to check from (1)) that the D0,l are algebraically
independent, i.e. SH0 = F [D0,1,D0,2, . . .].

Observe that by (2), the operators ad(D0,l) preserve the subalgebra SH>. This
allows us to view SH+ as a semi-direct product of SH0 and SH>. In fact, the mul-
tiplication map induces an isomorphism

SH> ⊗ SH0 � SH+ (3)

(see [6, Proposition 1.18]).

2.3 Grading and Filtration

The algebra SH+ carries an N-grading, defined by setting D0,l , D1,k in degrees zero
and one respectively. This grading, which corresponds to the degrees as operators
on polynomials will be called the rank grading. It also carries an N-filtration com-
patible with the rank grading, induced from the filtration by the order of differential
operators. It may alternatively be characterized as follows, see [6, Proposition 1.2]:
SH+[� d] is the space of elements u ∈ SH> satisfying

ad(z1) ◦ · · · ◦ ad(zd+1)(u)= 0

for all z1, . . . , zd+1 ∈ F [D1,0,D2,0, . . .]. We have SH>[� 0] = F [D1,0,D2,0, . . .].
The following is proved in [6, Lemma 1.21]. Set Dr,d = [D0,d+1,Dr,0] for
r ≥ 1, d ≥ 0.

Proposition 1 (i) The associated graded algebra gr SH+ is equal to the free com-
mutative polynomial algebra in the generators Dr,d ∈ gr SH+[r, d], for r � 0, d �
0, (r, d) 	= (0,0).

(ii) The associated graded algebra gr SH> is equal to the free commutative poly-
nomial algebra in the generators Dr,d ∈ gr SH+[r, d], for r � 1, d � 0.
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We will need the following slight variant of the above result, which can easily be
deduced from [6, Proposition 1.38]. For r � 1, set D′

r,d = ad(D0,2)
d(Dr,0). Then

D′
r,d ∈ rd−1Dr,d ⊕ SH>[r,� d − 1]. (4)

In particular, gr SH> is also freely generated by the elements D′
r,d ∈ gr SH>[r, d].

2.4 The Algebra SHc

Let SH< be the opposite algebra of SH>. We denote the generator of SH> cor-
responding to D1,l by D−1,l . The algebra SHc is generated by SH>,SH0,SH<

together with a family of central elements c= (c0, c1, . . .) indexed by N, modulo a
certain set of relations involving the commutators [D−1,k,D1,l] (see [6, Sect. 1. 8]).
In order to write down these relations, we need a few notations. Set ξ = 1− κ and

G0(s)=−log(s), Gl(s)=
(
s−1 − 1

)
/l, l � 1,

ϕl(s)=
∑

q=1,−ξ,−κ

sl
(
Gl(1− qs)−Gl(1+ qs)

)
, l � 1,

φl(s)= slGl(1+ ξs).

We may now define SHc as the algebra generated by SH>,SH<,SH0 and
F [c0, c1, . . .] modulo the following relations:

[D0,l ,D1,k] =D1,k+l−1, [D−1,k,D0,l] =D−1,k+l−1, (5)

[D−1,k,D1,l] =Ek+l , l, k � 0, (6)

where the elements Eh are determined through the formulas

1+ ξ
∑

l�0

Els
l+1 = exp

(∑

l�0

(−1)l+1clφl(s)

)
exp

(∑

l�0

D0,l+1ϕl(s)

)
. (7)

Set SH0,c = SH0⊗F [c0, c1, . . .]. One can show that the multiplication map pro-
vides an isomorphism of F -vector spaces

SH> ⊗ SH0,c ⊗ SH< � SHc.

Putting the generators D±1,k in degree±1 and the generators D0,l , ci in degree zero
induces an Z-grading on SHc. One can show that the order filtration on SH>,SH<

can be extended to a filtration on the whole SHc, but we won’t need this last fact.
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3 Link to W-Algebras, Cherednik Algebras and Shuffle Algebras

3.1 Relation the Cherednik Algebras

Let ω be a new formal parameter and let SHω be the specialization of SH at
c0 = 0, ci = −κiωi . Let Hn be Cherednik’s degenerate (or trigonometric) double
affine Hecke algebra with parameter κ (see [2]). Let SHn ⊂Hn be its spherical sub-
algebra. The following result shows that SHω may be thought of as the stable limit
of SHn as n goes to infinity (see [6, Sect. 1.7]):

Theorem For any n there exists a surjective algebra homomorphism Φn : SHω →
SHn such that Φn(ω)= n. Moreover

⋂
n KerΦn = {0}.

3.2 Realization as a Shuffle Algebra

Consider the rational function

g(z)= h(z)

z
, h(z)= (z+ 1− κ)(z− 1)(z+ κ).

Following [3], we may associate to g(z) an N-graded associative F -algebra Ag(z),
the symmetric shuffle algebra of g(z) as follows. As a vector space,

Ag(z) =
⊕

n�0

Ag(z)[n], Ag(z)[n] = F [z1, . . . , zn]Sn

with multiplication given by

P(z1, . . . , zr ) � Q(z1, . . . , zs)

=
∑

σ∈Shr,s

σ ·
( ∏

1�i�r
r+1�j�r+s

g(zi − zj ) · P(z1, . . . , zr )Q(zr+1, . . . , zr+s)

)

where Shr,s ⊂Sr+s is the set of (r, s) shuffles inside the symmetric group Sr+s . Let
Sg(z) ⊆ Ag(z) denote the subalgebra generated by Ag(z)[1] = F [z1]. The restriction
of the grading on Ag(z) yields a grading Sg(z) =⊕n�0 Sg(z)[n]. The following is
proved in [6, Cor. 6.4]:

Theorem The assignment Sg(z)[1] � zl1 �→D1,l , l � 0 induces an isomorphism of
F -algebras

Sg(z)
∼−→ SH>.
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Remark The normalization used here differs slightly from [6]. Namely, the isomor-
phism in [6, Cor. 6.4] is between SH> and the shuffle algebra associated to the
rational function 1

z
(z + x + y)(z − x)(z − y), where x and y are formal parame-

ters satisfying κ = −y/x. In the present note, we have applied the transformation
z �→ z/x, yielding the above isomorphism.

3.3 Relation to W -Algebras

Let W1+∞ be the universal central extension of the Lie algebra of all differential
operators on C

∗ (see e.g. [4]). This is a Z-graded and N-filtered Lie algebra. The
following result shows that SH may be thought of as a deformation of the universal
enveloping algebra U(W1+∞) of W1+∞ (see [6, Appendix F]):

Theorem The specialization of SHc at κ = 1 and ci = 0 for i � 1 is isomorphic to
U(W1+∞).

More interesting is the fact that, for certain good choices of the parameters
c0, c1, . . . , a suitable completion of SHc is isomorphic to the current algebra of
the (affine) W -algebra W(glr ) (see e.g. [1, Sect. 3.11]). We will not need this result,
so we are a bit vague here and refer to [6, Sect. 8] for the full details. Fix an inte-
ger r � 1, k ∈C and let (ε1, . . . , εr ) be new formal parameters. Let U(Wk(glr ))

′ be
the formal current algebra of W(glr ) at level k, defined over the field F(ε1, . . . , εr )

(see [6, Sect. 8.4] for details). Let SH(r) be the specialization of SHc to κ = k + r ,
ci = εi1 + · · · + εir for i � 0. The following is proved in [6, Cor. 8.24], to which we
refer for details.

Theorem There is an embedding SH(r) → U(Wk(glr ))
′ with a dense image, which

induces an equivalence between the category of admissible SH(r)-modules and the
category of admissible U(Wk(glr ))

′-modules.

4 Presentation of SH+ and SHc

4.1 Generators and Relations for SH+

Consider the F -algebra S̃H
+

generated by elements {D̃0,l | l � 1} and {D̃1,k | k � 0}
subject to the following set of relations:

[D̃0,l , D̃0,k] = 0, ∀l, k � 1, (8)

[D̃0,l , D̃1,k] = D̃1,l+k−1, ∀l � 1, k � 0, (9)
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(
3[D̃1,2, D̃1,1]− [D̃1,3, D̃1,0]+ [D̃1,1, D̃1,0]

)+ κ(κ − 1)
(
D̃2

1,0+[D̃1,1, D̃1,0]
)= 0,

(10)
[
D̃1,0, [D̃1,0, D̃1,1]

]= 0. (11)

Let S̃H
0 = F [D̃0,1, D̃0,2, . . .] denote the subalgebra of S̃H

+
generated by D̃0,l ,

l � 1, and let S̃H
>

be the subalgebra generated by D̃1,k, k � 0. The algebras S̃H
+

,

S̃H
0
, S̃H

>
are all N-graded, where D̃0,l and D̃1,k are placed in degrees zero and

one respectively. According to the terminology used for SH+, we call this grading
the rank grading.

Theorem 1 The assignment D̃0,l �→D0,l , D̃1,k �→D1,k for l � 1, k � 0 induces an
isomorphism of graded F -algebras

φ : S̃H
+ ∼−→ SH+.

Obviously, the map φ restricts to isomorphisms S̃H
0 � SH0, S̃H

> � SH>. Note
however that S̃H

>
is not generated by the elements D̃1,k with the sole relations (10),

(11). Theorem 1 is proved in Sect. 5.

4.2 Generators and Relations for SHc

For the reader’s convenience, we write down the presentation of SHc, an immediate
corollary of Theorem 1 above. Let S̃H

c
be the algebra generated by elements {D̃0,l |

l � 1}, {D̃±1,k | k � 0} and {c̃i | i � 0} subject to the following set of relations:

[D̃0,l , D̃0,k] = 0, ∀l, k � 1, (12)

[D̃0,l , D̃1,k] = D̃1,l+k−1, [D̃−1,k, D̃0,l] = D̃−1,l+k−1, ∀l � 1, k � 0, (13)

(
3[D̃1,2, D̃1,1]− [D̃1,3, D̃1,0]+ [D̃1,1, D̃1,0]

)+ κ(κ − 1)
(
D̃2

1,0+[D̃1,1, D̃1,0]
)= 0,

(14)

(
3[D̃−1,2, D̃−1,1] − [D̃−1,3, D̃−1,0] + [D̃−1,1, D̃−1,0]

)

+ κ(κ − 1)
(−D̃2

1,0 + [D̃−1,1, D̃−1,0]
)= 0, (15)

[
D̃1,0, [D̃1,0, D̃1,1]

]= 0,
[
D̃−1,0, [D̃−1,0, D̃−1,1]

]= 0, (16)

[D̃−1,k, D̃1,l] = Ẽk+l , l, k � 0, (17)

where the Ẽl are defined by the formula (7).
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Theorem 2 The assignment D̃0,l �→ D0,l , D̃±1,k �→ D±1,k for l � 1, k � 0 and
c̃i �→ ci for i � 0 induces an isomorphism of F -algebras

φ : S̃H
c ∼−→ SHc.

Coupled with the Theorems in Sect. 3.3, this provides a potential’generators and
relations’ approach to the study of the category of admissible modules over the W-
algebras Wk(glr ).

5 Proof of Theorem 1

5.1 First Reductions

Let us first observe that φ is a well-defined algebra map, i.e. that relations (8)–(11)
hold in SH+. For (8), (9) this follows from the definition of SH+ and [6, (1.38)].
Equation (10) may be checked directly, e.g. from the Pieri rules (see [6, (1.26)]), or
from the shuffle realization of SH> (see Sect. 5.2 below). As for Eq. (11), we have
by [6, (1.35)], [[D1,1,D1,0],D1,0] = [D2,0,D1,0] = 0. The map φ is surjective by
construction; in the rest of the proof, we show that it is injective as well.

Using relation (9) it is easy to see that any monomial in the generators D̃0,l , D̃1,k
may be expressed as a linear combination of similar monomials, in which all D̃0,l

appear on the right of all D̃1,k . Hence the multiplication map S̃H
> ⊗ S̃H

0 → S̃H
+

is surjective. Since φ clearly restricts to an isomorphism S̃H
0 � SH0 we only have

to show, by (3), that φ restricts to an isomorphism S̃H
> � SH>. Our strategy will

be to construct a suitable filtration on S̃H
>

mimicking the order filtration of SH>

and to pass to the associated graded algebras.

5.2 Verification in Ranks One and Two

We begin by proving directly, using the shuffle realization of SH>, that φ is an
isomorphism in ranks one and two. This is obvious in rank one since φ is a graded
map and the only relation in rank one is (9).

Suppose
∑

αiD1,kiD1,li = 0 is a relation in rank two. The shuffle realization
then implies

∑
αiz

ki � zli = 0 so that

h(z1 − z2)
(∑

αiz
ki
1 z

li
2

)
= h(z2 − z1)

(∑
αiz

li
1 z

ki
2

)
.

Therefore
∑

αiz
ki
1 z

li
2 = h(z2 − z1)P (z1, z2) where P(z1, z2) is some symmetric

polynomial in z1, z2. Hence
∑

αiz
ki
1 z

li
2 is a linear combination of polynomials of
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the form h(z2− z1)(z
k
1z

l
2+ zl1z

l
2k) so that

∑
αiD1,kiD1,li is a linear combination of

expressions of the form

3[D1,l+2,D1,k+1] − 3[D1,l+1,D1,k+2]
− [D1,l+3,D1,k] + [D1,l ,D1,k+3] + [D1,l+1,D1,k] − [D1,l ,D1,k+1]
+ κ(κ − 1)

(
D1,kD1,l +D1,lD1,k + [D1,l+1,D1,k] − [D1,l ,D1,k+1]

)
. (18)

If I denotes the image of (10) under the action of F [ad D̃0,2,ad D̃0,3, . . .] then using
(9) we see that each such expression lies in φ(I) so that φ is indeed an isomorphism
in rank two.

We remark that the relations (18) may be written in a more standard way using
the generating functions D(z)=∑l D1,lz

−l as follows:

k(z−w)D(z)D(w)=−k(w− z)D(w)D(z) (19)

where k(u) = (u − 1 + κ)(u + 1)(u − κ) = −h(−u). In particular, the defining
relation (10) may be replaced by the above (19), of which it is a special case.

5.3 The Order Filtration on ˜SH
>

We now turn to the definition of the analog, on S̃H
>

, of the order filtration on SH>.
We will proceed by induction on the rank r . For r = 1, d � 0, we set

S̃H
>[1,� d] =

⊕

k�d

F D̃1,k.

Assuming that S̃H
>[r ′,� d ′] has been defined for all r ′ < r we let S̃H

>[r,� d] be
the subspace spanned by all products

S̃H
>[

r ′,� d ′
] · S̃H

>[
r ′′,� d ′′

]
, r ′ + r ′′ = r, d ′ + d ′′ = d

and by the spaces

ad(D̃1,l)
(
S̃H

>[r − 1,� d − l + 1]), l = 0, . . . , d + 1.

From the above definition, it is clear that S̃H
>

is a Z-filtered algebra. Note that
it is not obvious at the moment that S̃H

>[r,� d] = {0} for d < 0. Because the
associated graded gr SH> is commutative, it follows by induction on the rank r

that φ : S̃H
> → SH> is a morphism of filtered algebras. We denote by gr S̃H

>
the

associated graded of S̃H
>

and we let φ : gr S̃H
> → gr SH be the induced map. The

map φ is graded with respect to both rank and order. Moreover φ is an isomorphism
in ranks 1 and 2 (indeed, that the filtration as defined above coincides with the order
filtration in rank 2 can be seen directly from [6, (1.84)]). The rest of the proof of
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Theorem 1 consists in checking that φ is an isomorphism. Once more, we will argue
by induction. So in the remainder of the proof, we fix an integer r � 3 and assume
that φ is an isomorphism in ranks r ′ < r .

5.4 Commutativity of the Associated Graded

By our assumption above, the algebra gr S̃H
>

is commutative in ranks less than
r , that is ab = ba whenever rank(a)+ rank(b) < r . Our first task is to extend this
property to the rank r .

Lemma 1 The algebra gr S̃H
>

is commutative in rank r .

Proof We have to show that for a ∈ S̃H
>[r1,� d1], b ∈ S̃H

>[r2,� d2] and r1 +
r2 = r we have

[a, b] ∈ S̃H
>[r,� d1 + d2 − 1]. (20)

We argue by induction on r1. If r1 = 1 then (20) holds by definition of the filtration.
Now let r1 > 1 and let us further assume that (20) is valid for all r ′1, r ′2 with r ′1+r ′2 =
r and r ′1 < r1. We will now prove (20) for r1, r2, thereby completing the induction
step. According to the definition of the filtration, there are two cases to consider:

Case 1 We have a = a1a2 with a1 ∈ S̃H
>[s′,� d ′], a2 ∈ S̃H

>[s′′,� d ′′] such
that s′ + s′′ = r1, d

′ +d ′′ = d1. Then [a, b] = a1[a2, b]+[a1, b]a2. By our induction
hypothesis on r , [a2, b] ∈ S̃H

>[s′′ + r2,� d ′′ + d2− 1] hence a1[a2, b] ∈ S̃H
>[r,�

d1 + d2 − 1]. The term [a1, b]a2 is dealt with in a similar fashion.
Case 2 We have a = [D̃1,l , a

′]with a′ ∈ S̃H
>[r1−1,� d1− l+1]. Then [a, b] =

[[D̃1,l , a
′], b] = [D̃1,l , [a′, b]] − [a′, [D̃1,l , b]]. By our induction hypothesis on r ,

[a′, b] ∈ S̃H
>[r1+ r2−1,� d1+d2− l] hence [D̃1,l , [a′, b]] ∈ S̃H

>[r,� d1+d2−
1]. Similarly, [D̃1,l , b] ∈ S̃H

>[r2 + 1,� d2 + l − 1]. The inclusion [a′, [D̃1,l , b]] ∈
S̃H

>[r,� d1 + d2 − 1] now follows from the induction hypothesis on r1.
We are done. �

5.5 The Degree Zero Component

We now focus on the filtered piece of order � 0 of S̃H
>

. We inductively define
elements D̃l,0 for l � 2 by

D̃l,0 = 1

l − 1
[D̃1,1, D̃l−1,0].

From [6, (1.35)] we have φ(D̃l,0)=Dl,0. Since we assume are assuming that φ is
an isomorphism in ranks less than r , we have [D̃l,0, D̃l′,0] = 0 whenever l + l′ < r .
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Lemma 2 We have [D̃l,0, D̃l′,0] = 0 for l + l′ = r .

Proof If r = 3 this reduces to the cubic relation (11). For r = 4 we have to consider

[D̃3,0, D̃1,0] = 1

2

[[D̃1,1, D̃2,0], D̃1,0
]

= 1

2

[
D̃1,1, [D̃2,0, D̃1,0]

]− 1

2

[
D̃2,0, [D̃1,1, D̃1,0]

]

= −1

2
[D̃2,0, D̃2,0] = 0.

Now let us fix l, l′ with l + l′ = r . We have

[D̃l,0, D̃l′,0] = 1

l − 1

[[D̃1,1, D̃l−1,0], D̃l′,0
]

= 1

l − 1

[
D̃1,1, [D̃l−1,0, D̃l′,0]

]− 1

l − 1

[
D̃l−1,0, [D̃1,1, D̃l′,0]

]

= − l′

l − 1
[D̃l−1,0, D̃l′+1,0]. (21)

If r = 2k is even then by repeated use of (21) we get

[D̃l,0, D̃l′,0] = c[D̃k, D̃k] = 0

for some constant c. Next, suppose that r = 2k + 1 is odd, with k � 2. Applying
ad(D̃1,1) to [D̃k+1,0, D̃k−1,0] = 0 yields the relation

(k + 1)[D̃k+2,0, D̃k−1,0] + (k − 1)[D̃k+1,0, D̃k,0] = 0. (22)

Similarly, applying ad(D̃2,1) to [D̃k,0, D̃k−1,0] = 0 and using the relation [Dk,1,

Dl,0] = klDl+k,0 in SH> (see [6, (1.91), (8.47)]) we obtain the relation

k[D̃k+2,0, D̃k−1,0] + (k − 1)[D̃k,0, D̃k+1,0] = 0. (23)

Equations (22) and (23) imply that [D̃k+2,0, D̃k−1,0] = [D̃k+1,0, D̃k,0] = 0. The gen-
eral case of [D̃l,0, D̃l′,0] = 0 is now deduced, as in the case r = 2k, from repeated
use of (21). �

Note that Lemma 2 above implies that S̃H
>[r,�−1] = {0}.

5.6 Completion of the Induction Step

Recall that gr SH> is a free polynomial algebra in generators in the generators D′
s,d

for s � 1, d � 0. In order to prove that φ is an isomorphism in rank r , it suffices, in
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virtue of Lemma 1, to show that the factor space

Ur,d = gr S̃H
>[r, d] /

{ ∑

r ′+r ′′=r
d ′+d ′′=d

gr S̃H
>[

r ′, d ′
] · gr S̃H

>[
r ′′, d ′′

]}

is one dimensional for any d � 0. Let us set, for any s � 1, d � 0

D̃′
s,d = ad(D̃0,2)

d(D̃s,0) ∈ S̃H
>[s,� d].

We will denote by the same symbol D̃′
s,d the corresponding element of gr S̃H

>[s, d].
Note that D̃′

s,0 = D̃s,0 We claim that in fact Ur,d = FD̃′
r,d . Observe that φ(D̃′

s,d )=
D′

s,d for any s, d , hence D̃′
s,d ∈Us,d for any s � r, d � 0. Moreover, by our general

induction hypothesis on r we have Us,d = FD̃′
s,d for any s < r and d � 0.

We will prove that Ur,d = FD̃′
r,d by induction on d . For d = 0, this comes from

Lemma 2. So fix d > 0 and let us assume that Ur,l = FD̃′
r,l for all l < d . By defini-

tion of the filtration on S̃H
>

, Ur,d is linearly spanned by the classes of the elements

[
D̃1,0, D̃

′
r−1,d+1

]
,
[
D̃1,1, D̃

′
r−1,d

]
, . . . ,

[
D̃1,d+1, D̃

′
r−1,0

]
.

By our induction hypothesis on d , the elements

[
D̃1,0, D̃

′
r−1,d

]
,
[
D̃1,1, D̃

′
r−1,d−1

]
, . . . ,

[
D̃1,d , D̃

′
r−1,0

]

all belong to FD̃′
r,d−1 ⊕ S̃H

>[r,� d − 2]. Applying ad(D̃0,2), we see that

[
D̃1,0, D̃

′
r−1,d+1

]+ [D̃1,1, D̃
′
r−1,d

]
, . . . ,

[
D̃1,d , D̃

′
r−1,1

]+ [D̃1,d+1, D̃
′
r−1,0

]
(24)

all belong to FD̃′
r,d ⊕ S̃H

>[r,� d − 1]. Next, applying ad(D̃0,d+2) to the equality

[D̃1,0, D̃r−1,0] = 0 yields

[D̃1,0, D̃r−1,d+1] + [D̃1,d+1, D̃r−1,0] = 0

which implies, by (4), that

[
D̃1,0, D̃

′
r−1,d+1

]+ rd [D̃1,d+1, D̃r−1,0]
∈ [D̃1,0, S̃H

>[r − 1,� d]]⊆ S̃H
>[r,� d − 1]. (25)

The collection of inclusions (24), (25) may be considered as a system of linear equa-
tions in Ur,d modulo FD̃′

r,d in the variables [D̃1,0, D̃
′
r−1,d+1], . . . , [D̃1,d+1, D̃

′
r−1,0]



A Presentation of the Deformed W1+∞ Algebra 13

whose associated matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1
1 1 · · · 0 0

0 1
. . .

...
...

...
...

. . . 1 0
0 0 · · · 1 −rd

⎞

⎟⎟⎟⎟⎟⎟⎠

is invertible. We deduce that [D̃1,0, D̃
′
r−1,d+1], . . . , [D̃1,d+1, D̃

′
r−1,0] all belong to

the space FD̃′
r,d ⊕ S̃H

>[r,� d − 1] as wanted. This closes the induction step on d .

We have therefore proved that Ur,d = FD̃′
r,d for all d � 0, and hence that φ and φ is

an isomorphism in rank r . This closes the induction step on r . Theorem 1 is proved.
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Generating Series of the Poincaré Polynomials
of Quasihomogeneous Hilbert Schemes

A. Buryak and B.L. Feigin

Abstract In this paper we prove that the generating series of the Poincaré polyno-
mials of quasihomogeneous Hilbert schemes of points in the plane has a beautiful
decomposition into an infinite product. We also compute the generating series of
the numbers of quasihomogeneous components in a moduli space of sheaves on
the projective plane. The answer is given in terms of characters of the affine Lie
algebra ŝlm.

1 Introduction

The Hilbert scheme (C2)[n] of n points in the plane C
2 parametrizes ideals I ⊂

C[x, y] of colength n: dimCC[x, y]/I = n. There is an open dense subset of
(C2)[n], that parametrizes the ideals, associated with configurations of n distinct
points. The Hilbert scheme of n points in the plane is a nonsingular, irreducible,
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quasiprojective algebraic variety of dimension 2n with a rich and much studied ge-
ometry, see [9, 22] for an introduction.

The cohomology groups of (C2)[n] were computed in [6] and we refer the reader
to the papers [5, 15–17, 24] for the description of the ring structure in the cohomol-
ogy H ∗((C2)[n]).

There is a (C∗)2-action on (C2)[n] that plays a central role in this subject.
The algebraic torus (C∗)2 acts on C

2 by scaling the coordinates, (t1, t2) · (x, y) =
(t1x, t2y). This action lifts to the (C∗)2-action on the Hilbert scheme (C2)[n].

Let Tα,β = {(tα, tβ) ∈ (C∗)2|t ∈ C
∗}, where α,β ≥ 1 and gcd(α,β) = 1, be a

one dimensional subtorus of (C∗)2. The variety ((C2)[n])Tα,β parametrizes quasi-
homogeneous ideals of colength n in the ring C[x, y]. Irreducible components of
((C2)[n])Tα,β were described in [7]. Poincaré polynomials of irreducible components
in the case α = 1 were computed in [3]. For α = β = 1 it was done in [12].

For a manifold X let H∗(X) denote the homology group of X with rational co-

efficients. Let Pq(X) =∑
i≥0 dimHi(X)q

i
2 . The main result of this paper is the

following theorem (it was conjectured in [3]):

Theorem 1

∑

n≥0

Pq

(((
C

2)[n])Tα,β
)
tn =

∏

i≥1
(α+β)�i

1

1− t i

∏

i≥1

1

1− qt(α+β)i
. (1)

There is a standard method for constructing a cell decomposition of the Hilbert
scheme ((C2)[n])Tα,β using the Bialynicki-Birula theorem. In this way the Poincaré
polynomial of this Hilbert scheme can be written as a generating function for a cer-
tain statistic on Young diagrams of size n. However, it happens that this combina-
torial approach doesn’t help in a proof of Theorem 1. In fact, we get very nontrivial
combinatorial identities as a corollary of this theorem, see Sect. 1.1.

We can describe the main geometric idea in the proof of Theorem 1 in the fol-
lowing way. The irreducible components of ((C2)[n])Tα,β can be realized as fixed
point sets of a C

∗-action on cyclic quiver varieties. Theorem 4 tells us that the Betti
numbers of the fixed point set are equal to the shifted Betti numbers of the quiver
variety. Then known results about cohomology of quiver varieties can be used for a
proof of Theorem 1.

In principle, Theorem 4 has an independent interest. However, there is another
application of this theorem. In [4] we studied the generating series of the numbers
of quasihomogeneous components in a moduli space of sheaves on the projective
plane. Combinatorially we managed to compute it only in the simplest case. Now
using Theorem 4 we can give an answer in a general case, this is Theorem 5. We
show that it proves our conjecture from [4].
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Fig. 1 Arms and legs in a
Young diagram

1.1 Combinatorial Identities

Here we formulate two combinatorial identities that follow from Theorem 1. We
denote by Y the set of all Young diagrams. For a Young diagram Y let

rl(Y )= ∣∣{(i, j) ∈ Y |j = l
}∣∣,

cl(Y )= ∣∣{(i, j) ∈ Y |i = l
}∣∣.

For a point s = (i, j) ∈ Z
2≥0 let

lY (s)= rj (Y )− i − 1,

aY (s)= ci(Y )− j − 1,

see Fig. 1. Note that lY (s) and aY (s) are negative, if s /∈ Y .
The number of boxes in a Young diagram Y is denoted by |Y |.

Theorem 2 Let α and β be two arbitrary positive coprime integers. Then we have

∑

Y∈Y
q�{s∈Y |αl(s)=β(a(s)+1)}t |Y | =

∏

i≥1
(α+β)�i

1

1− t i

∏

i≥1

1

1− qt(α+β)i
.

In the case α = β = 1 another identity can be derived from Theorem 1. The
q-binomial coefficients are defined by

[
M

N

]

q

=
∏M

i=1(1− qi)
∏N

i=1(1− qi)
∏M−N

i=1 (1− qi)
.

By P we denote the set of all partitions. For a partition λ= (λ1, λ2, . . . , λr ), λ1 ≥
λ2 ≥ · · · ≥ λr , let |λ| =∑r

i=1 λi .

Theorem 3

∑

λ∈P

∏

i≥1

[
λi − λi+2 + 1

λi+1 − λi+2

]

q

t
λ1(λ1−1)

2 +|λ| =
∏

i≥1

1

(1− t2i−1)(1− qt2i )
.
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Here for a partition λ= (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr , we adopt the con-
vention λ>r = 0.

1.2 Cyclic Quiver Varieties

Quiver varieties were introduced by H. Nakajima in [20]. Here we review the con-
struction in the particular case of cyclic quiver varieties. We follow the approach
from [21].

Let m ≥ 2. We fix vector spaces V0,V1, . . . , Vm−1 and W0,W1, . . . ,Wm−1 and
we denote by

v = (dimV0, . . . ,dimVm−1),w = (dimW0, . . . ,dimWm−1) ∈ Z
m
≥0

the dimension vectors. We adopt the convention Vm = V0. Let

M(v,w)=
(

m−1⊕

k=0

Hom(Vk,Vk+1)

)
⊕
(

m−1⊕

k=0

Hom(Vk,Vk−1)

)

⊕
(

m−1⊕

k=0

Hom(Wk,Vk)

)
⊕
(

m−1⊕

k=0

Hom(Vk,Wk)

)
.

The group Gv =∏m−1
k=0 GL(Vk) acts on M(v,w) by

g · (B1,B2, i, j) �→
(
gB1g

−1, gB2g
−1, gi, jg−1).

The map μ : M(v,w)→⊕m−1
k=0 Hom(Vk,Vk) is defined as follows

μ(B1,B2, i, j)= [B1,B2] + ij.

Let

μ−1(0)s =
{
(B, i, j) ∈ μ−1(0)

∣∣∣ if a collection of subspaces Sk ⊂ Vk

is B-invariant and contains Im(i), then Sk = Vk

}
.

The action of Gv on μ−1(0)s is free. The quiver variety M(v,w) is defined as the
quotient

M(v,w)= μ−1(0)s/Gv,

see Fig. 2.
The variety M(v,w) is irreducible (see e.g. [21]).
We define the (C∗)2 × (C∗)m-action on M(v,w) as follows:

(t1, t2, ek) · (B1,B2, ik, jk)=
(
t1B1, t2B2, e

−1
k ik, t1t2ekjk

)
.
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Fig. 2 Cyclic quiver variety M(v,w)

1.3 C
∗-Action on M(v,w)

In this section we formulate Theorem 4 that is a key step in the proofs of Theorems 1
and 5.

Let α and β be any two positive coprime integers, such that α + β =m. Define
the integers λ0, λ1, . . . , λm−1 ∈ [−(m− 1),0] by the formula λk ≡−αk modm. We
define the one-dimensional subtorus T̃α,β ⊂ (C∗)2 × (C∗)m by

T̃α,β =
{(

tα, tβ, tλ0, tλ1, . . . , tλm−1
) ∈ (C∗)2 × (C∗)m|t ∈C

∗}.

For a manifold X we denote by HBM∗ (X) the homology group of possibly infinite
singular chains with locally finite support (the Borel-Moore homology) with rational

coefficients. Let PBM
q (X)=∑i≥0 dimHBM

i (X)q
i
2 .

Theorem 4 The fixed point set M(v,w)T̃α,β is compact and

PBM
q

(
M(v,w)

)= q
1
2 dimM(v,w)Pq

(
M(v,w)T̃α,β

)
.
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1.4 Quasihomogeneous Components in the Moduli Space of
Sheaves

Here we formulate our result that relates the numbers of quasihomogeneous com-
ponents in a moduli space of sheaves with characters of the affine Lie algebra ŝlm.

The moduli space M(r, n) is defined as follows (see e.g. [22]):

M(r, n)=
{
(B1,B2, i, j)

∣∣∣∣∣

(1) [B1,B2]+ij=0
(2) (stability) There is no subspace

S �C
n such that Bα(S)⊂ S (α = 1,2)

and Im(i)⊂ S

}/
GLn(C),

where B1,B2 ∈ End(Cn), i ∈ Hom(Cr ,Cn) and j ∈ Hom(Cn,Cr ) with the action
of GLn(C) given by

g · (B1,B2, i, j)=
(
gB1g

−1, gB2g
−1, gi, jg−1),

for g ∈GLn(C).
The variety M(r, n) has another description as the moduli space of framed tor-

sion free sheaves on the projective plane, but for our purposes the given definition
is better. We refer the reader to [22] for details. The variety M(1, n) is isomorphic
to (C2)[n] (see e.g. [22]).

Define the (C∗)2 × (C∗)r -action on M(r, n) by

(t1, t2, e) ·
[
(B1,B2, i, j)

]= [(t1B1, t2B2, ie
−1, t1t2ej

)]
.

Consider two positive coprime integers α and β and a vector

ω= (ω1,ω2, . . . ,ωr) ∈ Z
r

such that 0 ≤ ωi < α + β . Let T ω
α,β be the one-dimensional subtorus of (C∗)2 ×

(C∗)r defined by

T ω
α,β =

{(
tα, tβ, tω1, tω2, . . . , tωr

) ∈ (C∗)2 × (C∗)r |t ∈C
∗}.

In [4] we studied the numbers of the irreducible components of M(r, n)
T ω
α,β and

found an answer in the case α = β = 1. Now we can solve the general case.
We define the vector ρ = (ρ0, ρ1, . . . , ρα+β−1) ∈ Z

α+β

≥0 by ρi = �{j |ωj = i} and

the vector μ ∈ Z
α+β

≥0 by μi = ρ−iα modα+β .

Let Ek,Fk,Hk , k = 1,2, . . . , α + β , be the standard generators of ŝlα+β . Let V
be the irreducible highest weight representation of ŝlα+β with the highest weight μ.
Let x ∈ V be the highest weight vector. We denote by Vp the vector subspace of V
generated by vectors Fi1Fi2 . . . Fipx. The character χμ(q) is defined by

χμ(q)=
∑

p≥0

(dimVp)q
p.

We denote by h0(X) the number of connected components of a manifold X.
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Theorem 5
∑

n≥0

h0
(
M(r, n)

T ω
α,β
)
qn = χμ(q).

In [14] the authors found a combinatorial formula for characters of ŝlm in terms
of Young diagrams with certain restrictions. In [8] the same combinatorics is used
to give a formula for certain characters of the quantum continuous gl∞. Compar-
ing these two combinatorial formulas it is easy to see that Conjecture 1.2 from [4]
follows from Theorem 5.

Remark 1 There is a small mistake in Conjecture 1.2 from [4]. The vector a′ =
(a′0, a′1, . . . , a′α+β−1) should be defined by a′i = a−αi modα+β . The rest is correct.

1.5 Organization of the Paper

We prove Theorem 4 in Sect. 2. Then using this result we prove Theorem 1
in Sect. 3. In Sect. 4 we derive the combinatorial identities as a corollary of Theo-
rem 1. Finally, using Theorem 4 we prove Theorem 5 in Sect. 5.

2 Proof of Theorem 4

In this section we prove Theorem 4. The Grothendieck ring of quasiprojective vari-
eties is a useful technical tool and we remind its definition and necessary properties
in Sect. 2.1.

2.1 Grothendieck Ring of Quasiprojective Varieties

The Grothendieck ring K0(νC) of complex quasiprojective varieties is the abelian
group generated by the classes [X] of all complex quasiprojective varieties X mod-
ulo the relations:

1. if varieties X and Y are isomorphic, then [X] = [Y ];
2. if Y is a Zariski closed subvariety of X, then [X] = [Y ] + [X\Y ].
The multiplication in K0(νC) is defined by the Cartesian product of varieties: [X1] ·
[X2] = [X1 ×X2]. The class [A1

C
] ∈K0(νC) of the complex affine line is denoted

by L.
We need the following property of the ring K0(νC). There is a natural homomor-

phism of rings θ : Z[z] →K0(νC), defined by θ(z)= L. This homomorphism is an
inclusion (see e.g. [18]).
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2.2 Proof of Theorem 4

Let r =∑m−1
i=0 θi . For an arbitrary ν ∈ Z

r let Γ ν
α,β ⊂ T ν

α,β be the subgroup of roots
of 1 of degree m. Let

θ = (0, . . . ,0︸ ︷︷ ︸
w0 times

, λ1, . . . , λ1︸ ︷︷ ︸
w1 times

, . . . , λm−1, . . . , λm−1︸ ︷︷ ︸
wm−1 times

) ∈ Z
r .

Lemma 1 1. We have the following decomposition into irreducible components

M(r, n)
Γ θ
α,β =

∐

v∈Zm
≥0∑

vk=n

M(v,w). (2)

2. The T θ
α,β -action on the left-hand side of (2) corresponds to the T̃α,β -action on

the right-hand side of (2).

Proof Let Γm be the group of roots of unity of degree m. By definition, a point
[(B1,B2, i, j)] ∈M(r, n) is fixed under the action of Γ θ

α,β if and only if there exists
a homomorphism λ : Γm →GLn(C) satisfying the following conditions:

ζ αB1 = λ(ζ )−1B1λ(ζ ),

ζ βB2 = λ(ζ )−1B2λ(ζ ), (3)

i ◦ diag
(
ζ θ1, ζ θ2 , . . . , ζ θr

)−1 = λ(ζ )−1i,

diag
(
ζ θ1 , ζ θ2, . . . , ζ θr

) ◦ j = jλ(ζ ),

where ζ = e
2π
√−1
m . Suppose that [(B1,B2, i, j)] is a fixed point. Then we have the

weight decomposition of C
n with respect to λ(ζ ), i.e. Cn =⊕

k∈Z/mZ
V ′
k , where

V ′
k = {v ∈ C

n|λ(ζ ) · v = ζ kv}. We also have the weight decomposition of Cr , i.e.
C

r =⊕k∈Z/mZ
W ′

k , where W ′
k = {v ∈ C

r |diag(ζ θ1 , . . . , ζ θr ) · v = ζ kv}. From con-
ditions (3) it follows that the only components of B1, B2, i and j that might survive
are:

B1 : V ′
k → V ′

k−α,

B2 : V ′
k → V ′

k−β,

i : W ′
k → V ′

k,

j : V ′
k →W ′

k.

Let us denote V ′−αk modm by Vk and W ′−αk modm by Wk . Then the operators
B1,B2, i, j act as follows: B1,2 : Vk → Vk±1, i : Wk → Vk, j : Vk →Wk . The first


