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Introduction

This book covers a vast array of information related to packetC. It is a complete language reference and
contains background information on many unique parts of packetC. As packetC shares much of its
grammar with C, the book focuses on being an instructional language reference and not a general C
programming introduction, since extensive texts exist on that topic. Focusing the unique aspects of
packetC, this book explores many of the use cases that drove the new language features present in
packetC. Throughout this book, you will find sections that will highlight why deviations were made for
security, parallel-processing, or network rationales. While the book is instructional, chapters are
organized in such a way that they can serve as a reference tool well beyond the initial learning of the
language.

Scope
What this book doesn’t cover:

¢ This book is not an introduction to programming or learning basic fundamentals
of C, or even aspects of object orientation. A programmer is expected to have used
C or C++ and be well-versed in general computer science.

¢ The concepts behind networking, network protocols, packets, and the way in
which they work is a presumed skill-set of the reader. These are requisite to an
understanding of the aspects of the language discussed in this book.

¢ The basic concepts around parallel processing and how multi-core processing
systems have evolved is presumed to be at least casually understood by packetC
developers.

e This is neither a tutorial on CloudShield systems nor how to use the CloudShield
PacketWorks IDE that integrates the first packetC compiler and debuggers.

e  While some references to workflow in an IDE are made showing step-by-step how
to create, compile, and load, these are confined to limited chapters focusing on
examples aiding the developer with tool-chain aspects important to packetC. No
specific references to a user manual or specific development environment releases
are provided. In this way, we keep this book focused on the language and not a
specific development environment release.

e (99 defines many specific constraints of the C language. We presume that C99 can
be referenced elsewhere and that the user is generally familiar with this modern
variant of C. packetC Programming will address the deviations and stress unique
points that differ between releases, but it will not focus on teaching it.
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INTRODUCTION

e This book is not the packetC language specification providing grammar
productions required for compiler developers. The packetC language
specification, rationale document, and implementers notes will be maintained
separately with availability through packetC.org as it is a living document. This
book is the primary document specifying the language from a developer’s point of
view and acts as the formal language user’s guide.

e This book is organized not as a reference manual but as a language instructional
book. Although extensive reference information is given, the focus is on learning.

What this book covers:
e packetC and how to program applications in it

¢ The computer science behind our approach to network and packet processing,
along with which equipment and operating systems it helps accelerate

¢ The computer science behind our approach to secure coding and presumptions of
the equipment and operating systems that execute packetC programs

e  The parallel programming model of packetC and how computer science
mechanisms such as Inter-Process Communications and Symmetric Multi-
Processing are implemented and simplified for packetC developers

e Grammar deviations from C99 and unique aspects of packetC

e The compilation framework surrounding packetC packet, library, and shared
modules

e How to leverage existing C code and applicability of C standard libraries

e The concept of Open Source for data plane applications operating within the
network using packetC

e  Where to go to learn more about packetC

Organization

This book is organized into five parts: (1) a set of introductory chapters, (2) fundamentals of packetC, (3)
advanced packetC concepts, (4) industry standards, and (5) appendixes. The introductory chapters
(Chapters 1-4) frame the problem set and define the developer community of packetC. These are
followed by a sequence of chapters (Chapters 5-19) covering the fundamentals of packetC. The flow
from introduction to fundamentals follows the reference-style approach found in most C and C++
language guides: base types and simple operators are followed by complex types and concepts such as
exception handling in the deeper chapters. Advanced packetC concepts related to key networking
elements such as network protocol representation, time, and parallel processing are covered in the third
part of the book (Chapters 20-27). Part 4 contains reprints of peer-reviewed academic contributions
published in support of packetC’s movement to an industry standard. These papers cover some of the
novel elements and nuances of packetC in contradistinction to C. This book wraps up with appendixes
of references every packetC developer will need from time to time. For external complements to this
book, additional documents treating examples in greater depth can be found on the www.packetC.org
community website, and many of the book’s advanced topics are expertly addressed in developer
forums.
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packetC Background

/




CHAPTER 1

Origins of packetC

The first question most developers ask when they hear about packetC is, “Why do we need yet another
language?” The premise is simply to enhance the pace with which applications that live within the
network can be developed and deployed. While that may seem overly simple, the issue is that building
applications, or solutions, for today’s networks isn’t easy. What is meant by within the network?
Solutions that are within the network are not generally considered client or server solutions. In the
simplest cases, they are switches and routers. In more complex cases, they include components such as
VoIP session border controllers, per subscriber broadband policy management, and core network
infrastructure protection employing capabilities such as DDoS mitigation and DNS defense. Solutions
such as these must be highly scalable, secure, and often require certification or accreditation. The
requirements drive the need for leveraging massively-parallel systems and highly secure coding
practices, while also representing networking protocols and transactions in the simplest manner
possible. Finding that no existing language addressed the breadth of these requirements, we concluded
that a new language was required. The introduction of packetC facilitates development of applications
for this massively-parallel, highly secure, network-oriented world efficiently from concept to
deployment.

Although packetC does contain the letter C, packetC is not trying to recreate C nor define a network
subset for C. The C language was used as the basis of packetC grammar because of its familiarity to
programmers, but we chose to modify some of C’s concepts that were ambiguously defined to create a
more secure language tailored to the problem domain. Given that packetC benefits from decades of C
adaptation and learning, some elements will be seen as more common to descendents of C such as C++.
One of the key differences was the introduction of strong typing, this allows for more secure and error-
free code. Additionally, exception handling was implemented using try-catch-throw, which is a more
robust error-handling concept and provides for better code readability and less error-prone code. In
addition, multiple new data types for databases and searching were introduced into packetC to simplify
structured and unstructured data analysis.

Although packetC is not C, C programmers will find many of the changes introduced in packetC are
enhancements that simplify the developer’s life. Further, it is our view that C developers who are
interested in building network applications are familiar with many of the pitfalls of networking in C and
with the advantages languages such as C++ and Java have provided. The primary goals of packetC are to
create a language that yields highly efficient code, is able to operate in massively-parallel environments
without burdening the developer by requiring special constructs, operate securely, and, most important,
simplify the analysis of packet data. Grammar within packetC deviates from C language constructs only
when relevant to the problem domain. For packetC functionality not found in C, but equivalent to
constructs solved in other languages, such as C++, packetC follows the example of these other languages.

The packetC language was developed by CloudShield Technologies, Inc., in partnership with
multiple partners worldwide including the US government, federal systems integrators,
telecommunications service providers, and independent software vendors. Innovative concepts and
sponsorship funding from the United States Air Force, specifically the 688th Information Operations
Wing in San Antonio, Texas, and the Air Force Research Labs in Rome, New York, proved to be
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invaluable in bringing packetC from concept to fruition. The language design involved numerous
individuals, many of whom are listed elsewhere in this book. Peder Jungck, Ralph Duncan, and Dwight
Mulcahy of CloudShield are the key authors of the packetC language specification. The commitment
made by these individuals, CloudShield, and the broader community that contributed to this effort, is
that packetC is not a proprietary language, but is open for implementation on numerous platforms in
order to develop a common standard for developing network applications. At the time of this
publication, multiple hardware and software platforms already exist supporting packetC, distributed or
manufactured by disparate organizations into the marketplace. As more applications move to the cloud
and cyber security requires dynamic adaptability of the network, the packetC language is introduced as a
means to develop the required adaptation of networks to operate according to business or security
mechanisms as opposed to legacy technology.

First Language Focused On: CloudShield packetC IDE Release 3.1 Highlights
Security Constructs In Language « packetC Compilerand Language Support
Parallel Multi-Core Architectures - Eclipse IDE with Modular Plug-In Architecture
Packet & Content Processing « packetC Editor Leveraging Full CDT Features & More

packetC IDE Release Timing « Visual Debugging of Applications and Network Data
2006-2007 — Language Design + SupportforLinux and Windows Developer Environment
Sept 08 — First Beta Compilers « Network Planner Virtual Patch Panel and ADP Tools
July 09 — Official Production » Regular Expression Builder & Test System

Developer Forum — www.packetC.org * packetC, RAVE, Regular Expression Language Guides

Language Developed With Partners * Integrated Web Based Release Update System
US Government / DoD * Integrated Graphical Performance Modeling System

» Multiple Application ADP Debugging System
* packetC Emulator For Development & PC Emulation
* Live Developer Forum with packetC Libraries
* Plus Carry-Overof Core Team Capabilities Such As:

« Version Control System Integration
h New Features In Development
CloudShield" |(. « packetC Library Modules & Shared Libraries
p ac ke * CloudShield Client APl Development Tools

» ContentProcessing Accelerator Development System

Telecom Service Providers
Network Equipment Partners
Systems Integration Partners

Figure 1-1. CloudShield packetC IDE feature and history overview

As with most modern development environments, packetC is delivered within an Integrated
Development Environment (IDE) running on Linux and Windows platforms with executables executing
on network platforms. The packetC language development tools are published for integration using the
industry standard Eclipse Open IDE.
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Tenets of packetC

Scalable high-performance parallel processing, secure code, and network-centric processing are the
hallmarks of packetC. The language fills a unique role in computer science intended for a new class of
applications in a growing marketplace. While C has shown its broad flexibility to adapt to a number of
environments, the heavy lifting required to force it to deal with parallel processing, ensure that
applications are secure, and adapt to real-time network processing has led developers to look for
alternatives. Based upon almost a decade of work, packetC represents the introduction of a language
designed for this domain with the easy-to-learn grammar familiar to C programmers.

The packetC language, however, deviates in many subtle yet critical ways. Some of these are as
follow:

e packetC is designed to be used with a runtime environment that provides parallel
processing.

e packetC hides the complexities of parallel programming from the novice
developer.

e Data definitions remove complex parallel programming constructs.

e Memory protection and transaction access are provided through strong typing,
data definition, and methods.

e Compile time allocation and system level integrity of data structure ensure
application security.

e packetC eliminates pointers for security while providing flexibility for secure
dynamic references.

e packetC differs from C type models and semantics.

Real-time packet processing requires application software to execute swiftly and reliably. Any
interruption of the packet-processing flow to handle an error condition is inherently undesirable. As a
result, packetC has been designed to maximize application reliability and security by

e Simplifying and constraining the type declaration system to prevent unforeseen
typing conflicts

e Avoiding type coercions or promotions to prevent unexpected data truncations or
expansions

e Supporting a strong typing model with restrictive type casting to prevent
unexpected side effects

e Connecting declaration source code location to declaration scope in a clear,
intuitive way

¢ Requiring switch statements to exhibit clear control flow

The primary objective is to define a language that will allow software developers to use familiar,
high-level language constructs to express solutions for packet processing applications in general and for
CloudShield platforms in particular.

The following high-level language constructs were selected as the most important for providing
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capabilities to clearly express data structures and algorithms that characterize packet-processing:
e User-defined types that aggregate data (specifically, structures and unions)

e High-level constructs for expressing conditional algorithm control flow (e.g., if,
while and switch statements)

e Anintuitive way to express arbitrarily complex arithmetic expressions in symbolic
fashion

¢ A means for decomposing complex programs into smaller, cohesive functions

Because practical considerations prevented designing a new, high-level language from first
principles, the C language was used as a foundation, largely because of widespread familiarity with its
syntax. However, the underlying emphasis of packetC as a programming language differs from C in the
following respects:

e (Cisageneral-purpose language, while packetC is geared to the packet-processing
domain.

e Callows largely unfettered access to memory locations, but packetC restricts such
access to increase application reliability and system security while enabling more
object-oriented operation on packets, databases, and search sets.

e Cenables a compact, sometimes cryptic, programming style, whereas packetC
encourages easily deciphered code reliability and security, introducing improved
and optimized exception handling.

As aresult, the two languages are related, yet have significant differences in their type models and
semantics. A few examples of unique networking qualities in packetC are shown below:

e  packetC simplifies handling of network traffic and easily decodes the contents. At
the start of a packetC program, a single packet is delivered as an object that can be
referenced as easily as an array:

byte b = pkt[35]; // Assign the value contained in offset 35 of the
packet

e packetC also provides information to the developer in the form of a structure
containing offsets of OSI network layers and decoded information about the
packet in a packet information block (pib):

if (pib.130ffset == 20) { ..  // Simple test to see if IP header follows
20-byte Ethernet header
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e Header formats in protocol messages are vast and change quite often. Packet
descriptors provide a mechanism for defining a header much like a data structure
which can be used as a method to access the packet through simple variable

mechanisms:
//::::==========================================================================
// Standard IPv4 Descriptor
/1
//==============================================================================

descriptor Ipv4Struct

bits byte { version:4; headerLength:4; } bf;
bits byte { precedence:3; delay:1; throughput:1; reliability:1; reserved:2; } tos;
short totallength;
short identification;
bits short { evil:1; dont:1; more:1; fragmentOffset:13; } fragment;
byte ttl;
IpProtocol protocol;
short checksum;
IpAddress sourceAddress;
IpAddress destinationAddress;
} ipv4 at pib.130ffset;

if (ipv4.version == 4) { .. // Is the IP version nibble specifying IPv4?

e Inaccessing and operating on packets, C doesn’t lend itself well to many of the
networking idiosyncrasies like bitfield alignment and network byte order on all
target platforms. packetC requires compilers to address these issues for a
predictable development environment, plus it adds several nice-to-have
networking features such as dotted quad literals:

if (ipv4.sourceAddress == 192.168.1.1) { ...
int myHouseIp = 10.10.1.1; // Equivalent of hexadecimal 0x0a0a0101

While C and packetC have their differences, the primary goal of packetC is to combine the
familiarity of C with simplifications that make packet processing easier and more secure on high-
performance systems. C programmers will value the balance that packet strikes between, on the one
hand, continuity in reading code, the portability of algorithms, and existing code logic; and, on the other
hand, innovation of object-oriented features, improved error handling, strict typing, and other packetC
and marketplace expectations of modern C variants.
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packet module telnet_packets;
#include “cloudshield.ph”

#include “protocols.ph” Code Compatibility
(Data definitions, source management, subroutines, math,
#include “targetDB.ph” and many algorithms developed in C will carry across.)
int totalPkts; Global Scope (Simplified Parallelism)
int telnetPkts; (Locality of definitions determine
int nonTelnetPkts; variable scope for parallelism)
Built In Networking
void main($PACKET pkt, $SYS sys, $PIB pib) { ——p (All Packet IO {-Iand_ledAutomaticalIy, Just
| const int telnetPort = 23; | Packet Scope Start Processing with Simple C Code Model)
++totalPkts; (Variable seen to just this core)
targetDBquery.sourcelIP = desIPv4.sourcelP; » Networking Primitives
targetDBquery.sourceIPmask :|255.255.0.0;
if (targetDB.match tarqetDEquerv)l:: true) { » Native Databases
if [desTCP.destPort == 23]) { > Packet Descriptors
// Telnet Packets get dropped (Structures map to packet fields
+the lneFPkt Si without using pointers with the
) pib.action = DROP PACKET; associated security risks)
else {
/* Forward any other packets */
++nonTelnetPkts;
EEBfEEEIEﬁ1: FORWARD PACKET; . .
} » Networking Actions

Figure 1-2. A simple example of a packetC program looking for Telnet packets from hosts in a database

Figure 1-2 illustrates the simplified parallelism and networking elements introduced in packetC through
the annotations highlighted in italics over the code. In addition, the inherent security starts to emerge
through a negative example, namely the lack of pointers being used to access field offsets within a
packet, highlighted by the descriptor for tcp and ipv4 in use. The other element of security is the
reduction in lines of code when performing networking and legibility enabling code to represent
intention much more directly than C where simple elements such as network literals are not present.

Parallel Processing, Security, and Packet Orientation

Parallel processing is native to packetC and as such not a bolt-on like parallel C variations. Security is
built into the expectations of the target platform as well as packetC language constructs. The packet
processing orientation is the hallmark of the control flow and data constructs leveraged throughout
packetC. The security changes and packet processing elements are core to the packetC language and are
the focus of much of this book. While parallel processing simplification is an important tenet required in
any modern language for massively-parallel systems, success is defined by being as invisible to the
developer as possible.
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packetC Language Design Considerations

The primary objective in the packetC design is to define a language that will allow software developers to
use familiar, high-level language constructs to express coding solutions for packet processing
applications for general purpose, and for CloudShield-enabled platforms in particular.

While C provided widespread familiarity of syntax, the underlying emphases of C and packetC as
programming languages are different. The following differences weighed heavily upon the design
considerations of packetC:

e Cisageneral-purpose language, while packetC is geared to the packet-processing
domain.

e Callows largely unfettered access to memory locations, but packetC restricts such
access to increase application reliability and system security in the unsecured
networking domain.

e Cprograms are highly tuned for linear, single threaded coding, whereas packetC is
designed to be used in massively-parallel systems.

e Cenables a compact, sometimes cryptic, programming style, whereas packetC
encourages easily deciphered code for reliability and security.

Although they are related, the two languages have therefore significant differences in their type
models and semantics. Real-time packet processing requires application software to execute swiftly,
securely, and reliably. Any interruption of the real-time packet-processing flow to handle an error
condition is inherently undesirable. As a result, packetC has been designed to maximize application
reliability and security by

o Simplifying and constraining the type declaration system to prevent unforeseen
type conflicts

e Avoiding type coercions or promotions to prevent unexpected data truncations or
expansions

¢ Supporting a strong typing model with restrictive type casting to prevent
unexpected side effects
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e Connecting declaration source code location to declaration scope in a clear,
intuitive way

e  Requiring switch statements to exhibit clear control flow

e Enforcing a try-catch-throw model of exception handling that addresses all
thrown exceptions

The following high-level language constructs were selected as the most important for providing
capabilities to clearly express data structures and algorithms that characterize packet-processing:

e User-defined types that aggregate data (specificially, structures and unions)

e High-level constructs for expressing conditional algorithm control flow (e.g., if,
while and switch statements)

e Anintuitive way to express arbitrarily complex arithmetic expressions in symbolic
fashion

e A means for decomposing complex programs into smaller, cohesive functions

packetC Language Similarities

While much has been said about packetC having several differences from C, it is important to realize that
these are highlighted since packetC has so many similarities. Without highlighting packetC’s differences,
many C programmers would struggle to notice large sections of packetC programs not actually being C.
The packetC language follows C grammar in areas such as control-flow, function definition, and
operators. Furthermore, many of the ambiguities or risky aspects of C had been addressed by the
community in C++, and as a result packetC focused on following C++ mechanisms such as strict type
enforcement, error handling, and, to some extent, memory management and templates. Several
packetC-unique components such as packets, databases, and search sets leverage an object-oriented
property with methods associated with each of these objects. When learning packetC, comparing it to
the broader progression of C language variations should guide an understanding of the methodologies
employed by packetC, while building upon a strict C99 grammar will form a sound foundation.

Key similarities to consider when learning packetC are as follows:

e packetCis a case-sensitive language, e.g., “IPVersion4” and “IpVersion4” are not
the same.

e Asemicolon “” is used to delineate the end of statements in packetC.
e Strong typing follows C++ behavior at compile time.
e packetC has the full complement of C control flow (if-then, while, switch, et al).

e All of the simple and compound C operators for assignment and mathematics are
present.

e  Error, or exception handling, follows a C++ try, catch, and throw mechanism and
is required.

¢ Memory management uses safer methods, such as delete, with error handling
similar to C++.
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