

Processing
Creative Coding and Generative

Art in Processing 2

Ira Greenberg, Dianna Xu, Deepak Kumar

PROCESSING

Copyright © 2013 by Ira Greenberg, Dianna Xu, Deepak Kumar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on

microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being

entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and

permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4464-6

ISBN 978-1-4302-4465-3 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logos, or image we use the names, logos, or images only in an editorial fashion

and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.

The publisher makes no warranty, express or implied, with respect to the material contained herein.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,

or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing

web page at www.apress.com/bulk-sales. APress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,

go to www.apress.com/source-code/.

The front cover image was generated by the Processing sketch noise.pde found in Chapter 9.

Credits

President and Publisher:

Paul Manning

Lead Editor:

Ben Renow-Clarke

Technical Reviewer:

Ryan Rusnak

Editorial Board:

Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,

Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor:

Anamika Panchoo

Copy Editors:

Michele Bowman, Linda Seifert

Compositor:

SPi Global

Indexer:

SPi Global

Artist:
SPi Global

Cover Image Artist:

Corné van Dooren

Cover Designer:

Anna Ishchenko

To Robin, Ian, and Sophie, and to Hilary, Jerry, and Eric

—Ira Greenberg

To Marcus and Kira

—Dianna Xu

To Debika and Sameer

—Deepak Kumar

v

Contents at a Glance

Foreword ...xiii

About the Authors ..xv

About the Technical Reviewer ...xvii

About the Cover Image Artist ...xix

Acknowledgments ...xxi

Introduction ..xxiii

Chapter 1: Diving into the Shallow End ..1

Chapter 2: Art by Numbers ..33

Chapter 3: Processing Boot Camp ...65

Chapter 4: Creating Across Time and Curved Space ...107

Chapter 5: Expressive Power of Data ...149

Chapter 6: Organizing Chaos ..187

Chapter 7: Creative Abstraction ..233

Chapter 8: Drawing with Recursion ..277

Chapter 9: Painting with Bits ...311

Chapter 10: Expressive Imaging ...369

Chapter 11: Spreading Your Creative Coding Wings ..413

Index ...437

vii

Contents

Foreword ...xiii

About the Authors ..xv

About the Technical Reviewer ...xvii

About the Cover Image Artist ...xix

Acknowledgments ...xxi

Introduction ..xxiii

Chapter 1: Diving into the Shallow End ..1

Programming vs. Computer Science ..2

Art + Science = Creative Coding ...3

MIT Media Lab ...4

What Is Processing? ..4

Bits and Bytes .. 4

Mnemonics .. 5

Java .. 7

Processing ... 9

Quick Tour ...12

Processing Menu System ..16

Edit Menu ... 17

Sketch Menu .. 19

Tools Menu .. 23

Help Menu .. 27

Additional Menus ... 29

Summary ...32

Chapter 2: Art by Numbers ..33

Algorithms ...33

Pseudocode Example .. 34

Generative Algorithm ... 37

Drawing with Code..39

Primitives ...42

Code Comments .. 43

Coordinate Systems .. 44

Contents

viii

Algorithmic F ace ...48

Primitive Variables ... 50

Face Implementation ... 53

Quick Math Refresher .. 58

Summary ...63

Chapter 3: Processing Boot Camp ...65

Functions ...65

Reimplementing rect() ... 66

Local Variables and Scope .. 69

Adding Some Logic ... 72

Switch and Ternary .. 75

Switch Statement ... 75

Moving Beyond the Primitives ...76

Yet Another Rectangle ... 77

Expanding the API ..81

Polygon Implementation .. 83

Improved Polygon .. 85

Perfected Polygon ... 88

Having Some Polygonal Fun ..93

Polygonal Wallpaper .. 94

Pushing and Popping the Matrix ... 95

Star Mandala Table .. 97

Summary ...105

Chapter 4: Creating Across Time and Curved Space ...107

Keep It Local..107

Examining the Variables .. 110

Thinking About Memory .. 110

Returning Value ..111

Prime Time ..112

Making Things Move ...115

Moving and Rotating.. 117

Adding Simple Collision .. 118

Introducing C urves ...124

Processing’s Curve Functions .. 126

Controlling Curves ... 128

Summary ...147

Contents

ix

Chapter 5: Expressive Power of Data ...149

Arrays ..150

Indexing, Size, and Loops ... 153

Example: A Simple Bar Graph ... 155

Array Operations .. 156

Printing ... 157

Min, Max, and Sorting .. 158

Example: A Better, Interactive curveVertex .. 159

Primitive and Reference Types ..161

Arrays As Parameters ..164

Time Series Visualization ...166

Simple Data Modeling .. 172

Data V isualization ...174

Mapping Numbers ... 175

Basic Plots ..177

Algorithms and Issues of Space and Time ..181

Summary ...185

References ...185

Chapter 6: Organizing Chaos ..187

Objects: Attributes and Behavior ..188

Classes: Object Factories ..189

Object-Oriented Programming in Processing ..189

Customizing Instances .. 194

A Useful Keyword: this .. 196

Tabs: Organizing Code .. 198

Defining Additional Behaviors: Motion .. 201

OOP and Encapsulation in Processing ... 206

PVector Class in Processing ... 207

Ball in a Box ..210

Composition: Has-a Relationships .. 214

Simulated Physics: Verlet Motion ...215

Two Balls and a Stick: An Application of Verlet Integration 218

Inheritance: Is-a Relationships ..223

Interfaces Are Doable ...229

Summary ...232

Contents

x

Chapter 7: Creative Abstraction ..233

Strings ...234

String Methods... 235

Working with Strings.. 236

Text Visualization: Creating Word Clouds ..238

Acquiring the Data ... 238

Parsing the Data .. 239

Filtering the Data.. 240

Mining the Data: Sorting .. 250

Learning to Sort ... 252

Choosing a Visual Representation .. 256

Making the Visualization Interactive .. 273

Creative Data Visualization ..275

Summary ...276

References ...276

Chapter 8: Drawing with Recursion ..277

Recursive Functions ..277

Factorial ...278

Recursive C ircles ..279

Recursive S quares ..283

Recursive T ree ...285

Lindenmayer S ystems ..292

Grammar .. 292

Rendering ... 293

Koch Snowflake ... 294

Quadratic Flake .. 296

Heighway Dragon .. 297

Plants ... 299

Implementation .. 301

Advanced Visualization: Treemap ...305

Summary ...309

References ...309

Contents

xi

Chapter 9: Painting with Bits ...311

Digital Images ...311

Raster Processing ..312

Pixelation ... 313

Negative Images .. 315

Copying Neighbors .. 316

Multi-dimensional A rrays ...319

Two-dimensional Arrays .. 319

Loops and 2D Arrays ... 321

Visualizing 2D Arrays .. 322

Image Animation .. 325

2D Perlin Noise .. 326

Ragged Arrays ... 331

Multi-dimensional Arrays ... 332

Processing’s Pixel Buffer(s) ..333

1D and 2D Arrays ... 333

Gradient Shading ... 335

Grayscale ... 336

Sepia and Other Palettes ... 338

Bitwise Processing and Component Functions ..340

Bitwise Operators .. 340

Retrieving R/G/B/A Values Bitwise .. 343

Steganography ... 345

Complex S ystems ...348

Emergence ... 348

Cellular Automata .. 355

Chapter Project: Truchet Tiling ...359

Summary ...368

References ...368

Chapter 10: Expressive Imaging ...369

Image IO369

Tinting ..370

Masking ...373

Image Mask .. 373

Pixel Buffer Mask ... 375

Contents

xii

Blending ..378

Filtering ..382

GRAY and INVERT .. 383

OPAQUE ... 384

THRESHOLD and POSTERIZE ... 384

BLUR, DILATE, and ERODE .. 388

Advanced Filte rs ...390

Convolution .. 390

Other Spatial Filters ... 399

Image specialFX ..399

Pointillism .. 399

Confluency ... 400

Video Processing ... 401

Chapter Project: Image Mosaic ...405

Summary ...411

Chapter 11: Spreading Your Creative Coding Wings ..413

3D ...413

View Frustum ... 415

It’s All Virtual .. 416

Some Simple 3D Math ... 418

P3D and OpenGL ... 420

Simplicity! .. 421

Custom Geometry .. 423

Final Illumination .. 427

A Very Small Nibble of a Vast and Fascinating Pie .. 429

Advancing to Java ..429

First Java Dip ... 429

Diving Deeper into Java ... 432

There Really Are No Functions in Processing .. 433

Modes ..434

JavaScript Mode .. 434

Android, et al .. 436

Summary ...436

Index ...437

xiii

Foreword

One of the very best things about writing a book is the opportunity it presents to meet new people. After the
release of Processing: Creative Coding and Computational Art, in June 2007, I received many thoughtful notes
from creative coders around the world. Most of these readers, similar to me, came from the arts and were just
discovering the exciting creative potential of code. I also received some notes from professional programmers
and computer scientists, which at the time was very surprising. As a self-taught coder, I wasn’t sure what I could
offer trained computing professionals, or even if I would be taken seriously.

Two of the computer scientists I met at the time were Deepak Kumar and Dianna Xu, both professors in
the Department of Computer Science at Bryn Mawr College. Deepak and I first communicated (virtually) in
the Processing online forum, during a somewhat heated discussion thread about the disconnect between the
creative coding and computer science communities, especially within academia. You can read the original
thread at: http://processing.org/discourse/beta/num_1212418008.html. Near the end of the thread Deepak
graciously extended an open invitation to visit Bryn Mawr, to present Processing and explore the connections
between our two communities. What especially motivated me to follow-up on Deepak’s invitation was the last
sentence of his comment:

“Let’s work together and see how we can bring about some radical change!”

During my initial visit to Bryn Mawr I met Dianna and Deepak. Though I had been coding for a fairly long time
by now and had regular interactions with computer science faculty from the institution where I was teaching, it
was still intimidating sitting across the table from them–with actual PhDs in Computer Science–but it was also
equally exhilarating! Dianna and Deepak were very seriously exploring new ways to teach Computer Science,
including how to make programming more engaging and accessible to the widest possible audience. They had
been very successful pioneering an earlier approach utilizing robots in the introductory computing classroom.
It was such a thrill to learn about their work and to be able to talk so intensively about coding and computer
science pedagogy. Though we started from very different places–the arts and computer science–we somehow
ended up in a pretty similar place, with a shared passion for presenting computation as a powerfully creative
and fascinating medium, and spreading “the word” to future generations.

Over the next few years, Deepak, Dianna, and I worked closely presenting lectures and workshops on
Processing and our emerging “creative coding” approach. We were very fortunate to receive funding from the
National Science Foundation enabling us to more formally explore our approach in the Computer Science 1
(CS1) classroom, which we did at our respective schools. During this period we also began discussing the idea
for a new CS1 book, based on Processing and creative coding. These discussions, along with the result of our
research, directly led to the creation of the book you’re holding in your hands.

This book is a departure from the existing Processing and CS1 literature in that it attempts to present the spirit
and excitement of creative coding, while rigorously covering the fundamentals taught in the CS1 classroom.
We structured the book to be useful to the autodidact, but equally useful to the CS1 instructor, at both the
secondary and post-secondary levels. We’ve each had very positive results utilizing the book’s approach within
our own classrooms and are very excited to now help others do the same.

xiv

Foreword

Finally, I want to very publically thank Deepak and Dianna for “taking me in” to the Computer Science fold
(including tolerating my artistic ways) and also for agreeing to co-author this book. I’ve learned a great deal
working with them and know this book is far richer because of their generous and thoughtful collaboration, AND
I’m hopeful we will indeed “…bring about some radical change!”

Ira Greenberg, 2013

xv

About the Authors

Ira Greenberg directs the Center of Creative Computation and is Associate
Professor of Computer Science at Southern Methodist University in Dallas, TX.
He is the author of the first major reference on the Processing language,
Processing: Creative Coding and Computational Art and also wrote The Essential
Guide to Processing for Flash Developers, both by friends of ED. A formally
trained painter (BFA, Cornell University, MFA, University of Pennsylvania) turned
computational autodidact; Ira has spent the past 20+ years searching for ways to
make code drip. When not programming or hanging out with his family, you can
find Ira playing and coaching ice hockey around the Dallas-Fort Worth
metroplex.

Dianna Xu is an Associate Professor of Computer Science at Bryn Mawr College,
PA. She devotes considerable time and effort rethinking the CS curricula to
include contemporary, diverse examples of computing in a modern context, and
to attract interdisciplinary and non-conventional students to the field. Her research
interests include Computer Graphics, Computational Geometry, Visualization,
Creative Computation, and Computer Science Education. She received her B.A.
in Computer Science from Smith College and her M.S. and Ph.D. in Computer
and Information Science from the University of Pennsylvania.

Deepak Kumar is a Professor of Computer Science at Bryn Mawr College and r

the associate director for education and diversity of the Center for Science of
Information, a National Science Foundation Science & Technology Center
(www.soihub.org). His research interests include artificial intelligence, science
of information, data visualization, creative computing, and computer science
education. He received a MS in Instrumentation from Birla Institute of Technology &
Science, and a MS and PhD in computer science from the University at Buffalo.

xvii

About the Technical Reviewer

Ryan Rusnak is a software developer with a passion for creative coding. He
holds a master’s degree from Carnegie Mellon University in Human-Computer
Interaction. His projects have been featured in WIRED, Popular Science, and
on the Science Channel and the Graham Norton Show. He currently resides
in Arlington, VA with his wife Kirby Rusnak.

xix

About the Cover Image Artist

Corné van Dooren designed the front cover image for this book. After taking
a break from friends of ED to create a new design for the Foundation series,
he worked at combining technological and organic forms, with the results now
appearing on the cover of this and other books.

Corné spent his childhood drawing on everything at hand and then began
exploring the infinite world of multimedia—and his journey of discovery hasn’t
stopped since. His mantra has always been “the only limit to multimedia is the
imagination,” a saying that keeps him moving forward constantly.

Corné works for many international clients, writes features for multimedia
magazines, reviews and tests software, authors multimedia studies, and
works on many other friends of ED books. If you like Corné’s work, be sure
to check out his chapter in New Masters of Photoshop: Volume 2 (friends of 2
ED, 2004). You can see more of his work (and contact him) at his website,
www.cornevandooren.com.

xxi

Acknowledgments

The authors would like to thank Aaron Cadle, Eric Eaton, Mark Russo, and Paul Ruvolo for their willingness to try
this new approach of teaching Introduction to Computer Science with us; and for their support, encouragement,
and assistance on this project in general. We would also like to thank our numerous students who took a course
from us as we were developing these materials, with special thanks to Amanda Guadalupe, a student, whose
project work on visualizing her Twitter tweets is included in Chapter 5.

We would like to express gratitude to Ben Fry and Casey Reas for their responsiveness to questions on the
Processing 2.0 transition.

In addition, we would like to thank our families, who supported and encouraged us in spite of the time it took
us away from them.

This work was partially supported by funds from Bryn Mawr College, Southern Methodist University, the Mellon
Foundation, and the National Science Foundation under Grant No. 0942626, No. 0942628, No. 1140519, and
CCF-0939370. We sincerely thank them for their support.

xxiii

Introduction

Creative Coding grew primarily out of the digital art and design community, as an approach to programming
based on intuitive, expressive, and organic algorithmic development, with an iterative leap-before-you-look
style. Related, but broader, is the idea of Creative Computation, which explores computation as a universal,
generative, and primary creative medium. We find these paradigms well suited for introducing computing to
a new generation of students, who respond well to creative tasks and visual feedback. This book attempts
to introduce programming and the fundamentals of computing and computer science by engaging you, the
reader, in Creative Coding and Creative Computation contexts.

This book is designed for independent learning as well as a primary text for an introductory computing class
(also known as CS1, or CS Principles, in the computing education community). A lot of the material grew out
of our very successful NSF TUES funded project to develop a complete CS1 curriculum using Processing and
Creative Coding principles. The central goal of the project was to strengthen formative/introductory computer
science education by catalyzing excitement, creativity, and innovation. The digital representation of data,
access to authentic sources of big data, and creative visualization techniques are revolutionizing intellectual
inquiry in many disciplines, including the arts, humanities, and social sciences. We strongly believe that the
introductory computing curriculum should be updated with contemporary, diverse examples of computing in a
modern context.

We developed our introductory computing curriculum based on the philosophy that it should cover the same set
of core CS1 topics as any conventional Java-based CS1, but show applications in the visual arts and interactive
media, as well as through clean, concise, intuitive examples of advanced areas not typically accessible to CS1
students, including physics-based simulations, fractals and L-systems, image processing, emergent systems,
cellular automata, aspects of data science and data visualization.

While it is entirely possible to learn to program on your own with this book, teaching with this book will require
additional organization and initiative on the part of the instructor. This is an unconventional CS1 text in that
our priority was to demonstrate the Creative Computation way of thinking (or way of teaching) and how it
connects to the introductory computing curriculum, rather than to provide systematic/detailed lesson plans.
Many standard, but basic programming constructs have not received the typical amount of attention because
we trust a certain level of instructor experience and comfort to fill the gaps in the classrooms. It is our hope and
belief that once shown the creative possibilities, following the same philosophy and adapting the material to
your own classrooms will be an enjoyable and motivating task.

Resources
The home of the Processing project is the website:

http://processing.org

First and foremost, install Processing from their Download section. At the time of this writing, Processing 2.0
is still in later stages of Beta (the most current version is 2.0b8). The stable release remains to be 1.5.1. The
Processing installation comes with an extensive collection of examples directly accessible from the IDE through
the File Examples pull-down menu that should not be overlooked. This book includes coverage of most of the
key features included in Processing 2.0. Those using Processing 1.5.1 release should bear this in mind.

xxiv

Introduction

Besides the Download section, the Processing website maintains a complete API Reference. We refer to it as
the Processing Reference in this book and would encourage the reader to become familiar with navigating their
browsers to it as well as to learn to read the rich documentation and examples it provides. Much learning can and
will take place with increased usage of the Processing Reference. Equally important for the beginner (as well as
the instructor) is the Learning section of the Processing.org website. The set of tutorials provided there will be
valuable for anyone starting to learn Processing from this book. These comprehensive tutorials are good starting
points for the basics, as well as additional information. In fact, these should be treated as ancillary materials for
the earlier chapters. Both reference and tutorials are also conveniently accessible from the Processing IDE from
the Help pull-down menu (just access the Help Reference and Help Getting Started options).

We have taught using the approach presented here well over a dozen times in the past few years. Consequently,
we have accumulated a wealth of curricular material, much more than there is room for in this book. Instructors
interested in gaining access to complete syllabi, lecture notes, class examples, assignments, and problem sets,
please write to us.

The book is sprinkled with a number of “Try This” suggestion boxes, which we have chosen to place wherever
they are relevant. Some merely test a grasp of the current discussion; others require more substantial thought
and even full-fledged programming work. The complete code examples in the book can be downloaded from
the book publisher’s resource website:

http://apress.com/9781430244646

While it would be trivial to copy the code and run it, we strongly urge everyone to actually type the programs
yourselves. This is a book about learning after all, and there is no substitute for experiencing the coding process
first hand. Entering your own code from scratch, even if you are copying from these examples, is essential to
learning the concepts that are being communicated. Question every word in every line of the code as you type,
and don’t be afraid to experiment. You will learn more!

We also recommend visiting the online community OpenProcessing:

http://www.openprocessing.org

This website is devoted to sharing open-source Processing sketches. There is much to learn from and get
inspired by from the sketches shared there by creative coders, students, and teachers alike from across the
globe. We hope that, as you learn and evolve your own creative style, you will contribute your own sketches.

Finally, the Processing.org website itself has its own discussion forum where you can post queries and get
involved in discussions involving all things Processing. We urge you to support these efforts in any way you
can. Buy a Processing t-shirt!

In the Book
In line with the philosophy of leap-before-you-look we begin by literally diving into the shallow end (Chapter 1)
where we provide background and introduction to creative coding, Processing, its origins, and its relationship
with Java. We offer a 30,000 feet overview of creative coding, the distinction between programming and the
discipline of computer science. We also provide a detailed tour of the Processing IDE, which could be skimmed
in the initial encounter but returned to later as the need arises. We follow this, in Chapter 2 (Art by Numbers)
with a whirlwind tour of pseudocode, algorithms, and basic programming constructs: variables, simple types,
expressions, and comments. Drawing with these coding primitives is presented by introducing Processing’s

xxv

Introduction

coordinate system and commands for drawing 2D shapes. This sets the stage for a deep immersion in
Processing and creative coding. By taking a boot camp approach (Chapter 3), we introduce functions, all the
basic control structures (conditionals and loops), and additional drawing concepts like transformations, and
drawing contexts. Instructors of introductory computing courses may want to take a more deliberate approach
here especially with the key programming constructs. These are further developed in Chapter 4 to enable a
deeper understanding of structuring programs. At the same time, we introduce the dynamic mode in Processing,
including handling mouse and keyboard events, as well as a deeper treatment of drawing curves. By this time,
most of the basics of programming as well as Processing have been introduced. We would encourage the
readers to take some time to reflect, take stock, and review before moving on into the book.

Beyond the basics, we next delve into some of the core CS1 topics: arrays, object-oriented programming, and
recursion. We use the backdrop of learning about arrays to introduce concepts in data science and visualization.
Arrays are introduced as mechanisms for storing, processing, and visualizing datasets (Chapter 5). Also, one
of the core computer science ideas: algorithms and space-time complexity are given an informal treatment.
Object-oriented programming and its manifestation in Processing is introduced in Chapter 6 as a mechanism
for organizing the chaos of large programs and also as a way of modeling “live” or animated entities in a sketch
by way of particles and physical motion models. We introduce Processing’s PVector class and go beyond
basic physics by providing a detailed example of Verlet Integration for natural looking motion and behaviors
in sketches, thereby truly enhancing a creative coder’s conceptual toolbox. We go deeper into creative data
visualization (Chapter 7) by deconstructing (and reconstructing) a popular visualization application: word
clouds. In the process, strings, ArrayLists, sorting algorithms, and font metrics are introduced. In the context
of a fairly non-trivial example, we have attempted to illustrate program design and redesign principles and how
object-oriented programming facilitates well-designed, maintainable, clean code. More creative fun follows with
recursion (Chapter 8) as a computational medium for creating and experimenting with models of biological
systems, fractal geometry, and advanced data visualization.

Our journey continues deeper both into computing and creative computing where in Chapter 9 we explore
painting with bits in the context of image processing and manipulation. Two dimensional arrays and pixel buffers
as underlying computing concepts come together in manipulating images to create stunning visual effects.
We go beyond, by using bitwise operations and Processing’s color component functions to see examples of
steganography. Further, iterative solutions are presented as solutions for modeling emergent systems, cellular
automata, and glorious tiling patterns. We build further on image manipulation in Chapter 10 where we try to
impress upon the idea that image processing is a creative medium with wider range of applications that go
beyond traditional “photo manipulation.” This is also where the fact that Processing is designed by artists and
creative coders really pays off: We introduce several built-in image manipulation functions that are typically not
accessible to students in an introductory computing course.

If you consider this book a (big) meal, you can think of the last chapter as dessert–a hard earned and guilt free
dessert! It is truly a buffet, with a glimpse into the three-dimensional world, developing sketches for Android
devices, and going beyond Processing into Java, OpenGL, C++, and other programming environments. In
today’s ubiquitous world of computation, the boundaries between languages, environments, and devices are
blurring. Processing gives you a handle on the myriad of techniques and tools that serve as building blocks at
first and then takes you to the very cusp of exciting new frontiers of creative computing. We hope you will enjoy
this gradual, yet deliberate computational, intellectual, and visual feast. If we have not been successful at any
aspect of the book, please write to us, we want to know.

Bon appétit and happy creative coding!

1

Chapter 1

Diving into the Shallow End

Imagine enrolling in a class to learn a new sport, perhaps Irish Hurling. (This type of hurling involves a ball
and bat.) You arrive at class on the first day excited to dive into this exotic new hands-on activity, only to be
confronted by a long lecture on the theoretical foundation of hurling. Over the next fourteen weeks, the course
proceeds in a similar fashion, with maybe a couple of contrived on-the-field exercises to reinforce the lectures.
We don’t know about you, but we’re not so sure we’d make it through this class long enough to get to the on-
the-field part (the part that got us excited about learning hurling to begin with.) This is what many students
experience when they take their first computer science class.

Of course, learning the theory behind Irish Hurling might provide you with pretty interesting and ultimately
valuable information, especially if your goal is to become a world-class Hurler. However, for most of us, diving
directly into the theoretical aspects of an activity such as hurling, or computer science, before getting a handle
on why the theory might actually be useful can be intimidating and off-putting (and very few of us are destined
for the Hurling Hall of Fame.) Worst of all, this approach can lead to wider societal misconceptions, such as:
computer science is obscure, difficult, and even boring. These misconceptions can also become self-fulfilling
prophecies, ultimately attracting only the types of students who buy into the misconception, leading to a popu-
lation of students and practitioners lacking in diversity and varied perspective.

In the last few years, some computer scientists and other computing professionals, the authors of this book
included, have begun challenging the entrenched and narrow approach to teaching computer science. This
book champions a new way–a creative coding approach, in which you’ll learn by doing. Building creative code
sketches, you’ll learn the principles behind computer science, but in the context of creating and discovery.
Returning to the hurling analogy, first you’ll learn how to whack the hurling ball (the silotar) with the hurling r
bat (the hurley) wicked hard; then you’ll learn the physics behind it. Or, to use some computing lingo, first

Chapter 1

2

you’ll learn to code a cool app, then you’ll learn about the fundamental principles behind it. Not only will this
make coding easier and more fun to learn, but it will make the theory part much more relevant and hopefully
even fascinating.

This chapter provides just a little context and background for the rest of the book. You’ll learn about the history
of Processing, including its origins at the famous MIT Media Lab. We’ll discuss the creative coding approach in
a bit more detail, including some relevant research into its effectiveness. Finally, you’ll have a detailed tour of
the Processing language and development environment.

Programming vs. Computer Science
If you want to tick off a computer scientist, tell him that you know computer science because you can write w
some code. (Of course, many computer scientists don‘t show a lot of emotion so you may not even be sure
you’ve succeeded.) Kidding aside, programming is not computer science. BUT, from our perspective, it is often
the most fun part of it. Yet, there are computer scientists who don’t actually program. These are theoreticians
who see computation more as applied mathematics than as hands-on implementation. Such a theoretician
might be interested in proving something about computing, using mathematical proofs. However, to the average
end-user, programming is often equated with computer science.

According to Dictionary.com, computer science is defined as:

the science that deals with the theory and methods of processing information in digital
computers, the design of computer hardware and software, and the applications of
computers.

The first part of the definition, the theory and methods of processing information is concerned with more fun-
damental mathematical principles behind computing. This is perhaps the most pure scientific part of computer
science. Research in this area affects things like the speed, efficiency, and reliability of computers. Arguably,
this area of research provides the bedrock for all other aspects and applications of computing. Though pro-
gramming is a part of this branch of computer science, its role is primarily for testing and verifying theory.

A company like Apple spends a great deal of time and resources researching how its hardware and software
should look, feel, and function in the hands of users. This area of computer science research, the second part
of the dictionary.com definition, the design of computer hardware and software, is where science gives way
to engineering and design–where theory is applied, creating tangible systems. Another way of describing this
area might be: the interface between the mathematical and theoretical aspects of computing and the incred-
ible things we can do with it. Programming is a huge part of this area and is commonly referred to as software
engineering.

The last part of the definition, applications of computers (not to be confused with computer apps) is about how
computers (really computation) can be applied in the world. This part of the definition may be too general, as
computers impact nearly all aspects of life, and it’s extremely likely this impact will only increase in the future.
It's not such a leap to imagine our cars driving themselves, our walls and countertops acting like smart touch
screens, and our communication devices shrinking and getting even further integrated into perhaps even our

Diving into the Shallow End

3

physical bodies. Programming is very relevant to this part of computer science as well, mostly in the develop-
ment of specialized software and hardware targeting specific application domains.

Google developed and released the Android Software Development Kit, which includes libraries of code and
application software for creating custom Android apps. Apple has its own similar development platform, as do
many other companies. These development environments enable people to efficiently program applications,
without the need of years of formal computer science training. Clearly, this evolution in software development is
challenging long held notions of required technical expertise. There are high school students writing highly suc-
cessful mobile applications, artists programming interactive artworks, and many other “non-experts” creating
small software businesses overnight. So no, programming is not computer science, but apparently computer
science is not necessarily required for programming either.

Art + Science = Creative Coding
At Southern Methodist University in Dallas there is a Center of Creative Computation (C3) that explores
computation as a fundamental creative medium. C3 considers computer code (as well as other aspects of
computation) the same way a painter thinks about paint, or a musician sound or even how a dancer thinks
about gesture. C3 is less concerned with why computation solves a specific problem and more interested in
how it is solved, and most importantly, how it can be solved in a more interesting and novel way. Yet in spite of
this creative approach, C3 requires students to take very challenging courses in computer science, math, and
physics. It also requires an equal amount of rigorous creative courses. This integration of quantitative material
with creative practice can be a daunting challenge for some students, especially those who were labeled at an
early age: “the artist” or “the geek,” but probably not both.

C3 has been successful (as has a similar interdisciplinary approach at Bryn Mawr College) integrating dif-
ficult quantitative material with creative practice in the classroom, and research lab, utilizing a “Creative
Coding” approach. This approach was originally developed at the Massachusetts Institute of Technology (MIT)
Media Lab, by past lab director John Maeda, who you’ll hear more about shortly. Creative coding combines
approaches from the arts classroom, such as critiques, portfolio development and emphasis on aesthetics
and personal expression, with fundamental principles from computer science. Creative coding uses computer
code as the creative medium by which students develop a body of art, while developing core competency in
programming.

In 2010, researchers from Bryn Mawr College and C3 at Southern Methodist University received a National
Science Foundation grant to explore the use of creative coding in the introductory computer science classroom.
Based on early research results, it is very promising that students learning the creative coding approach
develop significantly greater personal interest in programming as compared to students in a more traditional
computer science class.

To help facilitate this integration in the classroom, the creative coding approach relies on some innovative
programming languages and development environments, especially Processing, which grew directly out of work
done at the MIT Media Lab.

Chapter 1

4

MIT Media Lab
The MIT Media Lab was founded by MIT professor Nicholas Negroponte and then-MIT President Jerome
Wiesner in 1985. Its mission, as stated on the Media Lab site (http://www.media.mit.edu/about), is to:

envision the impact of emerging technologies on everyday life—technologies that
promise to fundamentally transform our most basic notions of human capabilities.

Though an academic lab at MIT within the School of Architecture and Planning, the Media Lab has always radi-
cally crossed disciplines and blurred distinctions between theory and implementation, academia and industry,
and science and art. It has been involved in fundamental breakthroughs of the digital age since its founding,
including the World Wide Web and wireless networks. The lab has also pioneered innovative research and devel-
opment in radically new areas, such as smart toys, ubiquitous computing, and aesthetics and computation.

The Aesthetics + Computation Group (ACG) at MIT was created in 1996 by John Maeda, a formally trained
computer scientist and graphic designer. Maeda and ACG explored novel approaches to software tools and
language development, as well as computational artistic practice. One of the projects developed at the Media
Lab was a new programming language and programming environment named “Design By Numbers” (DBN).
DBN is a very simplified programming language built on top of the Java programming language (explained a
bit later in this chapter). DBN greatly simplified the process of graphics programming using Java by creating
a simplified language syntax (the commands and rules used to program) and a development environment that
enabled fast prototyping of simple graphics patterns, code art, and designs. DBN was never intended as a
full-featured programming language, but rather a proof of concept for a radically new approach to language
design; it was tested primarily in the design arts classroom to teach programming to beginners.

DBN as a proof of concept was a big success, though as a usable language, it wasn’t much more than an aca-
demic exercise. Two of Maeda’s students in the Media Lab, Ben Fry and Casey Reas, worked on DBN. After
finishing their studies at the Media Lab, Fry and Reas decided to take the lessons learned developing DBN and
build a more full-featured language. They named their new project Processing, which they kicked off in 2001.

What Is Processing?
In the very simplest sense, Processing is a software application that allows you to write, edit, compile (which
will be explained shortly), and run Java code. However, before discussing Processing further, it will help you to
understand a little bit about Java, but even before we talk about Java, we need to talk briefly about computing
in general. (Please note, this will be one of the only places in the book where we throw some theory at you
without a fun, hands-on activity.)

Bits and Bytes

You probably have some sense that computers and 1’s and 0’s go together. But it may not be so clear to you
how a bunch of 1’s and 0’s can lead to Shrek running through a field of blowing grass, your computer’s operat-
ing system, or Facebook. It really is truly remarkable what has been done with a bunch of 1’s and 0’s. Though
really, it’s not about 1’s or 0’s, but instead a state of being true or false, or more accurately, something being

Diving into the Shallow End

5

open or closed. If you’ve ever looked inside your computer, at the beautiful and mysterious boards, cards,
chips, wires, etc., it should be obvious that everything in there is fundamentally reliant on electricity. However,
electricity is a pretty mysterious force unto itself, and it will be simpler for this discussion to think of electricity in
a much more general form, as a flowing source, something akin to water. (Though we can’t recommend filling
the inside of your computer up with a hose.)

Using the water metaphor, you can think of the guts of your computer as a series of incredibly complex canals
with controllable dams. If a dam is down or closed, water doesn’t flow past it; if it’s up or open, water does
pass through. As a complex interconnected system, some dams control the availability of water for thousands
of other dams. By systematically controlling dams, you can control how, when, and where water flows through
the system. Perhaps some of the dams are controlled by water pressure in parts of the system; when water
starts flowing they open up and remain open. You can think of this like a water loop that keeps flowing. Other
dams might be open by default and water pressure closes them. Some of the dams can even be constructed
in a series where one dam’s state (open or closed) controls another’s state. As the dam master, you can design
complex systems to precisely control how water (and ultimately ships) move through the system, based on cer-
tain conditions. For example, if dam A and dam B are both open then perhaps a ship can safely pass through
canal C, but if either dam is shut it can’t. So even though we’re just describing dams and canals, you can see
how simple logic–if a certain condition is true, something occurs–can be constructed in the system. By simply
opening or closing dams, we can control specific outcomes to the larger system.

Of course, computers use flowing electricity instead of water, but the system works in a similar way. Gates, the
computer’s version of dams, control the passage of electrons. Gates in modern transistors–the fundamental
electronic components in devices such as our computers–can be open or closed, just like the dams. We can
use a 1 or 0 to represent the two discrete states, which we refer to technically as binary digits, or more com-
monly as “bits.”

A binary number system is based on only 2 unique digits (0 or 1), as opposed to our more familiar decimal sys-
tem that uses 10 unique digits (0–9). We can design number systems with any number of unique characters.
For example, another commonly used number system in computing is hexadecimal, with 16 unique characters
(0–9 and A–F). Since computing is fundamentally based on those previously mentioned open or closed gates,
it’s efficient for computers (not us) to utilize a binary system.

A bit, at any one point in time, can either be 1 or 0, but never both. When we group eight of these bits together,
we refer to this as a byte: one thousand bytes is a kilobyte, one thousand kilobytes is a megabyte, and a thou-
sand of these is a gigabyte, and it keeps going. Hopefully, the common “buzz” terms people throw around when
comparing their mobiles devices (“Dude, my phone has 20 gigs of memory…”) have a little more context now.
If you think back to the dams and canals analogy, imagine the complex ship movement you could get with bil-
lions of individual dams. You can probably now imagine how, as seen from a plane above, millions of different
boats moving through such a complex system of dams could create organized patterns–even approximating
a running Shrek perhaps, or forming the basis for complex logic determining the rules about how to friend
someone on Facebook.

Mnemonics

Manipulating individual bits to represent everything a computer does, though theoretically possible, is extremely
impractical. The computer’s language is purely mathematical–it breathes 0’s and 1’s. We humans, however, are

Chapter 1

6

not quite as numerate as our machines, and we rely on more descriptive, symbolic systems to communicate,
such as our natural spoken and written languages. While a computer might be happy with the binary code
0110011 to signify an operation such as adding two numbers together, humans prefer something more along
the lines of the word “add.” Though a series of 0’s and 1’s is efficient, it’s difficult for most of us to efficiently
decipher binary patterns and then remember what each unique pattern means. This divide between how com-
puters process information as compared to how we comprehend it has led to the development of programming d
languages.

At a fundamental information processing level, our brains work quite similarly to our computers. Instead of a
complex array of transistors, we have an interconnected network of neurons. The individual neurons can be
thought of as analogous to individual transistors. Though instead of having gates, neurons utilize something
called an action potential. The action potential, like a transistor’s gate, is controlled by an electrical impulse,
determining when the neuron transmits information, or fires. It’s an all or nothing response, like an open or
closed gate.

Information processing–whether in the brain or computer–is quite distinct from human comprehension. The
computer is sort of a silicon brain in a shiny box. As mentioned earlier it groks on 1’s and 0’s, or what is more
technically called machine language. When computers were first developed if you actually wanted to do some-
thing with them, you needed to learn to speak their native machine language. This was a very difficult, tedious,
and slow process. Computer scientists quickly realized they needed to simplify the programming process and
began to develop higher-level languages. By higher-level, we mean languages less directly mapped to how
computers process information and more closely aligned with how we understand it. One of the first such lan-
guages developed was Assembly language.

Assembly language by today’s standards is still a very low-level language–pretty darn close to the 1’s and –
0’s–but it was a huge step forward in simplifying programming. Assembly language converts machine languagess
commands from pure numbers to statements, including familiar words such as: set, store, load, and jump. In
the context of the machine’s native language, we can refer to these more natural language terms as mnemonics,
or devices to help us understand and remember the underlying machine commands.

Though Assembly was a big step forward in simplifying programming, it’s still a dense and complex approach.
Because Assembly maps individual machine language commands with mnemonics, it still takes a lot of code to
do relatively simple things. For example, the following is Assembly code to output the phrase: “Happy Creative
Coding!”

; code based on example: http://michaux.ca/articles/assembly-hello-world-for-os-x
; A "Happy Creative Coding!" program using NASM
section .text
global c3Start
c3Start:
 push dword msglen
 push dword mymsg
 push dword 1
 mov eax, 0x4
 sub esp, 4
 int 0x80
 add esp, 20
 push dword 0

Diving into the Shallow End

7

 mov eax, 0x1
 sub esp, 4
 int 0x80

section .data
 mymsg db "Happy Creative Coding!", 0xa
 msglen equ $-mymsg

By comparison, here is code to do the same thing in Java:

// A "Happy Creative Coding!" program using Java
public class Happy {
 public static void main(String[] args){
 System.out.println("Happy Creative Coding!");
 }

}

And finally, here’s the same program in Processing

// A "Happy Creative Coding!" program using Processing
println("Happy Creative Coding!");

If it wasn’t obvious, Java, and especially Processing, greatly reduced the number of lines in code. Also, if
you read through the example code, we suspect you were able to understand much more of the Java and
Processing code than the Assembly.

The first language assemblers, the software that converts Assembly code to machine language, emerged in
around 1950. Java was released in the mid-1990s. In the forty or so years between Assembly and Java, many
other programming languages were developed. One of the most important languages that emerged, which
strongly influenced Java and ultimately Processing, was the C programming language. For our discussion, it’s
not necessary to say too much about C, other than that it was considerably more high-level than Assembly, and
it became very widely adopted. Compared to Assembly, C greatly reduced the lines of code necessary to pro-
gram the computer, allowing single programming calls to internally map to many lines of Assembly code; it was
no longer a 1 to 1 translation with just added mnemonics. The grammar of the Java programming language,
more commonly referred to as the syntax of the language, is heavily based on C, but as you’ll learn, Java is an
even more high-level language approach than C.

Java

The development of Java was, by some standards, a failure. Java was initially developed for interactive televi-
sion and ultimately to connect “smart” devices, which didn’t really catch on until about fifteen years after Java’s
release. We take it for granted now that our newer flat screen TVs are Internet ready, allowing us to surf the Net
while we watch shows on demand and check our email. Back in 1995, this was a pipedream held by a few tech-
nology zealots, certainly not by the mainstream public. What arguably saved Java was the proliferation of the
Internet, which we’ll say more about in a moment. From near failure to ultimate success, Java is today one of
the most popular programming language in the world, according to the TIOBE Programming Community Index
(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html).

Chapter 1

8

Java was designed as a full-featured programming language, like C, but with one very big difference–universal
portability. Java’s original slogan was “Write once, run everywhere.” The idea was that a programmer could
write a Java program on any machine, and the program would run consistently on any other machine. This may
not seem like such a big deal at first glance, but computers are not simply just the buzz words we’ve reduced
them to: Mac, Windows, Linux. Computers are composed of lots of complex parts, such as central process-
ing units (CPUs), graphical processing units (GPUs), and random access memory (RAM), just to name a few.
These parts, especially the CPU, the main brain of the computer, rely on specific instructions, the machine
language, to do their magic. Unfortunately, these machine instructions vary widely across not only computer
brands, but also specific hardware components like CPUs.

Thinking back on our discussion about the Assembly programming language, you learned that Assembly wraps
machine language with mnemonics–adding somewhat more normal-sounding language commands to the
underlying binary math. The C language takes the process a step further, in a sense wrapping the Assembly
language with a much higher-level language construct, greatly simplifying programming. For example, one line
of C code might replace ten lines of Assembly. The problem with the way this approach works is that the code
(regardless if it’s Assembly or C) all still reduces down to machine language, and as previously mentioned,
machine language code is specific to the machine hardware you’re working on. To run a C program, you need
to explicitly convert your C code to machine language for your specific CPU. We refer to this process as compi-
lation or compiling. A C language compiler is software that makes the conversion from the C source code you
write to the machine’s native language, the binary code (1’s and 0’s).

So how did Java improve this situation? Java incorporates an additional layer of software, called a language
interpreter, or to use Java speak, a Java Virtual Machine (commonly shortened to JVM). Java code, like C code,
is compiled. However, the Java code is not compiled down to the native machine level, which again would be
hardware specific. Rather, Java code is compiled to a higher universal form, called bytecode. The Java byte-
code is universal, in that it should be able to run on any machine, regardless of the underlying hardware archi-
tecture, as long as the machine includes a Java Virtual Machine. If you think back to our earlier discussion, we
wrote that Java was an initial failure saved by the proliferation of the Internet. The Internet is a vast network of
computers, with widely varied hardware configurations, running various operating systems. The Java environ-
ment, including its compiler (to bytecode) and its interpreter (JVM), became the perfect solution to connect all
these disparate devices. In addition, some Web browsers include their own Java Virtual Machine, allowing Java
programs (referred to as applets in this context) to also run on the Web. To learn more about Java’s interesting
history, see: http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html.

In addition to the Internet, Java is also having a dramatic impact on mobile, and more generally, ubiquitous
computing, with Java Virtual Machines widely available for many of our portable and handheld devices. For
example, Google’s Android operating system is based on Java.

So in the end, it seems Java, like other revolutionary ideas, was not so much a failure as ahead of its time.
That’s not to say that Java is without its critics. Java is still a fairly complex language and environment to work
with and also challenging to teach with in the introductory computing classroom. Some critics also fault Java for
being slower than a purely compiled language like C, which doesn’t need to be run through a language inter-
preter. (It’s quite a hot topic as to how much slower Java actually is compared to a purely compiled language
like C.) Since Java’s release, many other new languages have been developed that aim to further reduce the
complexity of programming. One of these is Processing, which has been steadily growing in popularity since
its release in 2001. Though Processing is indeed an independent programming environment, with its own lan-
guage, you’ll learn next that it is also inextricably linked to Java.

Diving into the Shallow End

9

Processing

As we mentioned earlier, Processing emerged out of the MIT Media Lab, inspired by the simple DBN language.
While DBN was developed as a proof of concept, a showcase to demonstrate an approach to programming,
Processing was created as a full-featured programming environment for “real” creative development (creative
coding!) However, DBN provided important lessons for Processing’s initial developers, Reas and Fry:

Keep it simple!

The Processing interface, which you can see in Figure 1-1, is incredibly minimal,
by design. Reas and Fry conceived of Processing as a sketchbook of a sort, with
essentially a blank page to begin creating on. Though Processing greatly simplifies the
programming process, it was never intended to reduce the complexity of the creative
process. The language is devoid of most slick filters and effects you might find in a
software application like Adobe PhotoShop, again by design.

Figure 1-1. Main Processing interface

Chapter 1

10

Create an easy-to-use environment to write, test, and run your code, also referred to as an

integrated development environment, or IDE

Processing is a completely self-contained executable application. You simply launch it
by double-clicking and begin coding. Most other programming environments require a
fair amount of fussing with system settings and preferences to get working. In addition,
many of these other environments are temperamental and can easily break, as files
get accidentally moved or saved. Also, the programming environments themselves
(not even the programming languages you use within them) can be extremely complex
to master. The Processing environment by contrast is simple and intuitive to use and
doesn’t add to the complexity of coding.

Create a zero-entry approach to coding

On the first day of the introductory Computer Science class we have students who
have never programmed before coding interesting creative work with Processing.
This is nearly impossible with most other programming languages and development
environments. Some languages will allow you to relatively easily output some text–the
old school tradition is for CS 1 students to output “Hello World.” Using processing,
students create an original design or pattern as their first project. You can view examples
of this work at our classroom site http://openprocessing.org/classroom/1262. As
you might imagine, it’s much more interesting and fun to create an image of your own
design, than to simply output the words “Hello World.”

Give the software away for free and release the source code

Reas and Fry may have lost millions of dollars based on their “give it away for free”
strategy, but this model also allowed Processing to be adopted worldwide. In addition,
by releasing the Processing source-code, the actual code that created Processing, they
attracted a devoted group of developers to help push the language along. Processing
2.0 benefited greatly from the extended team of passionate Processing developers.

Focus on graphics and multimedia development

Like John Maeda, Reas and Fry have graphic design backgrounds, and that spirit has
influenced many aspects of Processing. We sometimes joke with our students that
Processing includes all the fun parts of Java and hides all the boring and annoying
stuff; it’s not quite that simple. However, Processing is a programming language that is
focused on creative programming. In addition to the core Processing language, which
we’ll look at shortly, Processing includes extensive libraries of code contributed by the
Processing community. These libraries extend Processing’s capabilities all over the
place, from vision detection, to the Microsoft Kinect, to physics engines, to network
and database connectivity and many, many other creative and intriguing domains. And
these libraries are free to download and quite easy to integrate within your projects.

