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Preface

Algebraic K-theory draws its importance from its effective codification of a math-
ematical phenomenon which occurs in as separate parts of mathematics as number
theory, geometric topology, operator algebras, homotopy theory and algebraic ge-
ometry. In reductionistic language the phenomenon can be phrased as

there is no canonical choice of coordinates,

or, as so elegantly expressed by Hermann Weyl [312, p. 49]:

The introduction of numbers as coordinates . . . is an act of violence whose only practical
vindication is the special calculatory manageability of the ordinary number continuum with
its four basic operations.

As such, algebraic K-theory is a meta-theme for mathematics, but the success-
ful codification of this phenomenon in homotopy-theoretic terms is what has made
algebraic K-theory a valuable part of mathematics. For a further discussion of alge-
braic K-theory we refer the reader to Chap. 1 below.

Calculations of algebraic K-theory are very rare and hard to come by. So any
device that allows you to obtain new results is exciting. These notes describe one
way to produce such results.

Assume for the moment that we know what algebraic K-theory is; how does it
vary with its input?

The idea is that algebraic K-theory is like an analytic function, and we have
this other analytic function called topological cyclic homology (TC) invented by
Bökstedt, Hsiang and Madsen [27], and

the difference between K and T C is locally constant.

This statement will be proven below, and in its integral form it has not appeared
elsewhere before.

The good thing about this, is that T C is occasionally possible to calculate. So
whenever you have a calculation of K-theory you have the possibility of calculating
all the K-values of input “close” to your original calculation.

So, for instance, if somebody (please) can calculate K-theory of the integers,
many “nearby” applications in geometric topology (simply connected spaces) are

v
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Fig. 0.1 The difference betweenK and T C is locally constant. The left part of the figure illustrates
the difference betweenK(Z) and T C(Z) is quite substantial, but once you know this difference you
know that it does not change in a “neighborhood” of Z. In this neighborhood lies for instance all
applications of algebraic K-theory of simply connected spaces, so here T C-calculations ultimately
should lead to results in geometric topology as demonstrated by Rognes. On the right hand side
of the figure you see that close to the finite field with p elements, K-theory and T C agree (this
is a connective and p-adic statement: away from the characteristic there are other methods that
are more convenient). In this neighborhood you find many interesting rings, ultimately resulting in
Hesselholt and Madsen’s calculations of the K-theory of local fields

available through T C-calculations (see e.g., [242, 243]). This means that calcula-
tions in motivic cohomology (giving K-groups of e.g., the integers) will actually
have bearing on our understanding of diffeomorphisms of manifolds!

On a different end of the scale, Quillen’s calculation of the K-theory of finite
fields gives us access to “nearby” rings, ultimately leading to calculations of the
K-theory of local fields [131]. One should notice that the illustration offered by
Fig. 0.1 is not totally misleading: the difference between K(Z) and T C(Z) is sub-
stantial (though locally constant), whereas around the field Fp with p elements it is
negligible.

Taking K-theory for granted (we’ll spend quite some time developing it later),
we should say some words about T C. Since K-theory and T C differ only by some
locally constant term, they must have the same differential: D1K = D1T C (see
Fig. 0.2). For ordinary rings A this differential is quite easy to describe: it is the
homology of the category PA of finitely generated projective modules.

The homology of a category is like Hochschild homology, and as Connes ob-
served, certain models of Hochschild homology carry a circle action which is useful
when comparing with K-theory. Only, in the case of the homology of categories it
turns out that the ground ring over which to take Hochschild homology is not an
ordinary ring, but the so-called sphere spectrum. Taking this idea seriously, we end
up with Bökstedt’s topological Hochschild homology THH.

One way to motivate the construction of T C from THH is as follows. There is
a transformation K → THH which we will call the Dennis trace map, and there is
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Fig. 0.2 The differentials “at
an S-algebra A in the
direction of the A-bimodule
P ” of K and T C are equal.
For discrete rings the
differential is the homology
of the category of finitely
generated projective modules.
In this illustration the
differential is the magenta
straight line through the
origin, K-theory is the red
curve and T C is the shifted
curve in cyan (Colon figure
online)

a model for THH for which the Dennis trace map is just the inclusion of the fixed
points under the circle action. That is, the Dennis trace can be viewed as a composite

K ∼= THHT ⊆ THH

where T is the circle group.
The unfortunate thing about this statement is that it is model dependent in that

fixed points do not preserve weak equivalences: if X → Y is a map of T-spaces
which is a weak equivalence of underlying spaces, normally the induced mapXT →
YT will not be a weak equivalence. So, T C is an attempt to construct the T-fixed
points through techniques that do preserve weak equivalences.

It turns out that there is more to the story than this: THH possesses something
called an epicyclic structure (which is not the case for all T-spaces), and this allows
us to approximate the T-fixed points even better.

So in the end, the cyclotomic trace is a factorization

K→ T C→ THH

of the Dennis trace map.
The cyclotomic trace is the theme for this book. There is another paper devoted

to this transformation, namely Madsen’s eminent survey [192]. If you can get hold
of a copy it is a great supplement to the current text.

It was originally an intention that readers who were only interested in discrete
rings would have a path leading far into the material with minimal contact with
ring spectra. This idea has to a great extent been abandoned since ring spectra and
the techniques around them have become much more mainstream while these notes
have matured. Some traces of this earlier approach can still be seen in that Chap. 1
does not depend at all on ring spectra, leading to the proof that stable K-theory
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of rings corresponds to homology of the category of finitely generated projective
modules. Topological Hochschild homology is, however, interpreted as a functor of
ring spectra, so the statement that stable K-theory is THH requires some background
on ring spectra.

General Plan The general plan of the book is as follows.
In Sect. 1.1 we give some general background on algebraic K-theory. The length

of this introductory section is justified by the fact that this book is primarily con-
cerned with algebraic K-theory; the theories that fill the last chapters are just there
in order to shed light on K-theory, we are not really interested in them for any other
reason. In Sect. 1.2 we give Waldhausen’s interpretation of algebraic K-theory and
study in particular the case of radical extensions of rings. Finally, Sect. 1.3 compares
stable K-theory and homology.

Chapter 2 aims at giving a crash course on ring spectra. In order to keep the
presentation short we have limited our presentation only the simplest version: Se-
gal’s �-spaces. This only gives us connective spectra and the behavior with respect
to commutativity issues leaves something to be desired. However, for our purposes
�-spaces suffice and also fit well with Segal’s version of algebraic K-theory, which
we are using heavily later in the book.

Chapter 3 can (and perhaps should) be skipped on a first reading. It only asserts
that various reductions are possible. In particular, K-theory of simplicial rings can be
calculated degreewise “locally” (i.e., in terms of the K-theory of the rings appearing
in each degree), simplicial rings are “dense” in the category of (connective) ring
spectra, and all definitions of algebraic K-theory we encounter give the same result.

In Chap. 4, topological Hochschild homology is at long last introduced, first for
ring spectra, and then in a generality suitable for studying the correspondence with
algebraic K-theory. The equivalence between the topological Hochschild homology
of a ring and the homology of the category of finitely generated projective mod-
ules is established in Sect. 4.3, which together with the results in Sect. 1.3 settle
the equivalence between stable K-theory and topological Hochschild homology of
rings.

In order to push the theory further we need an effective comparison between
K-theory and THH, and this is provided by the Dennis trace map K → THH in
the following chapter. We have here chosen a model which “localizes at the weak
equivalences”, and so conforms nicely with the algebraic case. For our purposes
this works very well, but the reader should be aware that other models are more ap-
propriate for proving structural theorems about the trace. The comparison between
stable K-theory and topological Hochschild homology is finalized Sect. 5.3, using
the trace. As a more streamlined alternative, we also offer a new and more direct
trace construction in Sect. 5.4.

In Chap. 6 topological cyclic homology is introduced. This is the most involved
of the chapters in the book, since there are so many different aspects of the theory
that have to be set in order. However, when the machinery is set up properly, and
the trace has been lifted to topological cyclic homology, the local correspondence
between K-theory and topological cyclic homology is proved in a couple of pages
in Chap. 7.
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Chapter 7 ends with a quick and inadequate review of the various calculations
of algebraic K-theory that have resulted from trace methods. We first review the
general framework set up by Bökstedt and Madsen for calculating topological cyclic
homology, and follow this through for three important examples: the prime field Fp ,
the (p-adic) integers Zp and the Adams summand �p . These are all close enough
to Fp so that the local correspondence between K-theory and topological cyclic
homology make these calculations into actual calculations of algebraic K-theory.
We also discuss very briefly the Lichtenbaum-Quillen conjecture as seen from a
homotopy theoretical viewpoint, which is made especially attractive through the
comparison with topological cyclic homology. The inner equivariant workings of
topological Hochschild homology display a rich and beautiful algebraic structure,
with deep intersections with log geometry through the de Rham-Witt complex. This
is prominent in Hesselholt and Madsen’s calculation of the K-theory of local fields,
but facets are found in almost all the calculations discussed in Sect. 7.3. We also
briefly touch upon the first problem tackled through trace methods: the algebraic
K-theory Novikov conjecture.

The Appendix collects some material that is used freely throughout the notes.
Much of the material is available elsewhere in the literature, but for the convenience
of the reader we have given the precise formulations we actually need and set them
in a common framework. The reason for pushing this material to an appendix, and
not working it into the text, is that an integration would have produced a serious
eddy in the flow of ideas when only the most diligent readers will need the extra
details. In addition, some of the results are used at places that are meant to be fairly
independent of each other.

The rather detailed index is meant as an aid through the plethora of symbols and
complex terminology, and we have allowed ourselves to make the unorthodox twist
of adding hopefully helpful hints in the index itself, where this has not taken too
much space, so that in many cases a brief glance at the index makes checking up the
item itself unnecessary.

Displayed diagrams commute, unless otherwise noted. The ending of proofs that
are just sketched or referred away and of statements whose verification is embedded
in the preceding text are marked with a �.
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Leitfaden For the convenience of the reader we provide the following Leitfaden.
It should not be taken too seriously, some minor dependencies are not shown, and
many sections that are noted to depend on previous chapters are actually manageable
if one is willing to retrace some cross referencing. In particular, Chap. 3 should be
postponed upon a first reading.

2.1 1.1

2.2 3.1

2.3 1.2 3.2

1.3 3.3 4.2

5.1 4.3 6.2

5.4 5.2 5.3 6.3 6.4

7.3 7.2 7.1 6.5
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Chapter 1
Algebraic K-Theory

In this chapter we define and discuss the algebraic K-theory functor. This chapter
will mainly be concerned with the algebraic K-theory of rings, but we will extend
this notion at the end of the chapter. There are various possible extensions, but we
will mostly focus on a class of objects that are close to rings. In later chapters this
will be extended again to include ring spectra and even more exotic objects.

In the first section we give a quick nontechnical overview of K-theory. Many of
the examples are but lightly touched upon and not needed later, but are included to
give an idea of the scope of the theory. Some of the examples in the introduction
may refer to concepts or ideas that are unfamiliar to the reader. If this is the case, the
reader may consult the index to check whether this is a topic that will be touched
upon again (and perhaps even explained), or if it is something that can be left for
later investigations. In any case, the reader is encouraged to ignore such problems
at a first reading. Although it only treats the first three groups, Milnor’s book [213]
is still one of the best elementary introductions to algebraic K-theory with Bass’
book [13] providing the necessary support for more involved questions. For a more
modern exposition one may consult Rosenberg’s book [244]. For a fuller historical
account, the reader may want to consult for instance [310] or [14].

In the second section we introduce Waldhausen’s S-construction of algebraic K-
theory and prove some of its basic properties.

The third section concerns itself with comparisons between K-theory and various
homology theories, giving our first identification of the differential of algebraic K-
theory, as discussed in the preface.

1.1 Introduction

The first appearance of what we now would call truly K-theoretic questions are the
investigations of J.H.C. Whitehead (for instance [314, 315] or the later [316]), and
Higman [133]. The name “K-theory” is much younger (said to be derived from the
German word “Klassen”), and first appears in Grothendieck’s work [1] in 1957 on

B.I. Dundas et al., The Local Structure of Algebraic K-Theory,
Algebra and Applications 18,
DOI 10.1007/978-1-4471-4393-2_1, © Springer-Verlag London 2013
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2 1 Algebraic K-Theory

Fig. 1.1 A cobordism W
between a disjoint unionM
of two circles and a single
circle N

the Riemann-Roch theorem, see also [35]. But, even though it was not called K-
theory, we can get some motivation by studying the early examples.

1.1.1 Motivating Example from Geometry: Whitehead Torsion

The “Hauptvermutung” states that two homeomorphic finite simplicial complexes
have isomorphic subdivisions. The conjecture was formulated by Steinitz and Tietze
in 1908, see [236] for references and a deeper discussion.

Unfortunately, the Hauptvermutung is not true: already in 1961 Milnor [212]
gave concrete counterexamples built from lens spaces in all dimensions greater than
six. To distinguish the simplicial structures he used an invariant of the associated
chain complexes in what he called the Whitehead group. In the decade that followed,
the Whitehead group proved to be an essential tool in topology, and especially in
connection with problems related to “cobordisms”. For a more thorough treatment
of the following example, see Milnor’s very readable article [210].

LetM and N be two smooth n-dimensional closed manifolds. A cobordism be-
tweenM and N is an n+ 1-dimensional smooth compact manifoldW with bound-
ary the disjoint union ofM and N , see Fig. 1.1 (in the oriented case we assume that
M and N are oriented, andW is an oriented cobordism fromM to N if it is oriented
so that the orientation agrees with that on N and is the opposite of that onM).

Here we are interested in a situation where M and N are deformation retracts
of W . Obvious examples are cylinders M × I , where I = [0,1] is the closed unit
interval.

More precisely: Let M be a closed, connected, smooth manifold of dimension
n > 5. Suppose we are given an h-cobordism (W ;M,N), that is, a compact smooth
n + 1 dimensional manifold W , with boundary the disjoint union of M and N ,
such that both the inclusions M ⊂W and N ⊂W are homotopy equivalences. The
obvious examples are cylinders, i.e. diffeomorphic toM × I (see Fig. 1.2).

Question 1.1.1.1 Is W diffeomorphic toM × I?
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Fig. 1.2 An h-cobordism
(W ;M,N). This one is a
cylinder

It requires some imagination to realize that the answer to this question can be
“no”. In particular, in the low dimensions of the illustrations all h-cobordisms are
cylinders.

However, this is not true in high dimensions, and the h-cobordism Theo-
rem 1.1.1.2 below gives a precise answer to the question.

To fix ideas, let M = L be a lens space of dimension, say, n = 7. That is, the
cyclic group of order l, π = μl = {1, e2πi/l, . . . , e2πi(l−1)/ l} ⊆ C, acts on the seven-
dimensional sphere S7 = {x ∈ C4 s.t. |x| = 1} by complex multiplication

π × S7 → S7 (t,x) �→ (t · x)

and we let the lens space M be the quotient space S7/π = S7/(x ∼ t · x). Then M
is a smooth manifold with fundamental group π .

Let

· · · ∂−−−−→ Ci+1
∂−−−−→ Ci

∂−−−−→ . . . −−−−→ C0 −−−−→ 0

be the relative cellular complex of the universal cover, calculating the homology
H∗ = H∗(W̃ , M̃) (see Sects. 7 and 9 in [210] for details). Each Ci is a finitely
generated free Z[π]-module, and, up to orientation and translation by elements in
π , has a preferred basis over Z[π] coming from the i-simplices added to get fromM
to W in some triangulation of the universal covering spaces. As always, the groups
Zi and Bi of i-cycles and i-boundaries are the kernel of ∂ : Ci → Ci−1 and image
of ∂ : Ci+1 → Ci . Since M ⊂ W is a deformation retract, we have by homotopy
invariance of homology that H∗ = 0, and so B∗ = Z∗.

By induction on i, we see that the exact sequence

0 −−−−→ Bi −−−−→ Ci −−−−→ Bi−1 −−−−→ 0

is split. For each i we choose a splitting and consider the resulting isomorphism

Ci
αi−−−−→∼=

Bi ⊕Bi−1.
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This leads us to the following isomorphism

⊕

i evenCi

⊕

i even αi−−−−−→ ⊕

i evenBi ⊕Bi−1

∼=
⏐

⏐

�
can. rearrangement

⊕

i oddCi

⊕

i odd αi−−−−−→ ⊕

i oddBi ⊕Bi−1.

(1.1)

We will return to this isomorphism shortly in order to define the obstruction to the
answer to Question 1.1.1.1 being “yes” (see Sect. 1.1.1.2), but first we need some
basic definitions from linear algebra.

1.1.1.1 K1 and the Whitehead Group

For any ring A (all the rings we consider are associative and unital) we may con-
sider the ring Mk(A) of k × k matrices with entries in A, as a monoid under mul-
tiplication (recall that a monoid satisfies all the axioms of a group except for the
requirement that inverses must exist). The general linear group is the subgroup
of invertible elements GLk(A). Take the colimit (or more concretely, the union)
GL(A)= limk→∞GLk(A)=⋃k→∞GLk(A) with respect to the stabilization

GLk(A)
g �→g⊕1−−−−→ GLk+1(A)

(thus every element g ∈GL(A) can be thought of as an infinite matrix

⎡

⎢

⎢

⎢

⎣

g′ 0 0 . . .

0 1 0 . . .

0 0 1 . . .
...
...
...
. . .

⎤

⎥

⎥

⎥

⎦

with g′ ∈GLk(A) for some k <∞). LetE(A) be the subgroup of elementary matri-
ces (i.e., Ek(A)⊂GLk(A) is the subgroup generated by the matrices eaij with ones
on the diagonal and a single nontrivial off-diagonal entry a ∈A in the ij position).
The “Whitehead lemma” (see Lemma 1.1.2.2 below) implies that the quotient

K1(A)=GL(A)/E(A)

is an abelian group. In the particular case where A is an integral group ring Z[π] we
define the Whitehead group as the quotient

Wh(π)=K1
(

Z[π])/{±π}

via {±π} ⊆GL1(Z[π])→K1(Z[π]).
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1.1.1.2 Classifying Cobordisms

Let (W ;M,N) be an h-cobordism, and consider the isomorphism
⊕

i evenCi →
⊕

i oddCi given in Eq. (1.1) for the lens spaces, and similarly in general. This
depended on several choices and in the preferred basis for the Ci it gives a ma-
trix with coefficients in Z[π1(M)]. Stabilizing we get an element τ(W,M)choices ∈
GL(Z[π1(M)]) and a class τ(W,M)= [τ(W,M)choices] ∈Wh(π1(M)).

The class τ(W,M) is independent of our preferred basis and choices of splittings
and is called the Whitehead torsion.

The Whitehead torsion turns out to be a vital ingredient in Barden (Thesis, 1963),
Mazur [202] and Stallings’ [272] extension of the famous results of Smale [264]
(where he proves the high dimensional Poincaré conjecture) beyond the simply con-
nected case (for a proof, see also [163]):

Theorem 1.1.1.2 (Barden, Mazur, Stallings) Let M be a compact, connected,
smooth manifold of dimension ≥ 5 and let (W ;M,N) be an h-cobordism. The
Whitehead torsion τ(W,M) ∈Wh(π1(M)) is well defined, and τ induces a bijec-
tion

{

diffeomorphism classes (rel.M)
of h-cobordisms (W ;M,N)

}

←→Wh
(

π1(M)
)

In particular, (W ;M,N)∼= (M × I ;M,M) if and only if τ(W,M)= 0.

Example 1.1.1.3 The Whitehead group,Wh(π), has been calculated for only a very
limited set of groups π . We list a few of them; for a detailed study of Wh of finite
groups, see [220]. The first three refer to the lens spaces discussed above (see p. 375
in [210] for references).

1. l = 1,M = S7. “Exercise”: show thatK1Z = {±1}, and soWh(0)= 0. Thus any
h-cobordism of S7 is diffeomorphic to S7 × I .

2. l = 2. M = P 7, the real projective 7-space. “Exercise”: show that K1Z[μ2] =
{±μ2}, and so Wh(μ2) = 0. Thus any h-cobordism of P 7 is diffeomorphic to
P 7 × I .

3. l = 5. Wh(μ5) ∼= Z generated by the invertible element t + t−1 − 1 ∈ Z[μ5]
(where t is a chosen fifth root of unity)—the inverse is t2 + t−2 −1. That is, there
exist countably infinitely many non-diffeomorphic h-cobordisms with incoming
boundary component S7/μ5.

4. Waldhausen [297]: If π is a free group, free abelian group, or the fundamental
group of a submanifold of the three-sphere, thenWh(π)= 0.

5. Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, thenWh(π1M)= 0.

Remark 1.1.1.4 The presentation of the Whitehead torsion differs slightly from that
of [210]. It is easy to see that they are the same in the case where the Bi are free
Z[π]-modules (the splittings ensure that each Bi is “stably free” which is suffi-
cient, but the argument is slightly more involved). Choosing bases we get matrices
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Mi ∈GL(Z[π]) representing the isomorphisms αi : Ci ∼= Bi ⊕ Bi−1, and from the
definition of τ(W,M)choices we see that

τ(W,M)=
(

∑

i even

[Mi]
)

−
(

∑

i odd

[Mi]
)

=
∑

(−1)i[Mi] ∈Wh(π1(M)
)

.

1.1.2 K1 of Other Rings

1. Commutative rings: The map from the units in A

A∗ =GL1(A)→GL(A)/E(A)=K1(A)

is split by the determinant map, and so the units of A is a split summand in
K1(A). In certain cases (e.g., if A is local (A has a unique maximal ideal), or
the integers in a number field, see next example) this is all of K1(A). We may
say that the rest of K1(A) measures to what extent we can do Gauss elimination,
in that ker{det : K1(A)→ A∗} is the group of equivalence classes of matrices
up to stabilization in the number of variables and elementary row operations
(i.e., multiplication by elementary matrices and multiplication of a row by an
invertible element).

2. Let F be a number field (i.e., a finite extension of the rational numbers), and let
A⊆ F be the ring of integers in F (i.e., the integral closure of Z in F ). A result
of Dirichlet asserts thatA∗ is finitely generated of rank r1 +r2 −1 where r1 (resp.
2r2) is the number of distinct real (resp. complex) embeddings of F , and in this
case K1(A)∼=A∗, see [213, Corollary 18.3] or the arguments on pp. 160–163.

3. Let B→A be an epimorphism of rings with kernel I ⊆ rad(B)—the Jacobson
radical of B (that is, if x ∈ I , then 1 + x is invertible in B). Then

(1 + I )× −−−−→ K1(B) −−−−→ K1(A) −−−−→ 0

is exact, where (1 + I )× ⊂GL1(B) is the group {1 + x|x ∈ I } under multiplica-
tion (see e.g., p. 449 in [13]). Moreover, if B is commutative and B→A is split,
then

0 −−−−→ (1 + I )× −−−−→ K1(B) −−−−→ K1(A) −−−−→ 0

is exact.

For later reference, we record the Whitehead lemma mentioned above. For this
we need some definitions.

Definition 1.1.2.1 The commutator [G,G] of a group G is the (normal) subgroup
generated by all commutators [g,h] = ghg−1h−1. A group G is called perfect
if it is equal to its commutator, or in other words, if its first homology group
H1(G)=G/[G,G] vanishes. Any group G has a maximal perfect subgroup, which
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we call PG, and which is automatically normal. We say that G is quasi-perfect if
PG= [G,G].

The symmetric group 
n on n ≥ 5 letters is quasi-perfect, since its commuta-
tor subgroup is the alternating group An, which in turn is a simple group. Further
examples are provided by the

Lemma 1.1.2.2 (The Whitehead Lemma) Let A be a unital ring. Then GL(A) is
quasi-perfect with maximal perfect subgroup E(A), i.e.,

[

GL(A),GL(A)
]= [E(A),GL(A)]= [E(A),E(A)]=E(A).

Proof See e.g., p. 226 in [13]. �

1.1.3 The Grothendieck Group K0

Definition 1.1.3.1 Let C be a small category and let E be a collection of diagrams
c′ → c→ c′′ in C. Then the Grothendieck group K0(C,E) is the abelian group, de-
fined (up to unique isomorphism) by the following universal property. Any function
f from the set of isomorphism classes of objects in C to an abelian group A such
that f (c) = f (c′) + f (c′′) for all sequences c′ → c→ c′′ in E , factors uniquely
through K0(C).

If there is a final object 0 ∈ obC such that for any isomorphism c′ ∼= c ∈ C the
sequence c′ ∼= c→ 0 is in E , then K0(C,E) can be given as the free abelian group
on the set of isomorphism classes [c], of C, modulo the relations [c] = [c′] + [c′′]
for c′ → c→ c′′ in E . Notice that [0] = [0] + [0], so that [0] = 0.

Most often the pair (C,E) will be an exact category in the sense that C is an
additive category (i.e., a category with all finite coproducts where the morphism
sets are abelian groups and where composition is bilinear) such that there exists a
full embedding of C in an abelian category A, such that C is closed under extensions
in A and E consists of the sequences in C that are short exact in A.

Any additive category is an exact category if we choose the exact sequences to be
the split exact sequences, but there may be other exact categories with the same un-
derlying additive category. For instance, the category of abelian groups is an abelian
category, and hence an exact category in the natural way, choosing E to consist of

the short exact sequences. These are not necessary split, e.g., Z
2

Z Z/2Z
is a short exact sequence which does not split.

The definition of K0 is a case of “additivity”: K0 is a (or perhaps, the) functor
to abelian groups insensitive to extension issues. We will dwell more on this issue
later, when we introduce the higher K-theories. Higher K-theory plays exactly the
same rôle as K0, except that the receiving category has a much richer structure than
the category of abelian groups.
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The choice of E will always be clear from the context, and we drop it from the
notation and write K0(C).

Example 1.1.3.2

1. Let A be a unital ring. An A-module is an abelian group M , together with a
homomorphism A→ End(M) of rings, or otherwise said, a homomorphism A⊗
M→M of abelian groups, sending a⊗m to am with the property that 1m=m
and a(bm)= (ab)m. Recall that an A-moduleM is finitely generated if there is a
surjective homomorphism An =A⊕· · ·⊕A�M (n summands) of A-modules.
An A-module P is projective if for all (solid) diagrams

M

P M ′′

of A-modules where the vertical homomorphism is a surjection, there is a (dot-
ted) homomorphism P → M making the resulting diagram commute. It is a
consequence that an A-module P is finitely generated and projective precisely
when there is an n and an A-module Q such that An ∼= P ⊕Q. Note that Q is
automatically finitely generated and projective.

If, in a given subcategory of the category of A-modules we say that a certain
sequence is exact, we usually mean that the sequence is exact when considered
as a sequence of A-modules.

If C = PA, the category of finitely generated projective A-modules, with the
usual notion of (short) exact sequences, we often write K0(A) for K0(PA). Note
that PA is split exact, that is, all short exact sequences in PA split. Thus we see
that we could have defined K0(A) as the quotient of the free abelian group on
the isomorphism classes in PA by the relation [P ⊕Q] ∼ [P ] + [Q]. It follows
that all elements in K0(A) can be represented as a difference [P ]− [F ] where F
is a finitely generated free A-module.

2. Inside PA sits the category FA of finitely generated free A-modules, and we let
K
f

0 (A) = K0(FA). If A is a principal ideal domain, then every submodule of
a free module is free, and so FA = PA. This is so, e.g., for the integers, and
we see that K0(Z) = Kf0 (Z) ∼= Z, generated by the module of rank one. Gen-

erally, Kf0 (A)→ K0(A) is an isomorphism if and only if every finitely gener-
ated projective module is stably free (P and P ′ are said to be stably isomorphic
if there is a finitely generated free A-module Q such that P ⊕ Q ∼= P ′ ⊕ Q,
and P is stably free if it is stably isomorphic to a free module). Whereas
K0(A×B)∼=K0(A)×K0(B), the functor Kf0 does not preserve products: e.g.,

Z ∼= Kf0 (Z × Z), while K0(Z × Z) ∼= Z × Z giving an easy example of a ring
where not all projectives are free.
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3. Note that K0 does not distinguish between stably isomorphic modules. This is
not important in some special cases. For instance, if A is a commutative Noethe-
rian ring of Krull dimension d , then every stably free module of rank > d is free
([13, p. 239]).

4. The initial map Z → A defines a map Z ∼= Kf0 (Z)→ K
f

0 (A) which is always
surjective, and in most practical circumstances, an isomorphism. If A has the
invariance of basis property, that is, if Am ∼= An if and only if m = n, then
K
f

0 (A)
∼= Z. Otherwise, A = 0, or there is an h > 0 and a k > 0 such that

Am ∼= An if and only if either m = n or m,n > h and m ≡ n mod k. There
are examples of rings with such h and k for all h, k > 0 (see [171] or [54]): let
Ah,k be the quotient of the free ring on the set {xij , yji |1 ≤ i ≤ h,1 ≤ j ≤ h+ k}
by the matrix relations

[xij ] · [yji] = Ih, and [yji] · [xij ] = Ih+k.
Commutative (non-trivial) rings always have the invariance of basis property.

5. Let X be a compact Hausdorff topological space, and let C = Vect(X) be the cat-
egory of finite rank complex vector bundles on X, with exact sequences meaning
the usual thing. ThenK0(Vect(X)) is the complex K-theory K(X) of Atiyah and
Hirzebruch [9]. Note that the possibility of constructing normal complements
assures that Vect(X) is a split exact category. Swan’s theorem [280] states that
the category Vect(X) is equivalent to the category of finitely generated projec-
tive modules over the ring C(X) of complex valued continuous functions on X.
The equivalence is given by sending a bundle to its C(X)-module of sections.
Furthermore, Bott periodicity (see the survey [36] or the neat proof [119]) states
that there is a canonical isomorphism K(S2) ⊗ K(X) ∼= K(S2 × X). A direct
calculation shows that K(S2)� Z ⊕ Z where it is customary to let the first fac-
tor be generated by the trivial bundle 1 and the second by ξ − 1 where ξ is the
tautological line bundle on S2 = CP1.

6. LetX be a scheme, and let C = Vect(X) be the category of finite rank vector bun-
dles on X. Then K0(Vect(X)) is the K(X) of Grothendieck. This is an example
of K0 of an exact category which is not split exact. The analogous statement to
Swan’s theorem above is that of Serre [258].

1.1.3.1 Example of Applications to Homotopy Theory

As an illustration we review Loday’s [178] early application of the functors K0 and
K1 to establishing a result about polynomial functions.

Let T n = {(x1, x2, . . . , x2n−1, x2n) ∈ R2n|x2
2i−1 + x2

2i = 1, i = 1, . . . , n} be the
n-dimensional torus and Sn = {(y0, . . . , yn) ∈ Rn+1|y2

0 + · · · + y2
n = 1} the n-

dimensional sphere. A polynomial function T n → Sn is a polynomial function
f : R2n → Rn+1 such that f (T n)⊆ Sn.

Proposition 1.1.3.3 (Loday [178]) Let n > 1. Any polynomial function f : T n →
Sn is homotopic to a constant map.
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Sketch proof We only sketch the case n= 2. The other even dimensional cases are
similar, whereas the odd cases uses K1 instead of K0. The heart of the matter is the
following commutative diagram

C[y0, y1, y2]/
(

y2
0 + y2

1 + y2
2 − 1

) −−−−→ C
(

S2
)

f ∗
⏐

⏐

�
f ∗
⏐

⏐

�

C[x1, x2, x3, x4]/
(

x2
1 + x2

2 − 1, x2
3 + x2

4 − 1
) −−−−→ C

(

T 2
)

of C-algebras, where the vertical maps are induced by the polynomial function f
and the horizontal maps are defined as follows. If X ⊆ Rm is the zero set of some
polynomial function p = (p1, . . . , pk) : Rm → Rk there is a preferred map of C-
algebras C[x1, . . . , xm]/(p1, . . . , pk)→ C(X) given by sending the generator xl to
the composite function X ⊆ Rm ⊆ Cm � C where the last map is projection onto
the lth factor.

Let K̃0 be the functor from rings to abelian groups whose value at A is the cok-
ernel of the canonical map K0(Z)→K0(A). Considering the resulting diagram

K̃0
(

C[y0, y1, y2]/
(

y2
0 + y2

1 + y2
2 − 1

)) −−−−→ K̃0
(

C(S2)
)

f ∗
⏐

⏐

�
f ∗
⏐

⏐

�

K̃0
(

C[x1, x2, x3, x4]/
(

x2
1 + x2

2 − 1, x2
3 + x2

4 − 1
)) −−−−→ K̃0

(

C
(

T 2
))

.

By Swan’s theorem Example 1.1.3.2(5) we may identify the right hand vertical
map with f ∗ : K̃(S2)→ K̃(T 2) (where K̃(X) is the cokernel of the canonical map
K(∗)→K(X)). Hence we are done if we can show

1. The top horizontal map is a surjection,
2. the lower left hand group is trivial and
3. a polynomial function T 2 → S2 is homotopic to a constant map if it induces the

trivial map K̃(S2)→ K̃(T 2).

By the statements about complex K-theory in Example 1.1.3.2(5), K̃(S2) is a copy
of the integers (generated by ξ − 1), so to see that the top horizontal map is a sur-
jection it is enough to see that a generator is hit (i.e., the canonical line bundle is
algebraic), and this is done explicitly in [178, Lemme 2].

The substitution tk = x2k−1 + ix2k induces an isomorphism

C[x1, x2, x3, x4]/
(

x2
1 + x2

2 − 1, x2
3 + x2

4 − 1
)∼= C

[

t1, t
−1
1 , t2, t

−1
2

]

,

and by [13, p. 636] K̃0(C[t1, t−1
1 , t2, t

−1
2 ])= 0. This vanishing of a K-group is part

of a more general statement about algebraic K-theory’s behavior with respect to
localizations and about polynomial rings over regular rings.
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To see the last statement, one has to know that the Chern class is natural: the
diagram

K̃
(

S2
) c1−−−−→ H 2

(

S2;Q
)∼= Q

f ∗
⏐

⏐

�
f ∗
⏐

⏐

�

K̃
(

T 2
) c1−−−−→ H 2

(

T 2;Q
)∼= Q

commutes. Since c1(ξ1 − 1) �= 0 we get that if the left vertical map is trivial, so
is the right vertical map (which is multiplication by the degree). However, a map
f : T 2 → S2 is homotopic to a constant map exactly if its degree is trivial. �

1.1.3.2 Geometric Example: Wall’s Finiteness Obstruction

Let A be a space which is dominated by a finite CW-complex X (dominated means

that there are maps A
i

X
r

A such that ri � idA).

Question is A homotopy equivalent to a finite CW-complex?

The answer is yes if and only if a certain finiteness obstruction in the abelian
group K̃0(Z[π1A])= ker{K0(Z[π1A])→K0(Z)} vanishes. So, for instance, if we
know that K̃0(Z[π1A]) vanishes for algebraic reasons, we can always conclude
that A is homotopy equivalent to a finite CW-complex. As for K1, calculations of
K0(Z[π]) are very hard, but we give a short list.

1.1.3.3 K0 of Group Rings

1. If Cp is a cyclic group of prime order p less than 23, then K̃0(Z[π]) vanishes.
The first nontrivial group is K̃0(Z[C23])∼= Z/3Z (Kummer, see [213, p. 30]).

2. Waldhausen [297]: If π is a free group, free abelian group, or the fundamental
group of a submanifold of the three-sphere, then K̃0(Z[π])= 0.

3. Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, then K̃0(Z[π1M])= 0.

1.1.3.4 Facts About K0 of Rings

1. IfA is a commutative ring, thenK0(A) has a ring structure. The additive structure
comes from the direct sum of modules, and the multiplication from the tensor
product.

2. If A is local, then K0(A)= Z.
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3. Let A be a commutative ring. Define rk0(A) to be the split summand of K0(A)

of classes of rank 0, cf. [13, p. 459]. The modules P for which there exists a
Q such that P ⊗A Q ∼= A form a category. The isomorphism classes form a
group under tensor product. This group is called the Picard group, and is denoted
P ic(A). There is a “determinant” map rk0(A)→ P ic(A) which is always sur-
jective. If A is a Dedekind domain (see [13, pp. 458–468]) the determinant map
is an isomorphism, and P ic(A) is isomorphic to the ideal class group Cl(A).

4. Let A be the integers in a number field. Then Dirichlet tells us that rk0(A) ∼=
P ic(A) ∼= Cl(A) is finite. For instance, if A = Z[e2πi/p] = Z[t]/∑p−1

i=0 t
i ,

the integers in the cyclotomic field Q(e2πi/p), then K0(A) ∼= K0(Z[Cp])
(Sect. 1.1.3.31).

5. If f : B → A is a surjection of rings with kernel I contained in the Jacobson
radical, rad(B), then K0(B)→ K0(A) is injective ([13, p. 449]). It is an iso-
morphism if
(a) B is complete in the I -adic topology ([13]),
(b) (B, I ) is a Hensel pair ([88]) or
(c) f is split (as K0 is a functor).
That (B, I ) is a Hensel pair means that if f ∈ B[t] has image f̄ ∈ A[t] and
a ∈A= B/I satisfies f̄ (a)= 0 and f ′(a) is a unit in B/I , then there is a b ∈ B
mapping to a, and such that f (b)= 0. It implies that I ⊆ rad(B).

1.1.3.5 An Example from Algebraic Geometry

Algebraic K-theory appears in Grothendieck’s proof of the Riemann–Roch theorem,
see Borel and Serre [35], where Bott’s entry in Mathematical Reviews can serve as
the missing introduction. Let X be a non-singular quasi-projective variety (i.e., a
locally closed subvariety of some projective variety) over an algebraically closed
field. Let CH(X) be the Chow ring of cycles under linear equivalence (called A(X)
in [35, Sect. 6]) with product defined by intersection. Tensor product gives a ring
structure on K0(X), and Grothendieck defines a natural ring homomorphism

ch : K0(X)→ CH(X)⊗ Q,

similar to the Chern character for vector bundles, cf. [214]. This map has good
functoriality properties with respect to pullback, i.e., if f : X→ Y , then

K0(X)
ch−−−−→ CH(X)⊗ Q

f !
�

⏐

⏐
f ∗
�

⏐

⏐

K0(Y )
ch−−−−→ CH(Y)⊗ Q

commutes, where f ! and f ∗ are given by pulling back along f . For proper mor-
phisms f : X → Y [35, p. 100] there are “transfer maps” (defined as a sort of
Euler characteristic) f! : K0(X) → K0(Y ) [35, p. 110] and direct image maps
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f∗ : CH(X)→ CH(Y). The Riemann–Roch theorem is nothing but a quantitative
measure of the fact that

K0(X)
ch−−−−→ CH(X)⊗ Q

f!
⏐

⏐

�
f∗
⏐

⏐

�

K0(Y )
ch−−−−→ CH(Y)⊗ Q

fails to commute: ch(f!(x)) ·T d(Y )= f∗(ch(x) ·T d(X)) where T d(X) is the value
of the “Todd class” [35, p. 112] on the tangent bundle of X.

1.1.3.6 A Number-Theoretic Example

Let F be a number field and A its ring of integers. Then there is an exact sequence
connecting K1 and K0:

0 K1(A) K1(F )

⊕

m∈Max(A) K0(A/m) K0(A) K0(F ) 0

(cf. [13, pp. 323, 702], or better [232, Corollary to Theorem 5] plus the fact that
K1(A)→K1(F ) is injective). The zeta function ζF (s) of F is defined as the mero-
morphic function on the complex plane C we get as the analytic continuation of

ζF (s)=
∑

I non-zero ideal in A

|A/I |−s .

This series converges for Re(s) > 1. The zeta function has a zero of order r =
rank(K1(A)) (see Sect. 1.1.2.(2)) at s = 0, and the class number formula says that

lim
s→0

ζF (s)

sr
= −R|K0(A)tor |

|K1(A)tor | ,

where | −tor | denotes the cardinality of the torsion subgroup, and the regulator R is
a number that depends on the map δ above, see [175].

This is related to the Lichtenbaum-Quillen conjecture, which is now con-
firmed due to work of among many others Voevodsky, Suslin, Rost, Grayson (see
Sect. 1.1.7 and Sect. 7.3.2 for references and a deeper discussion).

1.1.4 The Mayer–Vietoris Sequence

The reader may wonder why one chooses to regard the functors K0 and K1 as re-
lated. Example 1.1.3.6 provides one motivation, but that is cheating. Historically,
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it was an insight of Bass that K1 could be obtained from K0 in analogy with the
definition of K1(X) as K0(S1∧X) (cf. Example 1.1.3.2(5)). This manifests itself in
exact sequences connecting the two theories. As an example: if

A −−−−→ B
⏐

⏐

�
f

⏐

⏐

�

C
g−−−−→ D

is a cartesian square of rings and g (or f ) is surjective, then we have a long exact
“Mayer–Vietoris” sequence

K1(A) K1(B)⊕K1(C) K1(D)

K0(A) K0(B)⊕K0(C) K0(D).

However, it is not true that this continues to the left. For one thing there is no sim-
ple analogy to the Bott periodicity K0(S2∧X)∼=K0(X). Milnor proposed in [213]
a definition of K2 (see below) which would extend the Mayer–Vietoris sequence if
both f and g are surjective, i.e., we have a long exact sequence

K2(A) K2(B)⊕K2(C) K2(D)

K1(A) K1(B)⊕K1(C) K1(D) · · · .

However, this was the best one could hope for:

Example 1.1.4.1 Swan [281] gave the following example showing that there exists
no functor K2 giving such a sequence if only g is surjective. Let A be commutative,
and consider the pullback diagram

A[t]/t2 t �→0−−−−→ A

a+bt �→
(

a b
0 a

)⏐

⏐

� �

⏐

⏐

�

T2(A)
g−−−−→ A×A

where T2(A) is the ring of upper triangular 2 × 2 matrices, g is the projection
onto the diagonal, while � is the diagonal inclusion. As g splits K2(T2(A)) ⊕
K2(A)→K2(A×A)must be surjective, but, as we shall see below,K1(A[t]/t2)→
K1(T2(A))⊕K1(A) is not injective.


