packetC® Programming

10161 9101010101010101010101010101010101T010101010101010
010
1@l gl01 01010101 0101010101010101T01T0T0T01010101010101010
0101PACKETC10PROGRAMMING(0101010101010101010101010101010
010
010181010101010710
010
0101010101010101010###############010101010101010101010
010101010101010######################401010101010101010
010101010101 ####H#####H#H##0HHO##H######4##01010101010101
01010101010########010101010101010########0101010101010
OLOLO01010###### #0101 0########01010101#######01010101010
OLO1O01O01######0L0#############010101010######0101010101
OlO1010######010#########0#0#010101010101#####010101010
0101010#####010######01010101010101010101#####010101010
OLO1O01#####010######010######4#010101010101###4#4#01010101
OLO1O1#####0L0#####0L0#########01010101010####401010101
OLOL1O1#####010#####010#########01010101010###4##01010101
01010101#01010#####0101#######01010101010101#0101010101
010101010101010#####01010###010101010101010101010101010
0101010101010101######401010101010101010101010101010101
01010101010101010###########010101010101010101010101010
0101010101010101010########r#01010101010101010101010107
01010101010101010101010####0101010101010101010101010101
GLETeluUlvlgT0 1010 TE 0100 T01T 0T aTO 10 TIRNG FE 0100 30 L0110 E0
010
010
01010101010101071010101 PEDER]IOIUNGCELIGIO1I01010101010101L0
010
0101010101010101010101C10RALPHOLIDUNCANOLIDLIO01010310101010
010
0101010101010101010101010101DWIGHTO1IMULCAHY101010101010
QLo Te ol ol ToTl 0110103018100 01010 BRLO1T0 PO 3010301 01 QL0
010
QI0Ie 101 000Gl 0T0 010010108 0T 010 TR0 L0100 0380 10710150

ApPress

packetC Programming

Peder Jungck
Ralph Duncan
Dwight Mulcahy

Apress-

packetC Programming
Copyright © 2011 by CloudShield Technologies, Inc. An SAIC Company

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior
written permission from the Publisher. Contact the Publisher for information on foreign rights.

ISBN-13 (pbk): 978-1-4302-4158-4
ISBN-13 (electronic): 978-1-4302-4159-1

CloudShield® and packetC® are registered trademarks of CloudShield Technologies, Inc. in the United States and/or
other countries.

All other brand names are trademarks, registered trademarks, or service marks and the sole property of their
respective companies or organizations. Trademarked names, logos, and images may appear in this book. Rather than
use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

The Author and Publisher of this book have used their best efforts in preparing the book and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied with regard to these programs or the
documentation contained in this book. The Author and Publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

President and Publisher: Paul Manning

Lead Editor: Jeffrey Pepper

Developmental Editor: Robert Hutchinson

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,
Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Rita Fernando

Copy Editor: Mary Sudul

Compositor: Apress Production

Indexer: BIM Indexing & Proofreading Services

Cover Designer: Jonathan Jungck

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code.

Contents at a Glance

L1] '
About the AUthOrS.......cccemmmmisesnmmmmsssssnmmssssssmmssssssnmms s ——————— XVi
ACKNOWIEAYMENTS ..ociiseeennrrssssnnnmmssssnnsnmmssssnnsnmsssssnnnnnssssnnnnssssssnnnnsssssnnnnnessssnnnnsssssnnns Xvii
INtroduction.........ccccmmiiisemnnmnnisennnnnsssssnn s a R nnn e Xix
PART I: packetC Background.......cccccuussemmnmmsssssnsnmnssssnnsnssssssnsnsssssssssnssssssnnssnsssssnnnsnsssnns 1
CHAPTER 1: Origins of packetCcccuuseermsssmnmmsssnnmsssssssssnnssssnnsssssanssssansssssnnsnssnnnss 3
CHAPTER 2: Introduction to the packetC Language.......c..ccussssussssssnsssssasssssanssssansnss 9
CHAPTER 3: Style Guidelines for packetC Program.........ccccuusseennmsssssnnnsssssssssnnssans 17
CHAPTER 4: Construction of a packetC Program..........cccccvunsmmmsssenmnssessnsssssssssanss 39
CHAPTER 5: Variables: Identifiers, Basic Scalar Data Types, and Literals........... 53
PART II: Language ReferencCe........cccurusssmnnnmsssssnnnsssssssnnnssssssssnnssssssssssssssssnnnssssssnnnnsnss 63
CHAPTER 6: Data Initialization and Mathematical Expressionsccccvuusssssannnns 65
CHAPTER 7: FUNCHIONSccitiiisnemmmmmssssnsnmmmsssssnnmnssssssssnsssssnsnsnsssssnnnsnssssnnnnnssssnnnnnnssss 87
CHAPTER 8: packetC Data Type Fundamentalsccoccccmmmnissnmmnmmnsssensnnmsssssssnnnns 93
CHAPTER 9: C-Style Data TYpesS....ccusemmmmssssmanmmsssssnsnmsssssnssnssssssnsnssssssssnnssssssnnnnnss 103
CHAPTER 10: Basic Packet Interaction and Operationsccuusueeemmnnnnnnsssssnnes 119
CHAPTER 11: Selection Statements.........ccccusemmnssemmmissmsmmsssnmmsssssmsssssmssssssssssssennss 125
CHAPTER 12: Loops and Flow Controlcccccuumssesmmsssmssssssssssssssssssssssssssssssansessas 129
CHAPTER 13: Exception Handlingcccuseemmmmnsssssnmmsssssssnmmsssssssnssssssssssssssssssnnnss 133
CHAPTER 14: packetC Database Types and Operations..........cccciunsssemsnmmssssnsnnnnns 139
CHAPTER 15: packetC Search Set Types and Operationsccccusseeennnnsssnnnnnas 151
CHAPTER 16: Reference Type and Operation........ccuussssmmssssmmmmsssssssssssssssssssssssnnns 159
CHAPTER 17: Semaphores in packetC.......ccccceiummmmmmmmsssssssssmmmmsmmmmssssssssssssssssnns 171
CHAPTER 18: Packet Information Block and System Packet Operations. 175

iii

CONTENTSw e s s coocccccescsccese

CHAPTER 19: Descriptor Type and Operationsccccrusmsmmsssmsmssssssssssssesssnnsesss 205
PART IlI: Developing Applicationsccccunnseemmmmmsssessmmmmsssssnmmssssssnmsssssssssssssssnnns 215
CHAPTER 20: Control Plane and System Interactionccocccmmrnssseennnnssssnnnnnnns 217
CHAPTER 21: packetC Pre-Processorcccommmsssemnmmmssssnsnsssssssssnsssssssssnssssssnsnnss 223
CHAPTER 22: Pragmas and Other Key Compiler Directives.......ccccusssemsmsssssannnnas 233
CHAPTER 23: Developing Large Applications in packetCcccccussseenmnnsssnnnnnas 237
CHAPTER 24: Construction of a packetC Executablec.cccusseemmmnsssscmsnnnssssnnnnns 245
CHAPTER 25: packetC Standard Networking Descriptorsccccunseesnmmssssnsnnnnas 263
CHAPTER 26: Developing for Performancecuuccuumssssssssssssssssssssssssssssnsssssnssnsnns 281
CHAPTER 27: Standard Librariescccueermsssssmmsssssmsssssssssssssssssssssssssssssssssssnsessss 287
PART IV: Industry Reprintscccciunmssemmmmmnsssesnmmmsssssnmmssssssssmssssssnnsssssssssssssssssnnnss 309
REPRINT 1: packetC Language for High Performance Packet Processing 311
REPRINT 2: A Paradigm for Processing Network Protocols in Parallel.............. 319
REPRINT 3: Dynamically Accessing Packet Header Fields at High-speed.......... 329
REPRINT 4: packetC Language and Parallel Processing of Masked Databases .335
REPRINT 5: Packet Content Matching with packetC Searchsets..........cuscermsssnnss 345
REPRINT 6: References for Run-time Aggregate Selection with Strong Typing .355
REPRINT 7: Portable Bit Fields in packetCccciumsseennmmmssssnnssssssssnnssssssssssnnsans 363
REPRINT 8: packet Field and Bitfield Allocation Order..........ccccennnneennnnssssnnnnnnns 371
REPRINT 9: Managing Heterogeneous Architectures for High-speed Packet
ProcesSing.....cccuuseemnmmssssnnnnnsssssnsnsssssssnnnsssssssnnnnssssnnnnssssssnnnnnnss 377
APPENDIX A: Reference Tables.......cccuseemmmmmsemnnmmmsssssnmmsssssssnmmsssssssnssssssssnssssssnnnns 383
APPENDIX B: Open Systems Vendors for packetC............cccinnssucmmmnnssssnnnnnssssnnan 395
APPENDIX C: GIOSSAIY .uevsssssssnssssssssssssssssssssnnssssssssssssssssssnnssnssssssssssssssnnnnsssssssssssss 405

Contents

Contents at @ GIANCE.......ucurrisenmmmssnnmmssannmsssnnssssansssssnsssssnnssssannesssnnnsssnnnssssnnssssnnnsssannnssnnns iii
About the AULNOIScceuiiiiisssnmmmisssssmmsmssssnmmsssssnmss s ———. XVi
ACKNOWIEAYMENTS ..uuueeeriiisssnnnnnsssssnnnmmsssssnsnsnsssssnnnnsssssnnsnnsssssnnnsnsssssnnnsessssnnnnsssssnnnnnnsssn Xvii
INtroduction.......cocceemiiiissnmnnmmnsssennmmnssssssnnnsssssnnnnessssnnnnessssnnnnnessssnnnneesssnnnnessssnnnnnnssnnnnns Xix
£ o0 1 XiX
(00222 1[0 o SRR XX
PART I: packetC Background........ccusseeessmssssnsssssssssnnssssssssnsnsssssssnsssssssssnsssssssnnnnssssssnnnnssss 1
CHAPTER 1: Origins of packetCcccuserrsssmsmmssmnmmssssmmsssssssssssssssssssssssssssssnsesssnssessnnnes 3
Tenets Of PACKELCcoccveeerc e r s e r e n e 5
Parallel Processing, Security, and Packet Orientation...........ccceevvnvrvncerincssesses e 8
CHAPTER 2: Introduction to the packetC Language.........ccuseemmrmssssnnnsmsssssssnssssssssnnsnss 9
packetC Language Design ConsSiderationsc.cccucererernneniensscsiesssssessssessesss s ssesessens 9
packetC Language Similaritiesccoceeererieiinininsirsr s 10
Virtual Machine—packetC BENAVIOL..........ccccvveeverierrerre s sse e ssse e ssessne e ssneenas 11
Digging a Little Deeper into packetC vs. C.........ccocvcrcrceere s snssne s snens 12
Case Sensitivity and Identifiers ..o 12
Object Orientation and CONtrol FIOWccocviirieriinienierser e se e sneees 13
MEMOIY LAYOUL ..o nnne s 14
111111 S 16
CHAPTER 3: Style Guidelines for packetC Program.........cccscrmsssmsmsssensssssnsssssssssssnnss 17
Introduction to packetC Style GUIdENINES..........cccverereeriere e 17
Meaning of Wording in packetC Style GUIdElINEScccvcererrcerennseresne s 17

Last ClarifiCatioN........c.ccovceeeeneresersc e sr e ne s 18
Naming Conventions for Variables, Types, and Functions..........cccccooerieveririnicrscnscncenseninnns 18

L1 1 1] 1= 18

N7 LT SRRSO 20
FUNCHIONS ... r e s s n s 20

Additional Conventions for Naming Variables, Types, and Functions...........cccccvvviernnne 21

CONTENTS

Source Code Presentation, Indentation, and FOrm ... ssnesessnenns 22
General Source Code FOrM ... e 23
Include Files and Include Statements..........ccccovveeeercriecnc s 25
Functions and Declarationsccccocerinininsnsnssss s e s s s e seseas 26
General Conditionals FOrmattingccccceeevierininininsnrnn e 26
Specific Conditionals FOIMS ..o s sa e saesaesae s 28

General Commentary on COMMENTSccccoceverierinininsrse e 29
File Comment HEAUENS.........cccuceeereriererrnse e sn s s ses e s snsse s 30
Function Comment HEAUErSccvceveericreninsese s sns s ss s s sss e s sns s 31

File Naming and Construction CONVENtiONS.........c.c.ceeeenierenensessssssessssssesssssessssessssssssssens 33

Broader Coding Style Guideline Tips and TEChNIQUESccceverererrercenierserrerer e 34
Variables, Types, and FUNCLIONScccoveriiineninrer e e e sne e nne s 34
Conditional Layout and FOrMcccvierinnennnrnesnsesessss s sss e s ssssssssssssnssesssssnsens 34
Variables, Types, and FUNCLIONScccvvviriiniinrinsnn s sse s ssessessesessessessessessessssssnns 35
COMMEBNLS.....ceeeccccrcr e e r e a e s a e s a e ae e e ae e ne e e e e e e e e nnns 36

CHAPTER 4: Construction of a packetC Program.........ccccvmsemmmsssnnmsssassssssssssssssssssnnss 39

packetC and ParalleliSMccccvceriirierieeriesre s ssee s s e s s e s e saesss e s sssssnesasssnesnnes 39

packetC Modules: Three Kinds of Compilation Units.........ccceccvvvecnicnscnscnccnscnecessesneene 39

Three Kinds 0f SCOPE......cccoieererrre s e nn e n s 41

Module Structure and SCOPESccceeverierieriririr s e e e e e nens 42
o T (= 10T] SRR 44
Shared MOUIE.........ceceeeeecere e e e s s ra e e esa e s n e rae e nnesaneeaesanenan s 46
LiDrary MOQUIE.........oo e s sn e sn e s e e sn e s ne e 47

Graphical Representation of SCope LiNKAQE........cccucveerierrerseeseessesse e se s s sessesennnas 48

Run time Environment Data and Predefined TYPEScccvvrrmrrrenenense s sesesseseneens 50
PACKet (SPACKET PKL)ccevvureruccrcreririe e ecsese e e sesesasss s e sesesassssssesesesssssssssssnsnssenens 51
Packet Information BIOCK (SPIB Pib)cccueerererereeccrsseissssssssssessse s asssssnns 51
System INformation (BSYS tYPE) ..veuerereererererirerererre s e sas e sas e e e sas e e saenes 52

CHAPTER 5: Variables: Identifiers, Basic Scalar Data Types, and Literalscc..cc. 53

ClassSiC DAta TYPES....cccvierrrrrrrrersrrssssse e e ssesse s s s s e s e s s sn s sn e nesn e nesne s e sne s e ene s e s e s e nnnnnnes 53

Identifiers and a Few Fundamentals ... 53

BaSiC SCAlAr TYPES......ccerererrriereririre e s ae s a e sr e r e nne e nae s 55

L] 05T 1 PSSR 95

Integral TYPE LITEralSccvcerververierrer e ss e sn s sae s s s s 56

NEtWOIK LItEIalSccceeeeeeeeceeerererese s s s sn e s s sne e s nnnnnnnns 57

SHNQG LILEIaAS ...t 58

L83 1 T gl I =Y | 60

CONTENTS

NEtWOrK BYte OFUErcccceeeeerecerircr e sn e s sne s 61
UNSUPPOITEA TYPES ...cuererereesie e r s s n e s a e ae s s e s e e e s nnnnnnnan 62
PART II: Language ReferenCe.......ccccuussumenmmssssnnnnmsssssnnnnssssssnsnnssssssnsnnnssssnnnnssssssnnnnnssssnnnns 63
CHAPTER 6: Data Initialization and Mathematical EXpressionscccccusseesnssssssnnnns 65
Data Initialization, Expressions, and Operatorsccccucvvvrereressessessessessesses s sessessssssens 65
Variable and Constant Declarations............ccccveeiirernnscnnsse s s ses s 65
Variable and Constant Initializationccccvcvininsrss e 66
Classic C EXpressions and OPEratorscccceceevveererseersersesseesesssessssssessssssssssssssssssssssssssaes 68
(00 TCT 2 (0] £ SRS 68
ASSOCIALIVITY ... ccueiererirsir s n e nnene 72
MUItipliCative OPEratorS.......cccccvverirrrerieerer e sreesesssessessesssessessaesesssesnesasssaessnesassssesansnnens 72
Additive OPEIatOrScccceeeriererirsirse st a s sas s b e sa e e e nae e nneas 73
Relational OPEratorsccecereriere et n e n e ne 73
EQuAlity OPEratorscocvververresrrre s sa s sn e sa e a e s s s s s s e s s e s e 74
AsSIgNMENt OPEIATOrScoviieeerirerie et a s s r s r e n e 74
Simple AssSignment OPerator ... 75
Compound AssSignment OPEratorsccvcevverieriersersenses s sse s sse s e s e e ssssanses 75
Compound Repetition Assignment Operator...........cccocveeeevesesesesessese s 76
Increment and Decrement OPEratorsc.cccvvvinininsinsen s 78
Post-Increment and Post-Decrement Operators..........cocvvvrerveerereniesessessessessessessessenens 78
Prefix Increment and Prefix Decrement Operators..........cccccvvevenenenensenscssessessessessenens 78
Logical AND OPEIrator........ccccvieeveererere st se s sse s s s s sse s sn s sn s saesaesnesnesaen 79
(0T 1oz L0 R0 0] (o SRS 79
Logical and Bitwise NOT Operators (!, ~) ..cccccvvrvrrrinsmnsessss e sse e ssessessessesessessessessessenses 80
BitwWiSe AND OPEIatOrcccccerierrerieererssesieessesssesssssesssessesssessssssessssssssssssessssssessesssesssesanens 80
Bitwise Exclusive OR (XOR) OpErator.........c.cccviriersessesseessessessessessesesessessessessessessssssssssssens 81
Bitwise INclusive OR OPEratorcccocvvrierrennee s s s s s s s sneas 81
Bitwise Shift OPerator..........coccecrecricresr e sre e 81
P10 00T (o] SRS 82
Get Field Offset Within STrUCTUIES ..o 83
Data Repetition QUANIfier.........c.ccoevriiecncre s 84
UNnSUpported OPErators...... ..o ceeeresere s r e sae e s ae e nn e e 85
CHAPTER 7: FUNCLIONScocueniisenmsssanmmsssnsmsssnnssssssssssnnsnsssnssssssnnssssnsssssnnssssnnnessnnnsssnnnss 87
FUNCEION CONSIIUCTS.....cccceieeeirc et sn s sr s r s sn e s n s nn e 87
Function Declarations and Prototypes........ccccvvrininsnssceecese e sennas 87

vii

CONTENTS

viii

FUNCLioN CONSTIUCTION.......ccceueirccccrc e a e s 88
FUNCEION INVOCALIONS........ceeceeeeeeccre e 89
Function Declaration and Function Call Restrictions............ccccecvvvreenrcnresnscsesssesesensenns 89
Parameter Passing MOES..........cccccviiiiinininsirsis s s 89
1 71 T S 90
Function Parameter and Return TYPESccooivrrinrercin s sne s snens o1
Function Return Statements..........ocoricicncncr s 91
FUNCHION CAlIScoveerceeeeescceeir e s nn s s 92
CHAPTER 8: packetC Data Type Fundamentalsccccccumnssmmmnsssnnmssssssssssnsssssnsssssnns 93
Data Type FUNdamentalscccceeeeereri s nenen 93
packetC Fundamental TYPESccccevereriri s 94
Type Compatibility, Conversions, and Casts............ccvrerrrernnniennsnesn s sss s 95
Type Promotions, Conversions, and Implicit Casting.........ccccoovrevirrerrrrnsnssssses e 95
Numeric Literals and Implicit Type Castingcccooveerrennsmresnsessesnsesessssesesessessessssens 96
EXPIICIt TYPE CaASTS....cceieeeerceecir e sn s sn e s sn e s e s 96
L0 0 0T 21 0] SR 97
Strong TYPe Casting.......ccvvvrerrerrirrrrr s s a e s 98
L DT T L0 1 R 98
BASE TYPES ..c.eererererir it s n e a e r e a e e n e nann 100
Variable Declaration SPecCifiers........c.ccvvrininininnnnn s seenes 100
Constant and Constant Integral EXpressionsccccooerveresnienesensesesessesssessessessssens 101
CHAPTER 9: C-Style Data TYPeS....uucerrrssssamnnmmssssnssnmsssssnsnssssssssnnssssssssnsssssssnnnssssssnnns 103
ENUMEration TYPEScocuvcercirir e ss e n e s 103
4 | SR 105
Array Subscripting Operator ... s 106
UNSized DIMENSIONS.......cccceeerrerrerenesessssessesssse e sss s e e ssesss s e sssessesss e ssessssesnsssnssens 107
Array ASSIGNMENLcceoecececer e e nnnn s 107
LT 1T o TSRS 108
Array Initialization.........ccoceeeeeeere s 109
Structures and UNIONScocoeiciercrcrsersin s se e e sse e s s s e s e sn s e s nnsnnannnns 109
31T 3T 110
SITUCKUIES ... e p e s n s 110
Structure AlIGNMENL..........coo e e s 111
Types, Tags, and Name Visibilityc.ccocvvrvrinnnnnnnns e ses e 112
BItfIEIASee e nn s 113
A Discussion on Container-Based Bit Fields..........c.ccocvveveeerenesese e ses s 115

CONTENTS

CHAPTER 10: Basic Packet Interaction and Operationsccccccnnenrnssennnssanssssnns 119
Interaction with the Packet through Unique-to-packetC Capabilities..........c.ccecerverieriernnne 119
Get Packet OffSEl ... ieerrrerr e 120
s TR (T L0 0T 1 0] 121
e T 1 D11] 121
o T (= B [T o R 121
Packet REPIICALEcccceeeeeecerece s nn 123
PACKEL REQUEUE.......ceceeeeeceeeeecec st n s n e a e s n e nennenn 123
CHAPTER 11: Selection Statements........cccuuemmmsenmmmsssmmmssssmmssssnmsssssmssssssssssssssssnssssss 125
Covering packetC Basic Control Statementscccocvceeririennnnscnn s 125
Compound Statement ... ——————————— 125
CoNditional EXPreSSIONS.cvverreereriseriersserssessesssesssessesssesssesssssssssesssessssssssssssssssssssssssssssesns 126
If STATEMENT ... ——————— 126
SWItCh STatemMENT ..o e 127
NUIl STAEEMENT ... s 128
Expression Statement...........o.ooierinccr e ——— 128
CHAPTER 12: Loops and Flow Controlccccuueemmmmmmsssmnnmmssssssnmmsssssssnssssssssssnsssssnnns 129
CoNtrol STAtEMENTScoceeeeice e s e s sa e s a e sa e s n e sanerneens 129
Looping (Iteration) Statements ... s 129
JUMP STAEMENTS......cceeee e ——————— 130
CHAPTER 13: Exception Handlingccuuseemmmmnsseeenmmmsssssnnmmssssssssssssssssnssssssssssssssssnnns 133
Exception Handling in PACKETCccocevererierinniererre s s sse s e e e 133
Try-Catch-Throw Statements (Error Handling)ccoovvevevenencenicncsescrc s 133
Error Handling (try-CatCh-throw) ... 134
System-Defined RESPONSE........cccererierierierierserser s sessss s sse e ssesse s s e sse s e s s e s e s e sesessnsnnnns 137
Errors Section from cloudshield.ph ... s 138
Simple Program Flow with Try-Catch-Throw Implementedcccoccvvrvrvrvrvncssnnennnens 138
CHAPTER 14: packetC Database Types and Operationscccccuussseenmmssssnssnnssssnnes 139
Database DecClarations............ccceeeeererersesscnsissr s nn s 140
Databases and MasKiNg.........cccvrererrerierenieniensessnsses s sse e s ssesse s e ssesessessessss s s 141
Database Limitations and Paddingc.ccocverrmrrmnsnnnssnsesssessesesese s sessessessesssssnnnns 142
Database Records and EIEmMeNts..........ccccvcvvrvninnnccsse e 143
2T 143
Database Subscripting Operator..........c..coccveersrennrc s 144
Database DEIBte..........cocircieriir e n e nan e 144
D7 L L0 L2 0 [T o 145

ix

CONTENTS

Database MatCh..........cccecececececerer s 145
Operator INVOCALIONS.........ccociiiicircrre e n s nn e nnenne s 146
Example Database ApPliCationcccceiveriinencn e 146
Example Database Application (ACL)......c.ccocvvrrrrmrsmnsssssessesssssessessesessesse s sessessessesssssnnnns 147
CHAPTER 15: packetC Search Set Types and Operationscccceeessnnnnsssssssssssnnnnns 151
Searchsets in packetC for Unstructured Content Analysisccccocevverierveniensensensensensennnnns 151
SAICNSELS ...ttt e nenens 151
Searchset DECIArations..........ccvvevceerierserier e s e s e ssessse e s saeseesaesne s e s sne s e e saessnessessnesns 152
Constant Searchsets and SizZescoccveerrerennere s 152
NUll Termination ISSUESccceeerererieriererrsse s s sse s s se s s s e s e s e s s s 153
T (ot 00 TCT (o] S 153
FING OPEIatOr.......coecececeeer et a e s r e n e e nne s 154
REgEX SPECITIBY......cceeceeeeeere e s n e n e nn s 154
Interaction of packetC Pre-Processor with Regular EXpressionscccveevverrersessenseeneens 154
General Search Set Usage, Operation, and MeChanicsccceeverevererienensessensessensensenns 155
Searchset Example AppliCationc.cocrvrirrn s 156
CHAPTER 16: Reference Type and Operation.......ccccccuunnmsmmssssssssssssssmmmsssssssssssssssnnn 159
References in PACKETC..........ccov v sn e sa e sa e saesaesa e ae s 159
3T (=] €] T 1 159

Reference DECIarationsc.cccevveererieniersesieesessse e s sse s ssesssessesssesssssssssssssssssssnns 160

Assigning Values to REfErenCeScccccvvrrerierrnnis s s 161

Dereferencing REfEreNnCeScccevevceriririrst e nenen 161

USING REFEIENCES......ceceeerreeree e 162
Reference OPErators.........cccvceeererenese s s nne s 163

deref (dereference OPErator)ccvvrcrcrcesecese s 163

Developing Linked Lists Without POINters...........cccvvrvmnnnenenenenese s sessessenns 164
CHAPTER 17: Semaphores in packetC.........cccuusueemmmmssssnnnmmssssssnmmsssssssnsssssssssnsssssnnans 171
Locking and UnIOCKING.........ccuceerreeeseresesessessessessesssssesssssssssssssssessssssssssssssssssssssnsssssnssnnens 171
LoCK and UnlOCK OPEratorsS.......ccuceereererreerieesserssssesssesssesssssssssssssesssessssssessssssssssesssessssssens 171

[T Q0 1] (0] PSSR 172

L0 CoTed Q0] 41T L RS 173
Using Lock and Unlock to Perform a Global Malloc() and Free()........cceverrereereriersersersernenne 173
CHAPTER 18: Packet Information Block and System Packet Operations............... 175
Shared Definitionsccoeeeeererercc e s n e n e n 176
PACKEL (SPACKET PKL) ...cvevrrirruccerererssseseesesesessssssssesesessssssssesessesesssassssssssssssssssssssssssnssnans 180

Packet Information BIOCK (SPIB Pib)ccccoererrrrreicrcrcrerr st ses e seeseens 181

CONTENTS

System INformation (SSYS SYS).....cccvrrrrrerererirerirse e se e se s enes 188
TCP/IP Stack Decode for pib Layer Offset Calculationscccccocvvvrrervrrcensnncensesennnens 192
Layer 2 Ethernet Header Decode Procedure...........cocvvererneeniennnnseessenseesseesesssesessaenns 193
Layer 2 Ethernet 802.1Q (VLAN) Decode Procedurecoceeeeeereresessessessessessesssnnns 194
Layer 2 SONET Header Decode Procedureccvvrrerreerenenessesessessessessessessesssssseses 195
Layer 2 %2 MPLS Label Stack Decode ProCedure...........ccocceeemrrerenesscsesnssesesesessesensenns 196
Layer 3 IPv4 and IPv6 Header Decode Procedure..........ccueeeeerereressesescssessessessensensens 197
Example cloudshield.ph INCIUAE Fileccevcirveeriirrerree v sae e e 198
CHAPTER 19: Descriptor Type and Operationscccuuesrmsssssmssssssssssnsssssssssssnsssssns 205
PACKEtC DeSCriPIOr TYPESciceicercrrererrerre s s s e sn s ne s s e nnnnnannens 205
DT 010 S 205
Descriptor Example APpliCatioN..........ccocvcriisrsnsenses e sse e se s snennens 206
Detailed View and Description of DeSCrptorscccceveeererensessese s sessessnens 208
Complex Descriptor Structure and Union USAge...........ceererereresessessesessessessessessensens 209
Background on Parallel Processing Paradigm and Relation to Descriptors 210
The Descriptor CONSIIUCT ... s 211
1] 0T 6 30 (0 =T (0] 04T (o 214
PART IlI: Developing Applicationsccccuussssnsnmmsssssssnmmssssnnsnnssssssssnssssssnnnssssssnnsnnssssnnns 215
CHAPTER 20: Control Plane and System Interaction............cccccnsnnemmmmnssssnnnnnssssnnan 217
Control Plane INTeractioncccevcereerseriernirier s s s s s sse s sse s e e s ssessn e s e s snesnesaesnens 217
Alerts and Information LOGQINGcccceveriernmiinnsinesses s ses s ssee s s seessessnessessseas 217
alert Statement..........cc e ———————————— 218
[0g StatemMENt ..o ——————————— 219
Messages to Control Plane (SMSG_TYPE)........cccuevrrierernreneseneresesessssessssssessssssessssenssasses 219
Messages Portion of cloudShield.ph.........cocrvrircrcrsrsr s 221
CHAPTER 21: packetC Pre-ProCessorccccuummmmssmsssssnmmmmsssssssssssssssssssssssssssssnnnnnnns 223
FUETING ...t R R R e 225
HNCIUAL ...t e r e r e r e e ae e ae e ae s ae e e e e e ne e e e e e nnnan 227
1 [227
FHINUET . ————————————— 227
32 10) SRS 228
) 228
2 L R 228
2 [RS 229
FUNAET ... r e R e R e R e R 229

CONTENTS

xii

T (0] S 229
2 | 229
111 PSRRI 230
(0123 113 o SRS 230
CoMMENTS iN COUE......ceerrerrrereresse s n e renr s ere e e nnen s 230
Classic C-Style COMMENTcooevererrerr e n e 231
Multi-Line Comments C SEYIEccccvvririrrrcr e nne e 231
Classic C++-Style COMMENLcccoceriririrrr e sa e nenes 231
Multi-Line Comments C++ STYIEcoceveererccrrcre e 231
Valid Nesting of Comment BIOCKS..........cccucrennerenicncssese s sss e 231
Miscellaneous Comments EXAMPIESccceveerreerierrerieererseesesssesssessesssesssssssssssssesssssnes 231
Typical packetC Comment Header.............ccoeerirenncnernese e 232
CHAPTER 22: Pragmas and Other Key Compiler Directives.......c.uccemmmmsssennnssssssnnnns 233
o T | 0123 233
Implementation-Defined Pragmas..........cccccecriririmnsnssenssnsss s sss e e e ssessessessssessessessssnenns 234
Interaction of packetC Pre-Processor with Regular EXpressionsccccueveerveeeeeseesnennens 235
CHAPTER 23: Developing Large Applications in packetCcccuuseemmmmsssnnnnsssssnnnns 237
Planning for Large Projects in PacketC...........cccvvrrrrnrennnens e e e sne s 237
Things to Consider in Large Application Developmentcccoeeeevierccrcenccsccsscsscssesennens 238
Follow @ COMMON SEYIEcoveeierreererer e s 238
Plan Out Modularity in YOUr Programs..........ccccveerverreesenssesesesessssessesessessessessessesssssnnns 239
Set Up the Production Environment Early............cccovrvrvrircscscc s 239
Leverage Include FileS Wl ..ot se e s e 240
Be Careful, Be Clear, and Be COE.........cccevviemriemriiienieiieesiesssesssssssssesssesssssssssssssssnesnns 240
It’s All About Data-Driven Code—Follow the FIOWcccceeerercercercrrer e 241
Programs Large and Small—Plan Appropriately.........cccceevvrrerimreressessensessessessessensenns 241
CHAPTER 24: Construction of a packetC Executable.........cccuussmmemmmmmnnnnnnssssssssssnnnns 245
A View into the CloudShield PacketWorks IDE TOOIScccccvververrerierncernensensses s see e 249
CHAPTER 25: packetC Standard Networking Descriptorsccccunseesmmnssssssnsssssnnns 263
Standard Include File protocols.ph EXamPpIeccccvverierrerieerierseesesseesseesesssessesssssssessenns 266
CHAPTER 26: Developing for Performanceccccvuusssssnmssssssssnssssssssnssssssssssssssssnnns 281
Developing for Performance in PacketCc.cccvvrinincssese s 281
Counting BitS SEl......cocviiiririrrrrr e n e 282
Simplest Computation SCENATI0cccccveerriierrire e 282
Improving the Computational Algorithmccoviernnriers e 283
Altering the Algorithm with Memory Use in Exchange of Processing...........ccccvvervevvenrennnns 284

CONTENTS

Metadata ANAIYSIScccceeeeererere e n e nn e nenne s 285
Netflow Record GENEration...........cccevvererreersirsersee s ses s e s sse e e saessae s e s saessnessessaeenes 285
DDOS Trend ANAIYSIS.......ccceruerrererereresiessessessesssssssssssssssessessessessesssssessesssssssssssassssssssassassns 285
VOIP QOS ANGIYSISceceeerererrerreresese s s s s s s sre s snesnesnesne s sse s e s e snessnssnnnnnnas 286
Processing Minimization..........cccvevevnininnnnsnnse e s s 286
Whatever You Do ... Don’t Involve Other Contexts........cccocvvvennveeresnscsessse s 286
CHAPTER 27: Standard LiDrariescccussssesmssssssssnmssssssnssssssssnsnsssssssssnssssssnsnssssssnnnns 287
Assessment of C Standard Library FUNCLIONS ..o 288
assert.h - Directly AppliCable..........ccvvrvrcnrrrcre e 288
complex.h - Not Applicable..........coceocereercrcr e s 288
ctype.h - Directly AppliCabIe...........cocvvrirircrr s 288
error.n - NOot AppliCaDIEcceeeeeeeeee s 288
fenv.h - Not AppliCaDIE ..o ——— 289
float.h - Not APPlICADIEooueeerer e e 289
inttypes.h - Partially Applicable.........ccocviiiiiririrer e 289
i50646.h - Directly AppliCabIe..........ccccevceriiriiriercrrsee e ne e 289
limits.h - Directly AppliCabIe..........coccvvririririrrir e 289
0Tors 1L T\ o AT o] o] L Lo SRR 289
math.h - Partially Applicable ... 289
tgmath.h - Partially Applicable ... 289
setjimp.h - Not APPlICADIEcoeeeeeer s 290
signals.h - Not Applicable.........ccvvrirveccrrrr s 290
stdarg.h - Not AppliCabIE.........ccevcerere s 290
stdbool.h - Directly Applicable.........ccoorercercr e 290
stddef.h - Partially APpliCabIe............ccvververieririr e 290
stdint.h - Partially AppliCabIe..........coceecrrerirrr e 290
stdio.h - Partially AppliCabIe...........cocerererirrr et 290
stdlib.h - Directly Applicable..........ccovrvrrrirrererr e ————— 291
string.h - Directly Applicableccocvvrerrrrrre e 291
time.h - Directly AppliCaDIEcoererrcrrr s 292
WChar.h - NOt APPlICADIEcceeeececee s n e n e sanenae s 292
wetype.h - Not APpliCaDIE.........coeeererererir e 292
packetC Standard LIDrariesccoceveeerieresiesiensessissesses s s sessssssessessessessessessessessessssssssens 292
cloudshield.ph—Required Platform Specific System Include.cccocrvrvrvrrrreriennen, 292
protocols.ph—Common Layer 2 through 4 Packet Descriptorsccocevvrvierverrieniannns 292
ascii.ph—Named Values for ASCIlI Characters...........ccccvvrrrrerenenensensessesesses s sessenens 292
limits.ph—A packetC Replacement for C limits.h Functionality............cccocverierecenncnne. 292

xiii

CONTENTS

Xiv

moreprotocols.ph—Named Values for Network Protocol Field Valuesccc........ 293
namedoperators.ph—Replacement for is0646.h Named Operatorsccccceveerierrnnnns 293
stdlib.ph—packetC Implementation of Many stdlib.h Functions...........cccocvvrrrrerrnnnen. 293
time.ph—packetC Implementation of Many time.h Functions.........c.cccccoerrrircercnenene. 293
trojanprotocols.ph—Named Values for Port NUMDErsccccevvvervrvercercencenses s 293
ascii.ph - Named Values for ASCIl CharacCters..........ocvvrerereriessesiesessessessessessessessesssssenns 293
limits.ph - A packetC Replacement For C limits.h Functionality..........cccceoverveiverieriercnnenne 300
moreprotocols.ph - Named Values For Network Protocol Field Valuescccccceriereenne. 301
namedoperators.ph - Replacement for is0646.h Named Operators............coceervrericrnenennens 305
trojanprotocols.ph - Named Values for Port NUMDEIS..........cccoiiniennnicnnsesessesesieens 306
PART IV: Industry Reprintscccciumssssnsnmmsssssnsnmsssssnssnnsssssnsnssssssnsnnnsssssnsnssssssnnnsnssssnnnns 309
REPRINT 1: packetC Language for High Performance Packet Processing 311
REPRINT 2: A Paradigm for Processing Network Protocols in Parallel.................. 319
REPRINT 3: Dynamically Accessing Packet Header Fields at High-speed.............. 329
REPRINT 4: packetC Language and Parallel Processing of Masked Databases 335
REPRINT 5: Packet Content Matching with packetC Searchsets...........cccennsssnnnnnns 345
REPRINT 6: References for Run-time Aggregate Selection with Strong Typing..... 355
REPRINT 7: Portable Bit Fields in packetCc.ccousemmmmmmssenmmmmmssssssnmssssssanssssssansnnns 363
REPRINT 8: packet Field and Bitfield Allocation Order.........ccccusemmmmnssssnansnssssansnnns 31
REPRINT 9: Managing Heterogeneous Architectures for High-speed Packet
PrOCESSING . uuueeetiiissnnnnnissssnnnnnsssssnnsnnsssssssnsessssnssnnsssssnsneesssssnsnesssssnnnsessssnnnnssssssnnnsssssnnnns 377
APPENDIX A: Reference Tables.........ccccumumsmmnmmmsssessnmmmssssssnmssssssssnssssssssnsssssssnsnssssnns 383
KBYWOIS ..ot see s s s e s s s n e s s n e s e e e s n e e e e ne s n e e ne e nne e e e e nennenaes 383
UNit KEYWOIUS......coiieceiiecer et ss e s sa e s a e s sn e s e sne s n e snne s neene 383
Declaration KEYWOIdS.........ccoumrereneresenesssesss s sssssssessssss s ssssss s sssssssssssssssssssssssssnes 383
Pragma KEYWOIUS.........cceeerieeeircerie s sse e sss e e s ssne s s s e sse s s s s sne s s s sne s s s s s 384
EXPression KEYWOIAS.........cccceeieiieiieniinsinsissss s s ssessesse e ssessessessesessssessessnsssssssssssssssens 384
MEthod KEYWOIUSccoeeeeeceeeereres e 384
Statement KEYWOIUS.........ccvcerverreerrre s se e s sssssesas e ssessessesessessesnsees 384
packetC Pre-Defined KEYWOIdSccceeeeerereriersinsesses e sse e sse e se e e e snennas 384
ASCII Table with Decimal to Hexadecimal CONVErsionccoceeeerevesesessessessessessessenens 385
BitS @Nd BYLES......cceceeceeceecre e sn e 386
TCP/IP and OSI Model Network Stack..........ccccvcevrernennennrnsnnsesssssse e ssesessessesessessessessessesnens 386

CONTENTS

Header FOrMALScccoceeeec s s s 387
Basic Ethernet [l Header FOrmMat...........cccoveecirierinnensee s seese s s saessesssesnsssessnesnes 388
Ethernet Header with VLAN Tag (802.1Q) FOrmat...........cccccvverenricnssenccresensesesesessesennens 389
Ethernet Header with Stacked VLAN Tags (802.1Q in Q) Format..........cccoccvervrcrcerceecnnne. 390
|V 5 1= T [S SRRSO 391
|V SR 5 [T T [T SRS PRR 392
LIl L 1 L SRS 393
00l 5 (T T T SRS 394
L8l 1= T L 394
APPENDIX B: Open Systems Vendors for packetC...........ccccuseeenmmmsssennnmnssssssnnssssnns 395
T 41 R 395
0T T R 395
REFEIBINCE ...ttt n e n e nn s 404
APPENDIX C: GIOSSArY ...cceurissssessnmmsssssnssssssssssssssssssssnssssssnsssssssssnnnsessssnnsnssssssnnnsssssnns 405
PaCKetC Language TEIMSccvevevereresese e ssesse s s e s ssssssssessesaessessessessesessessnsssssassassnnsns 405
NEtWOrKing TEIMScoceieeceeceese e r e s s re s s n e 407
INDEX .uueeicisasnnassnnmsssnsssssnnsesssssnsssnsnessssssssssssssssssesssssnssssssnsssssessssssssssssesssnsssssnsssssnnnessnnss 419

About the Authors

Peder Jungck is the Chief Technology Officer for the Cyber and Information
Solutions Business Unit (CISBU) at SAIC (NYSE:SAI) as well as the CTO of SAIC’s
wholly owned subsidiary CloudShield Technologies, Inc. which he founded in 2000.
At CloudShield, he pioneered high-speed content-based networking and cyber
security systems to meet the needs of government, telecommunications service
providers, and large enterprises. Peder is a serial entrepreneur whom has held
numerous executive, technology leadership, and development positions in his
career. He has been a guiding architect at several networking and security
companies, has earned 15 patents, is a co-author of packetC®, and enjoys tackling
challenging problems and high performance technology Peder attended Clarkson
Umversny for electrical and computer englneerlng and received a Bachelor of Arts

degree from Beloit College in mathematics and computer science.

Ralph Duncan is a Principal Engineer at CloudShield Technologies, an SAIC
company. He graduated from the University of Michigan (B.A., 1973), University of
California, Berkeley (M.A., 1978) and Georgia Institute of Technology (M.S., 1982).
Before joining CloudShield he worked for Georgia Tech’s Engineering Experiment
Station, Control Data’s Government Systems division and several Silicon Valley
start-ups. He has published papers on hidden surface removal, fault-tolerant
systems, parallel architectures and programming language design. Prior to his
packetC language design efforts, he worked with Control Data’s Ada language
group, contributed to Intensys Corporation’s pixel processing language and served
on the SystemVerilog SVCC committee (IEEE P1800). Ralph Duncan is king of the
Eastern Goths.

Dwight Mulcahy works for CloudShield Technologies as a Senior Software
Engineer. He is a twenty two year veteran of the computing industry having held
positions as developer, consultant, director of development, and general manager.
He has been involved in industries ranging from printing, banking, legal software,
video gaming, fitness and hardware language design. Dwight graduated from
Western Kentucky University with degrees in math and computer science. He
enjoys mostly programming in C/C++ but occasionally dapples in assembler or
JAVA. Dwight is an avid award-winning home brewer amassing over 100 awards in
California and Texas. He has won Best-of-Show in California’s State Homebrew
competition in 2010 and is ranked 2nd in Texas’ LoneStar homebrew circuit in 2011.
Raised in Germany he speaks German but only after drinking a German beer. He

enjoys discussing the nuances of packetC over a beer with anyone.

Acknowledgments

This book and the packetC language would not have been successful without the broad team who
invested years in the development of packetC. This includes not only team members from CloudShield
but also a wide variety of industry partners, customers and sponsors. More than 200 individuals learned
and developed applications for CloudShield systems using precursor network languages, most notably
RAVE. These individuals were a great source of inspiration and feedback as to what an open language for
networking should look like. Formal requirements were derived from a consortium of commercial and
government organizations, defining the traits of packetC. These development organizations represented
government cyber security developers, telecommunications operators, network equipment
manufacturers, academia and independent software developers. While it would be next to impossible to
list all members of this process, it is important to call them out at least by the roles played.

¢ packetC Language Authors - Peder Jungck, Ralph Duncan, Dwight Mulcahy

¢ packetC Development Team — The following individuals were instrumental in
developing the initial release of packetC compilers and development
environment: Kai Chang, Alfredo Chorro-Rivas, Ralph Duncan, Ali Hosseini, Peder
Jungck, Victor Leitman, Dwight Mulcahy, Minh Nguyen, Gary Oblock, Ken Ross,
Matt White (in alphabetical order).

e packetC Reviewers — A special thanks goes to the dozens of individuals who sat
through detailed reviews of the language and beta releases at multiple stages.
Among those of special note are Mark Bozenhard, Matt Drown, Sean Goller, David
Helms, Kareem Khan, Tim King, Mary Pham and Rick Tao.

¢ packetC Special Recognition — Noteworthy among the organizations involved in
the development of packetC is the United States Air Force, specifically the 688th
Information Operations Wing in San Antonio Texas and the Air Force Research
Labs in Rome New York, who were critical in developing packetC.

¢ packetC Content — The packetC Language Specification draws upon C99 as a basis
for defining a strict C interpretation as a starting point. Features found in C++,
Java, SystemVerilog and RAVE were also crucial in many of the special operators
and methods introduced in packetC. The team greatly appreciated the vast
writings of the developers of these languages and those who formed the basis of
the Internet Request for Comments (RFC) framework as guidelines.

¢ Editors and Production Team - Extensive detailed review and editing was
performed by the CloudShield Quality Assurance Team with special thanks to Kai
Chang and Ken Ross. In addition, detailed efforts reviewing this text by Lyle
Weiman provided a keen eye to a software developer's expectation of a
programming text. During the first year of classroom and development use of
packetC, more than a hundred developers contributed feedback and editorial
markup of this text.

xvii

ACKNOWLEDGMENTS

xviii

e Cover Art, Graphics and Illustrations — Jonathan Jungck

Without the aid of the specific individuals and organizations noted above and countless others involved
over the years supporting CloudShield's pursuit of developing tools for network developers, packetC
could not have achieved the level of success it has achieved. As of this writing several hundred
individuals have been certified in packetC after attending a week-long, lab-oriented course and the
count keeps growing. Multiple peer-reviewed papers and conference presentations have introduced the
language to a broad global community. The entire team whom has worked on packetC is greatly

appreciative of the support, funding, and encouragement by such a large group of individuals and
organizations.

Introduction

This book covers a vast array of information related to packetC. It is a complete language reference and
contains background information on many unique parts of packetC. As packetC shares much of its
grammar with C, the book focuses on being an instructional language reference and not a general C
programming introduction, since extensive texts exist on that topic. Focusing the unique aspects of
packetC, this book explores many of the use cases that drove the new language features present in
packetC. Throughout this book, you will find sections that will highlight why deviations were made for
security, parallel-processing, or network rationales. While the book is instructional, chapters are
organized in such a way that they can serve as a reference tool well beyond the initial learning of the
language.

Scope
What this book doesn’t cover:

¢ This book is not an introduction to programming or learning basic fundamentals
of C, or even aspects of object orientation. A programmer is expected to have used
C or C++ and be well-versed in general computer science.

¢ The concepts behind networking, network protocols, packets, and the way in
which they work is a presumed skill-set of the reader. These are requisite to an
understanding of the aspects of the language discussed in this book.

¢ The basic concepts around parallel processing and how multi-core processing
systems have evolved is presumed to be at least casually understood by packetC
developers.

e This is neither a tutorial on CloudShield systems nor how to use the CloudShield
PacketWorks IDE that integrates the first packetC compiler and debuggers.

e While some references to workflow in an IDE are made showing step-by-step how
to create, compile, and load, these are confined to limited chapters focusing on
examples aiding the developer with tool-chain aspects important to packetC. No
specific references to a user manual or specific development environment releases
are provided. In this way, we keep this book focused on the language and not a
specific development environment release.

e (99 defines many specific constraints of the C language. We presume that C99 can
be referenced elsewhere and that the user is generally familiar with this modern
variant of C. packetC Programming will address the deviations and stress unique
points that differ between releases, but it will not focus on teaching it.

Xix

INTRODUCTION

e This book is not the packetC language specification providing grammar
productions required for compiler developers. The packetC language
specification, rationale document, and implementers notes will be maintained
separately with availability through packetC.org as it is a living document. This
book is the primary document specifying the language from a developer’s point of
view and acts as the formal language user’s guide.

e This book is organized not as a reference manual but as a language instructional
book. Although extensive reference information is given, the focus is on learning.

What this book covers:
e packetC and how to program applications in it

¢ The computer science behind our approach to network and packet processing,
along with which equipment and operating systems it helps accelerate

¢ The computer science behind our approach to secure coding and presumptions of
the equipment and operating systems that execute packetC programs

e The parallel programming model of packetC and how computer science
mechanisms such as Inter-Process Communications and Symmetric Multi-
Processing are implemented and simplified for packetC developers

e Grammar deviations from C99 and unique aspects of packetC

e The compilation framework surrounding packetC packet, library, and shared
modules

e How to leverage existing C code and applicability of C standard libraries

e The concept of Open Source for data plane applications operating within the
network using packetC

e Where to go to learn more about packetC

Organization

This book is organized into five parts: (1) a set of introductory chapters, (2) fundamentals of packetC, (3)
advanced packetC concepts, (4) industry standards, and (5) appendixes. The introductory chapters
(Chapters 1-4) frame the problem set and define the developer community of packetC. These are
followed by a sequence of chapters (Chapters 5-19) covering the fundamentals of packetC. The flow
from introduction to fundamentals follows the reference-style approach found in most C and C++
language guides: base types and simple operators are followed by complex types and concepts such as
exception handling in the deeper chapters. Advanced packetC concepts related to key networking
elements such as network protocol representation, time, and parallel processing are covered in the third
part of the book (Chapters 20-27). Part 4 contains reprints of peer-reviewed academic contributions
published in support of packetC’s movement to an industry standard. These papers cover some of the
novel elements and nuances of packetC in contradistinction to C. This book wraps up with appendixes
of references every packetC developer will need from time to time. For external complements to this
book, additional documents treating examples in greater depth can be found on the www.packetC.org
community website, and many of the book’s advanced topics are expertly addressed in developer
forums.

PARTI

packetC Background

/

CHAPTER 1

Origins of packetC

The first question most developers ask when they hear about packetC is, “Why do we need yet another
language?” The premise is simply to enhance the pace with which applications that live within the
network can be developed and deployed. While that may seem overly simple, the issue is that building
applications, or solutions, for today’s networks isn’t easy. What is meant by within the network?
Solutions that are within the network are not generally considered client or server solutions. In the
simplest cases, they are switches and routers. In more complex cases, they include components such as
VoIP session border controllers, per subscriber broadband policy management, and core network
infrastructure protection employing capabilities such as DDoS mitigation and DNS defense. Solutions
such as these must be highly scalable, secure, and often require certification or accreditation. The
requirements drive the need for leveraging massively-parallel systems and highly secure coding
practices, while also representing networking protocols and transactions in the simplest manner
possible. Finding that no existing language addressed the breadth of these requirements, we concluded
that a new language was required. The introduction of packetC facilitates development of applications
for this massively-parallel, highly secure, network-oriented world efficiently from concept to
deployment.

Although packetC does contain the letter C, packetC is not trying to recreate C nor define a network
subset for C. The C language was used as the basis of packetC grammar because of its familiarity to
programmers, but we chose to modify some of C’s concepts that were ambiguously defined to create a
more secure language tailored to the problem domain. Given that packetC benefits from decades of C
adaptation and learning, some elements will be seen as more common to descendents of C such as C++.
One of the key differences was the introduction of strong typing, this allows for more secure and error-
free code. Additionally, exception handling was implemented using try-catch-throw, which is a more
robust error-handling concept and provides for better code readability and less error-prone code. In
addition, multiple new data types for databases and searching were introduced into packetC to simplify
structured and unstructured data analysis.

Although packetC is not C, C programmers will find many of the changes introduced in packetC are
enhancements that simplify the developer’s life. Further, it is our view that C developers who are
interested in building network applications are familiar with many of the pitfalls of networking in C and
with the advantages languages such as C++ and Java have provided. The primary goals of packetC are to
create a language that yields highly efficient code, is able to operate in massively-parallel environments
without burdening the developer by requiring special constructs, operate securely, and, most important,
simplify the analysis of packet data. Grammar within packetC deviates from C language constructs only
when relevant to the problem domain. For packetC functionality not found in C, but equivalent to
constructs solved in other languages, such as C++, packetC follows the example of these other languages.

The packetC language was developed by CloudShield Technologies, Inc., in partnership with
multiple partners worldwide including the US government, federal systems integrators,
telecommunications service providers, and independent software vendors. Innovative concepts and
sponsorship funding from the United States Air Force, specifically the 688th Information Operations
Wing in San Antonio, Texas, and the Air Force Research Labs in Rome, New York, proved to be

CHAPTER 1 " ORIGINS OF packetC

invaluable in bringing packetC from concept to fruition. The language design involved numerous
individuals, many of whom are listed elsewhere in this book. Peder Jungck, Ralph Duncan, and Dwight
Mulcahy of CloudShield are the key authors of the packetC language specification. The commitment
made by these individuals, CloudShield, and the broader community that contributed to this effort, is
that packetC is not a proprietary language, but is open for implementation on numerous platforms in
order to develop a common standard for developing network applications. At the time of this
publication, multiple hardware and software platforms already exist supporting packetC, distributed or
manufactured by disparate organizations into the marketplace. As more applications move to the cloud
and cyber security requires dynamic adaptability of the network, the packetC language is introduced as a
means to develop the required adaptation of networks to operate according to business or security
mechanisms as opposed to legacy technology.

First Language Focused On: CloudShield packetC IDE Release 3.1 Highlights
Security Constructs In Language « packetC Compilerand Language Support
Parallel Multi-Core Architectures - Eclipse IDE with Modular Plug-In Architecture
Packet & Content Processing « packetC Editor Leveraging Full CDT Features & More

packetC IDE Release Timing « Visual Debugging of Applications and Network Data
2006-2007 — Language Design + SupportforLinux and Windows Developer Environment
Sept 08 — First Beta Compilers « Network Planner Virtual Patch Panel and ADP Tools
July 09 — Official Production » Regular Expression Builder & Test System

Developer Forum — www.packetC.org * packetC, RAVE, Regular Expression Language Guides

Language Developed With Partners * Integrated Web Based Release Update System
US Government / DoD * Integrated Graphical Performance Modeling System

» Multiple Application ADP Debugging System
* packetC Emulator For Development & PC Emulation
* Live Developer Forum with packetC Libraries
* Plus Carry-Overof Core Team Capabilities Such As:

« Version Control System Integration
h New Features In Development
CloudShield" |(. « packetC Library Modules & Shared Libraries
p ac ke * CloudShield Client APl Development Tools

» ContentProcessing Accelerator Development System

Telecom Service Providers
Network Equipment Partners
Systems Integration Partners

Figure 1-1. CloudShield packetC IDE feature and history overview

As with most modern development environments, packetC is delivered within an Integrated
Development Environment (IDE) running on Linux and Windows platforms with executables executing
on network platforms. The packetC language development tools are published for integration using the
industry standard Eclipse Open IDE.

CHAPTER 1 ' ORIGINS OF packetC

Tenets of packetC

Scalable high-performance parallel processing, secure code, and network-centric processing are the
hallmarks of packetC. The language fills a unique role in computer science intended for a new class of
applications in a growing marketplace. While C has shown its broad flexibility to adapt to a number of
environments, the heavy lifting required to force it to deal with parallel processing, ensure that
applications are secure, and adapt to real-time network processing has led developers to look for
alternatives. Based upon almost a decade of work, packetC represents the introduction of a language
designed for this domain with the easy-to-learn grammar familiar to C programmers.

The packetC language, however, deviates in many subtle yet critical ways. Some of these are as
follow:

e packetC is designed to be used with a runtime environment that provides parallel
processing.

e packetC hides the complexities of parallel programming from the novice
developer.

e Data definitions remove complex parallel programming constructs.

e Memory protection and transaction access are provided through strong typing,
data definition, and methods.

e Compile time allocation and system level integrity of data structure ensure
application security.

e packetC eliminates pointers for security while providing flexibility for secure
dynamic references.

e packetC differs from C type models and semantics.

Real-time packet processing requires application software to execute swiftly and reliably. Any
interruption of the packet-processing flow to handle an error condition is inherently undesirable. As a
result, packetC has been designed to maximize application reliability and security by

e Simplifying and constraining the type declaration system to prevent unforeseen
typing conflicts

e Avoiding type coercions or promotions to prevent unexpected data truncations or
expansions

e Supporting a strong typing model with restrictive type casting to prevent
unexpected side effects

e Connecting declaration source code location to declaration scope in a clear,
intuitive way

¢ Requiring switch statements to exhibit clear control flow

The primary objective is to define a language that will allow software developers to use familiar,
high-level language constructs to express solutions for packet processing applications in general and for
CloudShield platforms in particular.

The following high-level language constructs were selected as the most important for providing

CHAPTER 1 " ORIGINS OF packetC

capabilities to clearly express data structures and algorithms that characterize packet-processing:
e User-defined types that aggregate data (specifically, structures and unions)

e High-level constructs for expressing conditional algorithm control flow (e.g., if,
while and switch statements)

e Anintuitive way to express arbitrarily complex arithmetic expressions in symbolic
fashion

¢ A means for decomposing complex programs into smaller, cohesive functions

Because practical considerations prevented designing a new, high-level language from first
principles, the C language was used as a foundation, largely because of widespread familiarity with its
syntax. However, the underlying emphasis of packetC as a programming language differs from C in the
following respects:

e (Cisageneral-purpose language, while packetC is geared to the packet-processing
domain.

e Callows largely unfettered access to memory locations, but packetC restricts such
access to increase application reliability and system security while enabling more
object-oriented operation on packets, databases, and search sets.

e Cenables a compact, sometimes cryptic, programming style, whereas packetC
encourages easily deciphered code reliability and security, introducing improved
and optimized exception handling.

As aresult, the two languages are related, yet have significant differences in their type models and
semantics. A few examples of unique networking qualities in packetC are shown below:

e packetC simplifies handling of network traffic and easily decodes the contents. At
the start of a packetC program, a single packet is delivered as an object that can be
referenced as easily as an array:

byte b = pkt[35]; // Assign the value contained in offset 35 of the
packet

e packetC also provides information to the developer in the form of a structure
containing offsets of OSI network layers and decoded information about the
packet in a packet information block (pib):

if (pib.130ffset == 20) { .. // Simple test to see if IP header follows
20-byte Ethernet header

CHAPTER 1 ' ORIGINS OF packetC

e Header formats in protocol messages are vast and change quite often. Packet
descriptors provide a mechanism for defining a header much like a data structure
which can be used as a method to access the packet through simple variable

mechanisms:
//::::==
// Standard IPv4 Descriptor
/1
//==

descriptor Ipv4Struct

bits byte { version:4; headerLength:4; } bf;
bits byte { precedence:3; delay:1; throughput:1; reliability:1; reserved:2; } tos;
short totallength;
short identification;
bits short { evil:1; dont:1; more:1; fragmentOffset:13; } fragment;
byte ttl;
IpProtocol protocol;
short checksum;
IpAddress sourceAddress;
IpAddress destinationAddress;
} ipv4 at pib.130ffset;

if (ipv4.version == 4) { .. // Is the IP version nibble specifying IPv4?

e Inaccessing and operating on packets, C doesn’t lend itself well to many of the
networking idiosyncrasies like bitfield alignment and network byte order on all
target platforms. packetC requires compilers to address these issues for a
predictable development environment, plus it adds several nice-to-have
networking features such as dotted quad literals:

if (ipv4.sourceAddress == 192.168.1.1) { ...
int myHouseIp = 10.10.1.1; // Equivalent of hexadecimal 0x0a0a0101

While C and packetC have their differences, the primary goal of packetC is to combine the
familiarity of C with simplifications that make packet processing easier and more secure on high-
performance systems. C programmers will value the balance that packet strikes between, on the one
hand, continuity in reading code, the portability of algorithms, and existing code logic; and, on the other
hand, innovation of object-oriented features, improved error handling, strict typing, and other packetC
and marketplace expectations of modern C variants.

CHAPTER 1

ORIGINS OF packetC

packet module telnet_packets;
#include “cloudshield.ph”

#include “protocols.ph” Code Compatibility
(Data definitions, source management, subroutines, math,
#include “targetDB.ph” and many algorithms developed in C will carry across.)
int totalPkts; Global Scope (Simplified Parallelism)
int telnetPkts; (Locality of definitions determine
int nonTelnetPkts; variable scope for parallelism)
Built In Networking
void main($PACKET pkt, $SYS sys, $PIB pib) { ——p (All Packet IO {-Iand_ledAutomaticalIy, Just
| const int telnetPort = 23; | Packet Scope Start Processing with Simple C Code Model)
++totalPkts; (Variable seen to just this core)
targetDBquery.sourcelIP = desIPv4.sourcelP; » Networking Primitives
targetDBquery.sourceIPmask :|255.255.0.0;
if (targetDB.match tarqetDEquerv)l:: true) { » Native Databases
if [desTCP.destPort == 23]) { > Packet Descriptors
// Telnet Packets get dropped (Structures map to packet fields
+the lneFPkt Si without using pointers with the
) pib.action = DROP PACKET; associated security risks)
else {
/* Forward any other packets */
++nonTelnetPkts;
EEBfEEEIEﬁ1: FORWARD PACKET; . .
} » Networking Actions

Figure 1-2. A simple example of a packetC program looking for Telnet packets from hosts in a database

Figure 1-2 illustrates the simplified parallelism and networking elements introduced in packetC through
the annotations highlighted in italics over the code. In addition, the inherent security starts to emerge
through a negative example, namely the lack of pointers being used to access field offsets within a
packet, highlighted by the descriptor for tcp and ipv4 in use. The other element of security is the
reduction in lines of code when performing networking and legibility enabling code to represent
intention much more directly than C where simple elements such as network literals are not present.

Parallel Processing, Security, and Packet Orientation

Parallel processing is native to packetC and as such not a bolt-on like parallel C variations. Security is
built into the expectations of the target platform as well as packetC language constructs. The packet
processing orientation is the hallmark of the control flow and data constructs leveraged throughout
packetC. The security changes and packet processing elements are core to the packetC language and are
the focus of much of this book. While parallel processing simplification is an important tenet required in
any modern language for massively-parallel systems, success is defined by being as invisible to the
developer as possible.

CHAPTER2

Introduction to the
packetC Language

packetC Language Design Considerations

The primary objective in the packetC design is to define a language that will allow software developers to
use familiar, high-level language constructs to express coding solutions for packet processing
applications for general purpose, and for CloudShield-enabled platforms in particular.

While C provided widespread familiarity of syntax, the underlying emphases of C and packetC as
programming languages are different. The following differences weighed heavily upon the design
considerations of packetC:

e Cisageneral-purpose language, while packetC is geared to the packet-processing
domain.

e Callows largely unfettered access to memory locations, but packetC restricts such
access to increase application reliability and system security in the unsecured
networking domain.

e Cprograms are highly tuned for linear, single threaded coding, whereas packetC is
designed to be used in massively-parallel systems.

e Cenables a compact, sometimes cryptic, programming style, whereas packetC
encourages easily deciphered code for reliability and security.

Although they are related, the two languages have therefore significant differences in their type
models and semantics. Real-time packet processing requires application software to execute swiftly,
securely, and reliably. Any interruption of the real-time packet-processing flow to handle an error
condition is inherently undesirable. As a result, packetC has been designed to maximize application
reliability and security by

o Simplifying and constraining the type declaration system to prevent unforeseen
type conflicts

e Avoiding type coercions or promotions to prevent unexpected data truncations or
expansions

¢ Supporting a strong typing model with restrictive type casting to prevent
unexpected side effects

CHAPTER 2 " INTRODUCTION TO THE packetC LANGUAGE

e Connecting declaration source code location to declaration scope in a clear,
intuitive way

e Requiring switch statements to exhibit clear control flow

e Enforcing a try-catch-throw model of exception handling that addresses all
thrown exceptions

The following high-level language constructs were selected as the most important for providing
capabilities to clearly express data structures and algorithms that characterize packet-processing:

e User-defined types that aggregate data (specificially, structures and unions)

e High-level constructs for expressing conditional algorithm control flow (e.g., if,
while and switch statements)

e Anintuitive way to express arbitrarily complex arithmetic expressions in symbolic
fashion

e A means for decomposing complex programs into smaller, cohesive functions

packetC Language Similarities

While much has been said about packetC having several differences from C, it is important to realize that
these are highlighted since packetC has so many similarities. Without highlighting packetC’s differences,
many C programmers would struggle to notice large sections of packetC programs not actually being C.
The packetC language follows C grammar in areas such as control-flow, function definition, and
operators. Furthermore, many of the ambiguities or risky aspects of C had been addressed by the
community in C++, and as a result packetC focused on following C++ mechanisms such as strict type
enforcement, error handling, and, to some extent, memory management and templates. Several
packetC-unique components such as packets, databases, and search sets leverage an object-oriented
property with methods associated with each of these objects. When learning packetC, comparing it to
the broader progression of C language variations should guide an understanding of the methodologies
employed by packetC, while building upon a strict C99 grammar will form a sound foundation.

Key similarities to consider when learning packetC are as follows:

e packetCis a case-sensitive language, e.g., “IPVersion4” and “IpVersion4” are not
the same.

e Asemicolon “” is used to delineate the end of statements in packetC.
e Strong typing follows C++ behavior at compile time.
e packetC has the full complement of C control flow (if-then, while, switch, et al).

e All of the simple and compound C operators for assignment and mathematics are
present.

e Error, or exception handling, follows a C++ try, catch, and throw mechanism and
is required.

¢ Memory management uses safer methods, such as delete, with error handling
similar to C++.

10

