

 i

Pro OpenGL ES for
Android

■ ■ ■

Mike Smithwick

Mayank Verma

i

Pro OpenGL ES for Android

Copyright © 2012 by Mike Smithwick and Mayank Verma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN 978-1-4302-4002-0
ISBN 978-1-4302-4003-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries. Apress
Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Richard Carey
Technical Reviewer: Leila Muhtasib
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Kim Wimpsett, Linda Seifert
Compositor: Mac,PS
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

(eBook)

To a couple of the greatest parents in the world, who always supported me, never flinching at my wacky requests
such as sending me back to see an Apollo launch or buying a telescope.

–Mike Smithwick

iv

Contents at a Glance

■About the Authors .. x

■About the Technical Reviewer .. xi

■Acknowledgments ... xii

■Introduction .. xiii

■Chapter 1: Computer Graphics: From Then to Now .. 1

■Chapter 2: All That Math Jazz .. 25

■Chapter 3: From 2D to 3D: Adding One Extra Dimension 43

■Chapter 4: Turning on the Lights ... 77

■Chapter 5: Textures .. 115

■Chapter 6: Will It Blend? .. 149

■Chapter 7: Well-Rendered Miscellany .. 177

■Chapter 8: Putting It All Together .. 213

■Chapter 9: Performance ’n’ Stuff ... 247

■Chapter 10: OpenGL ES 2, Shaders, and… ... 259

■Index .. 287

 v

Contents

■About the Authors .. x
■About the Technical Reviewer .. xi
■Acknowledgments ... xii
■Introduction .. xiii

■CHAPTER 1: Computer Graphics: From Then to Now 1

Your First OpenGL ES Program ...
A Spotty History of Computer Graphics ...

3D in Hollywood ...
The Dawn of Computer Graphics ...1

MIT ..1
University of Utah ..1
Coming of Age in Hollywood ...1

Toolkits ...1
OpenGL ..1
Direct3D ...1
The Other Guys ..1

QuickDraw 3D ...1
OGRE ...
OpenSceneGraph ..
Unity3D ..

■ Contents

vi

And Still Others ...
OpenGL Architecture ...
Summary ...2

■CHAPTER 2: All That Math Jazz .. 25
2D Transformations ..26

Translations ...26
Rotations ..27
Scaling ...30

3D Transformations ..31
Picture This: Projecting the Object onto the Screen ..37
Now Do it Backward and in High Heels ...41
What About Quaternions? ..42

Summary ...42
■CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 43
First, a Little More Theory ...43

OpenGL Coordinates ..4
Eye Coordinates ...46
Viewing Frustum and the Projection Matrix ...46

Back to the Fun Stuff: Going Beyond the Bouncy Square ...48
Adding the Geometry ...49
Stitching It All Together ...53

Taking ’er Out for a Spin ...56
Tweaking the Values ...60

Building a Solar System ...64
Summary ...76

■CHAPTER 4: Turning on the Lights ... 77
The Story of Light and Color ...77
Let There Be Light ...80
Back to the Fun Stuff (for a While) ..81

Fun with Light and Materials ...9
Specular Lighting ..9
Ambient Lighting ...9
Taking a Step Back ...9
Emissive Materials ..9

■ Contents

 vii

Attenuation ..97
Spotlights ..99
Light Parameters in Play ...101

The Math Behind Shading ..101
Specular Reflections ..102

Attenuation ..104
Summing It All Up ...104
So, What’s This All For? ..105

More Fun Stuff ...105
Back to the Solar System ..108

And the Banding Played On ...114
Summary ...114

■CHAPTER 5: Textures ... 115
The Language of Texturing ...116

All About Textures (Mostly) ...116
Image Textures ...118
OpenGL ES and Textures ...119
Image Formats ..124

Back to the Bouncy Square One ...125
Mipmaps ...136
Filtering ...140
OpenGL Extensions ...142

Finally, More Solar System Goodness ...143
Summary ...151

■CHAPTER 6: Will It Blend? .. 149
Alpha Blending ..149

Blending Functions ..151
Multicolor Blending ..157

Texture Blending ...159
Multitexturing ..160

GL_BLEND ...163
GL_COMBINE ..163

GL_MODULATE ..163
Mapping with Bumps ...165

■ Contents

viii

Summary ...173
■CHAPTER 7: Well-Rendered Miscellany .. 177

Frame Buffer Objects ..177
Hedley Buffer Objects ..177
Sun Buffer Objects ...184

Lens Flare ...185
Reflective Surfaces ...192
Coming of the Shadows ..198

Shadow Mapping ..199
Shadow Volumes ...199
Blob Shadows ...201
Projection Shadows ..201

Summary ...210
■CHAPTER 8: Putting It All Together .. 213

Revisiting the Solar System ...213
What Are These Quaternion Things Anyway? ..215
Moving Things in 3D ..216
Adding Some Flare ...225
Seeing Stars ..233
Seeing Lines ..237
Seeing Text ..237
Seeing Buttons ...239

Summary ...242
■CHAPTER 9: Performance ’n’ Stuff ...247
Vertex Buffer Objects ..247
Batching ..253
Textures ..253
Sprite Sheets ..254
Texture Uploads ..254
Mipmaps ...255
Fewer Colors ...255
Other Tips to Remember ...257
Summary ...257

■ Contents

 ix

■CHAPTER 10: OpenGL ES 2, Shaders, and…... 259
Shaded Pipelines ..260

Shady Triangles ...260
Shader Structure ..262
Restrictions ..263

Back to the Spinning Triangle ...263
Earth at Night ..269

Bring in the Clouds ..277
But What About Specular Reflections? ..281

Summary ...284
■Index .. 287

x

About the Authors

Mike Smithwick’s slow descent into programming computers
began when he first got a little 3-bit plastic DigiComp 1 computer in
1963 (http://en.wikipedia.org/wiki/Digi-Comp_I). Not
too long before that, he got interested in planetariums. Eventually
he graduated to programming NASA flight simulator graphics
through the 1980s. But what he really wanted to do was become a
syndicated cartoonist (really!). Failing to get any syndication deals,
he wrote and sold the popular Distant Suns planetarium program
for the Commodore Amiga, old-school Mac, and Microsoft Windows
while selling himself as a contract programmer on the side,
working for Apple, 3DO, Sense-8, and Epyx. Eventually he landed a
“real” job at Live365, working on client software Windows and
Windows Mobile 6, TiVo, Symbian (ahhh … Symbian …), and

iPhone. After 13 short years he decided to go back to the dark side of contracting, writing, and
working on Distant Suns for mobile devices after it became modest success in the App Store.
Sometimes late at night, he thinks he can hear his Woz-autographed Apple II sobbing for attention
from the garage. He may be contacted via www.distantsuns.com, lazyastronomer on AIM, and
@distantsuns or @lazyastronomer on Twitter.

Mayank Verma completed his master’s degree in computer
science from Arizona State University in 2008. During the program,
he published several research papers in the area of security. Since
then, he has been working as a software developer specializing in
software application design and development. Mayank is
passionate about mobile application development and became
interested in Android programming when the platform was first
launched by Google. When he’s is not working on Android projects,
he spends his spare time reading technical blogs, researching,
analyzing, and testing mobile applications, and hacking gadgets.
He can be contacted at verma.mayank@gmail.com.

 xi

About the Technical Reviewer

Leila Muhtasib has been passionate about
programming since she wrote her first program on MS-
DOS. Since then, she's graduated with a Computer
Science degree from the University of Maryland, College
Park. Fascinated by mobile technology and its
increasing ubiquity, she has been programming mobile
apps since the first Android SDK was released. She is
now a Senior Software Engineer and Tech Lead of a
mobile development team at Cisco Systems.

xii

Acknowledgments

Thanks to Corbin Collins and Richard Carey, our long-suffering editors, for putting up
with first-time authors, who clearly need to read Writing Android Books for
Beginners. And to Leila Muhtasib, our tech editor, who was every bit as good as we
thought she would be.

 xiii

Introduction

In 1985 I brought home a new shiny Commodore Amiga 1000, about one week after
they were released. Coming with a whopping 512K of memory, programmable
colormaps, a Motorola 68K CPU, and a modern multitasking operating system, it had
“awesome” writ all over it. Metaphorically speaking, of course. I thought it might
make a good platform for an astronomy program, as I could now control the colors of
those star-things instead of having to settle for a lame fixed color palette forced upon
me from the likes of Hercules or the C64. So I coded up a 24-line basic routine to
draw a random star field, turned out the lights, and thought, “Wow! I bet I could write
a cool astronomy program for that thing!” Twenty-six years later I am still working on
it and hope to get it right one of these days. Back then my dream device was
something I could slip into my pocket, pull out when needed, and aim it at the sky to
tell me what stars or constellations I was looking at.

It’s called a smartphone.

I thought of it first.

As good as these things are for playing music, making calls, or slinging birdies at
piggies, it really shines when you get to the 3D stuff. After all, 3D is all around us—
unless you are a pirate and have taken to wearing an eye patch, in which case you’ll
have very limited depth perception. Arrrggghhh.

Plus 3D apps are fun to show off to people. They’ll “get it.” In fact, they’ll get it much
more than, say, that mulch buyer’s guide app all the kids are talking about. (Unless
they show off their mulch in 3D, but that would be a waste of a perfectly good
dimension.)

So, 3D apps are fun to see, fun to interact with, and fun to program. Which brings me
to this book. I am by no means a guru in this field. The real gurus are the ones who
can knock out a couple of NVIDIA drivers before breakfast, 4-dimensional hypercube
simulators by lunch, and port Halo to a TokyoFlash watch before the evening’s Firefly
marathon on SyFy. I can’t do that. But I am a decent writer, have enough of a working
knowledge of the subject to make me harmless, and know how to spell “3D.” So here
we are.

■ Introduction

xiv

First and foremost this book is for experienced Android programmers who want to at
least learn a little of the language of 3D. At least enough to where at the next game
programmer’s cocktail party you too can laugh at the quaternion jokes with the best
of them.

This book covers the basics in both theory of 3D and implementations using the
industry standard OpenGL ES toolkit for small devices. While Android can support
both flavors—version 1.x for the easy way, and version 2.x for those who like to get
where the nitty-is-gritty—I mainly cover the former, except in the final chapter which
serves as an intro to the latter and the use of programmable shaders.

Chapter 1 serves as an intro to OpenGL ES alongside the long and tortuous path of the
history of computer graphics. Chapter 2 is the math behind basic 3D rendering,
whereas Chapters 3 through 8 lead you gently through the various issues all graphics
programmers eventually come across, such as how to cast shadows, render multiple
OpenGL screens, add lens flare, and so on. Eventually this works its way into a simple
(S-I-M-P-L-E!) solar-system model consisting of the sun, earth, and some stars—a
traditional 3D exercise. Chapter 9 looks at best practices and development tools, and
Chapter 10 serves as a brief overview of OpenGL ES 2 and the use of shaders.

So, have fun, send me some M&Ms, and while you’re at it feel free to check out my
own app currently just in the Apple App Store: Distant Suns 3. Yup, that’s the same
application that started out on a Commodore Amiga 1000 in 1985 as a 24-line basic
program that drew a couple hundred random stars on the screen.

It’s bigger now.
–Mike Smithwick

 1

 Chapter

Computer Graphics: From
Then to Now

To predict the future and appreciate the present, you must understand the past.

—Probably said by someone sometime

Computer graphics have always been the darling of the software world. Laypeople can appreciate
computer graphics more easily than, say, increasing the speed of a sort algorithm by 3 percent or
adding automatic tint control to a spreadsheet program. You are likely to hear more people say
“Coooool!” at your nicely rendered image of Saturn on your iPad than at a Visual Basic script in
Microsoft Word (unless, of course, a Visual Basic script in Microsoft Word can render Saturn; then that
really would be cool). The cool factor goes up even more when said renderings are on a device you
can carry around in your back pocket. Let’s face it—the folks in Silicon Valley are making the life of art
directors on science-fiction films very difficult. After all, imagine how hard it must be to design a prop
that looks more futuristic than a Samsung Galaxy Tab or an iPad. (Even before Apple’s iPhone was
available for sale, the prop department at ABC’s Lost borrowed some of Apple’s screen iconography for
use in a two-way radio carried by a mysterious helicopter pilot.)

If you are reading this book, chances are you have an Android-based device or are considering getting
one in the near future. If you have one, put it in your hand now and consider what a miracle it is of
21st-century engineering. Millions of work hours, billions of dollars of research, centuries of overtime,
plenty of all-nighters, and an abundance of Jolt-drinking, T-shirt–wearing, comic-book-loving
engineers coding into the silence of the night have gone into making that little glass and plastic
miracle-box so you can play Angry Birds when Mythbusters is in reruns.

1

CHAPTER 1: Computer Graphics: From Then to Now 2

Your First OpenGL ES Program
Some software how-to books will carefully build up the case for their specific topic (“the boring stuff”)
only to get to the coding and examples (“the fun stuff”) by around page 655. Others will jump
immediately into some exercises to address your curiosity and save the boring stuff for a little later.
This book will attempt to be of the latter category.

NOTE: OpenGL ES is a 3D graphics standard based on the OpenGL library that emerged from the
labs of Silicon Graphics in 1992. It is widely used across the industry in everything from
pocketable machines running games up to supercomputers running fluid dynamics simulations
for NASA (and playing really, really fast games). The ES variety stands for Embedded Systems,
meaning small, portable, low-power devices.

When installed, the Android SDK comes with many very good and concise examples ranging from Near
Field Communications (NFC) to UI to OpenGL ES projects. Our earliest examples will leverage those
that you will find in the wide-ranging ApiDemos code base. Unlike its Apple-lovin’ cousin Xcode, which
has a nice selection of project wizards that includes an OpenGL project, the Android dev system
unfortunately has very few. As a result, we have to start at a little bit of a disadvantage as compared to
the folks in Cupertino. So, you’ll need to create a generic Android project, which I am sure you already
know how to do. When done, add a new class named Square.java, consisting of the code in Listing
1–1. A detailed analysis follows the listing.

Listing 1–1. A 2D Square Using OpenGL ES

package book.BouncySquare;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;

import javax.microedition.khronos.opengles.GL10; //1
import javax.microedition.khronos.opengles.GL11;

/**
 * A vertex shaded square.
 */
class Square
{
 public Square()
 {
 float vertices[] = //2

CHAPTER 1: Computer Graphics: From Then to Now 3

 {
 -1.0f, -1.0f,
 1.0f, -1.0f,
 -1.0f, 1.0f,
 1.0f, 1.0f
 };

 byte maxColor=(byte)255;

 byte colors[] = //3
 {
 maxColor,maxColor, 0,maxColor,
 0, maxColor,maxColor,maxColor,
 0, 0, 0,maxColor,
 maxColor, 0,maxColor,maxColor
 };

 byte indices[] = //4
 {
 0, 3, 1,
 0, 2, 3
 };

 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4); //5
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();
 mFVertexBuffer.put(vertices);
 mFVertexBuffer.position(0);

 mColorBuffer = ByteBuffer.allocateDirect(colors.length);
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);

 }

 public void draw(GL10 gl) //6
 {
 gl.glFrontFace(GL11.GL_CW); //7
 gl.glVertexPointer(2, GL11.GL_FLOAT, 0, mFVertexBuffer); //8
 gl.glColorPointer(4, GL11.GL_UNSIGNED_BYTE, 0, mColorBuffer); //9
 gl.glDrawElements(GL11.GL_TRIANGLES, 6, //10

GL11.GL_UNSIGNED_BYTE, mIndexBuffer);
 gl.glFrontFace(GL11.GL_CCW); //11
 }

CHAPTER 1: Computer Graphics: From Then to Now 4

 private FloatBuffer mFVertexBuffer;
 private ByteBuffer mColorBuffer;
 private ByteBuffer mIndexBuffer;
}

Before I go on to the next phase, I’ll break down the code from Listing 1–1 that constructs a
polychromatic square:

 Java hosts several different OpenGL interfaces. The parent class is merely called
GL, while OpenGL ES 1.0 uses GL10, and version 1.1 is imported as GL11, shown
in line 1. You can also gain access to some extensions if your graphics hardware
supports them via the GL10Ext package, supplied by the GL11ExtensionPack.
The later versions are merely subclasses of the earlier ones; however, there are
still some calls that are defined as taking only GL10 objects, but those work if you
cast the objects properly.

 In line 2 we define our square. You will rarely if ever do it this way because many
objects could have thousands of vertices. In those cases, you’d likely import them
from any number of 3D file formats such as Imagination Technologies’ POD files,
3D Studio’s .3ds files, and so on. Here, since we’re describing a 2D square, it is
necessary to specify only x and y coordinates. And as you can see, the square is
two units on a side.

 Colors are defined similarly, but in this case, in lines 3ff, there are four
components for each color: red, green, blue, and alpha (transparency). These map
directly to the four vertices shown earlier, so the first color goes with the first
vertex, and so on. You can use floats or a fixed or byte representation of the
colors, with the latter saving a lot of memory if you are importing a very large
model. Since we’re using bytes, the color values go from 0 to 255, That means the
first color sets red to 255, green to 255, and blue to 0. That will make a lovely,
while otherwise blinding, shade of yellow. If you use floats or fixed point, they
ultimately are converted to byte values internally. Unlike its big desktop brother,
which can render four-sided objects, OpenGL ES is limited to triangles only. In
lines 4ff the connectivity array is created. This matches up the vertices to specific
triangles. The first triplet says that vertices 0, 3, and 1 make up triangle 0, while
the second triangle is comprised of vertices 0, 2, and 3.

 Once the colors, vertices, and connectivity array have been created, we may have
to fiddle with the values in a way to convert their internal Java formats to those
that OpenGL can understand, as shown in lines 5ff. This mainly ensures that the
ordering of the bytes is right; otherwise, depending on the hardware, they might
be in reverse order.

CHAPTER 1: Computer Graphics: From Then to Now 5

 The draw method, in line 6, is called by SquareRenderer.drawFrame(),
covered shortly.

 Line 7 tells OpenGL how the vertices are ordering their faces. Vertex ordering can be
critical when it comes to getting the best performance out of your software. It helps to
have the ordering uniform across your model, which can indicate whether the triangles
are facing toward or away from your viewpoint. The latter ones are called backfacing
triangles the back side of your objects, so they can be ignored, cutting rendering time
substantially. So, by specifying that the front face of the triangles are GL_CW, or
clockwise, all counterclockwise triangles are culled. Notice that in line 11 they are
reset to GL_CCW, which is the default.

 In lines 8, 9, and 10, pointers to the data buffers are handed over to the renderer. The
call to glVertexPointer() specifies the number of elements per vertex (in this case
two), that the data is floating point, and that the “stride” is 0 bytes. The data can be
eight different formats, including floats, fixed, ints, short ints, and bytes. The latter
three are available in both signed and unsigned flavors. Stride is a handy way to let
you interleave OpenGL data with your own as long as the data structures are constant.
Stride is merely the number of bytes of user info packed between the GL data so the
system can skip over it to the next bit it will understand.

 In line 9, the color buffer is sent across with a size of four elements, with the RGBA
quadruplets using unsigned bytes (I know, Java doesn’t have unsigned anything, but
GL doesn’t have to know), and it too has a stride=0.

 And finally, the actual draw command is given, which requires the connectivity array.
The first parameter says what the format the geometry is in, in other words, triangles,
triangle lists, points, or lines.

 Line 11 has us being a good neighbor and resetting the front face ordering back to
GL_CCW in case the previous objects used the default value.

Now our square needs a driver and way to display its colorful self on the screen. Create another file
called SquareRenderer.java, and populate it with the code in Listing 1–2.

Listing 1–2. The Driver for Our First OpenGL Project

package book.BouncySquare;

import javax.microedition.khronos.egl.EGL10; //1
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView; //2
import java.lang.Math;

CHAPTER 1: Computer Graphics: From Then to Now 6

class SquareRenderer implements GLSurfaceView.Renderer
{
 public SquareRenderer(boolean useTranslucentBackground)
 {
 mTranslucentBackground = useTranslucentBackground;
 mSquare = new Square(); //3
 }

 public void onDrawFrame(GL10 gl) //4
 {

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); //5

 gl.glMatrixMode(GL10.GL_MODELVIEW); //6
 gl.glLoadIdentity(); //7
 gl.glTranslatef(0.0f,(float)Math.sin(mTransY), -3.0f); //8

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); //9
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mSquare.draw(gl); //10

 mTransY += .075f;
 }

 public void onSurfaceChanged(GL10 gl, int width, int height) //11
 {
 gl.glViewport(0, 0, width, height); //12

 float ratio = (float) width / height;
 gl.glMatrixMode(GL10.GL_PROJECTION); //13
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10); //14
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig config) //15
 {
 gl.glDisable(GL10.GL_DITHER); //16

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, //17
 GL10.GL_FASTEST);

 if (mTranslucentBackground) //18
 {
 gl.glClearColor(0,0,0,0);
 }
 else
 {

CHAPTER 1: Computer Graphics: From Then to Now 7

 gl.glClearColor(1,1,1,1);
 }
 gl.glEnable(GL10.GL_CULL_FACE); //19
 gl.glShadeModel(GL10.GL_SMOOTH); //20
 gl.glEnable(GL10.GL_DEPTH_TEST); //21
 }
 private boolean mTranslucentBackground;
 private Square mSquare;
 private float mTransY;
 private float mAngle;
}

A lot of things are going on here:

 The EGL libraries in line 1 bind the OpenGL drawing surface to the system but are
buried within GLSurfaceview in this case, as shown in line 2. EGL is primarily
used for allocating and managing the drawing surfaces and is part of an OpenGL
ES extension, so it is platform independent.

 In line 3, the square object is allocated and cached.

 onDrawFrame() in line 4 is the root refresh method; this constructs the image
each time through, many times a second. And the first call is typically to clear the
entire screen, as shown in line 5. Considering that a frame can be constructed out
of several components, you are given the option to select which of those should
be cleared every frame. The color buffer holds all of the RGBA color data, while
the depth buffer is used to ensure that the closer items properly obscure the
further items.

 Lines 6 and 7 start mucking around with the actual 3D parameters; these details
will be covered later. All that is being done here is setting the values to ensure
that the example geometry is immediately visible.

 Next, line 8 translates the box up and down. To get a nice, smooth motion, the
actual translation value is based on a sine wave. The value mTransY is simply
used to generate a final up and down value that ranges from -1 to +1. Each time
through drawFrame(), the translation is increased by .075. Since we’re taking
the sine of this, it isn’t necessary to loop the value back on itself, because sine
will do that for us. Try increasing the value of mTransY to .3 and see what
happens.

 Lines 9f tells OpenGL to expect both vertex and color data.

 Finally, after all of this setup code, we can call the actual drawing routine of the
mSquare that you’ve seen before, as shown in line 10.

CHAPTER 1: Computer Graphics: From Then to Now 8

 onSurfaceChanged(), here in line 11, is called whenever the screen changes
size or is created at startup. Here it is also being used to set up the viewing
frustum, which is the volume of space that defines what you can actually see. If
any of your scene elements lay outside of the frustum, they are considered
invisible so are clipped, or culled out, to prevent that further operations are done
on them.

 glViewport merely permits you to specify the actual dimensions and placement
of your OpenGL window. This will typically be the size of your main screen, with a
location 0.

 In line 13, we set the matrix mode. What this does is to set the current working
matrix that will be acted upon when you make any general-purpose matrix
management calls. In this case, we switch to the GL_PROJECTION matrix, which
is the one that projects the 3D scene to your 2D screen. glLoadIdentity()
resets the matrix to its initial values to erase any previous settings.

 Now you can set the actual frustum using the aspect ratio and the six clipping
planes: near/far, left/right, and top/bottom.

 In this final method of Listing 1–2, some initialization is done upon surface
creation line 15. Line 16 ensures that any dithering is turned off, because it
defaults to on. Dithering in OpenGL makes screens with limited color palettes look
somewhat nicer but at the expense of performance of course.

 glHint() in line 17 is used to nudge OpenGL ES to do what it thinks best by
accepting certain trade-offs: usually speed vs. quality. Other hintable settings
include fog and various smoothing options.

 Another one of the many states we can set is the color that the background
assumes when cleared. In this case, which is black, if the background is
translucent, or white, (all colors max out to 1), if not translucent. Go ahead and
change these later to see what happens.

 At last, the end of this listing sets some other handy modes. Line 19 says to cull
out faces (triangles) that are aimed away from us. Line 20 tells it to use smooth
shading so the colors blend across the surface. The only other value is GL_FLAT,
which, when activated, will display the face in the color of the last vertex drawn.
And line 21 enables depth testing, also known as z-buffering, covered later.

Finally, the activity file will need to be modified to look like Listing 1–3.

Listing 1–3. The Activity File

package book.BouncySquare;

CHAPTER 1: Computer Graphics: From Then to Now 9

import android.app.Activity;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
import android.view.WindowManager;
import book.BouncySquare.*;

public class BouncySquareActivity extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN
 WindowManager.LayoutParams.FLAG_FULLSCREEN
 GLSurfaceView view = new GLSurfaceView(this);
 view.setRenderer(new SquareRenderer(true));
 setContentView(view);
 }
}

Our activity file is little modified from the default. Here the GLSurfaceView is actually allocated and
bound to our custom renderer, SquareRenderer.

Now compile and run. You should see something that looks a little like Figure 1–1.

Figure 1–1. A bouncy square. If this is what you see, give yourself a high-five.

CHAPTER 1: Computer Graphics: From Then to Now 10

Now as engineers, we all like to twiddle and tweak our creations, just to see what happens. So, let’s
change the shape of the bouncing-square-of-joy by replacing the first number in the vertices array
with -2.0, instead of -1.0. And replace maxcolor, the first value in the color array with a 0. That will
make the lower-left vertex stick out quite a ways and should turn it to green. Compile and stand back
in awe. You should have something like Figure 1–2.

Figure 1–2. After the tweakage

Don’t worry about the simplicity of this first exercise; you’ll build stuff fancier than a bouncing
rainbow-hued cube of Jell-O at some point. The main project will be to construct a simple solar-
system simulator based on some of the code used in Distant Suns 3. But for now, it’s time to get to the
boring stuff: where computer graphics came from and where they are likely to go.

NOTE: The Android emulator is notoriously buggy and notoriously slow. It is strongly
recommended that you do all of your OpenGL work on real hardware, especially as the exercises
get a little more complex. You will save yourself a lot of grief.

CHAPTER 1: Computer Graphics: From Then to Now 11

A Spotty History of Computer Graphics
To say that 3D is all the rage today is at best an understatement. Although forms of “3D” imagery go
back to more than a century ago, it seems that it has finally come of age. First let’s look at what 3D is
and what it is not.

3D in Hollywood

In 1982 Disney released Tron, the first movie to widely use computer graphics depicting life inside a
video game. Although the movie was a critical and financial flop, it would eventually join the ranks of
cult favorites right up there with The Rocky Horror Picture Show. Hollywood had taken the bite out of
the apple, and there was no turning back.

Stretching back to the 1800s, what we call “3D” today was more commonly referred to as stereo
vision. Popular Victorian-era stereopticons would be found in many parlors of the day. Consider this
technology an early Viewmaster. The user would hold the stereopticon up to their face with a stereo
photograph slipped into the far end and see a view of some distant land, but in stereo rather than a flat
2D picture. Each eye would see only one half of the card, which carried two nearly identical photos
taken only a couple of inches apart.

Stereovision is what gives us the notion of a depth component to our field of view. Our two eyes
deliver two slightly different images to the brain that then interprets them in a way that we understand
as depth perception. A single image will not have that effect. Eventually this moved to movies, with a
brief and unsuccessful dalliance as far back as 1903 (the short L’arrivée du Train is said to have had
viewers running from the theater to avoid the train that was clearly heading their way) and a
resurgence in the early 1950s, with Bwana Devil being perhaps the best known.

The original form of 3D movies generally used the “anaglyph” technique that required the viewers to
wear cheap plastic glasses with a red filter over one eye and a blue one over the other. Polarizing
systems were incorporated in the early 1950s and permitted color movies to be seen in stereo, and
they are still very much the same as today. Afraid that television would kill off the movie industry,
Hollywood needed some gimmick that was impossible on television in order to keep selling tickets, but
because both the cameras and the projectors required were much too impractical and costly, the form
fell out of favor, and the movie industry struggled along just fine.

With the advent of digital projection systems in the 1990s and fully rendered films such as Toy Story,
stereo movies and eventually television finally became both practical and affordable enough to move it
beyond the gimmick stage. In particular, full-length 3D animated features (Toy Story being the first)
made it a no-brainer to convert to stereo. All one needed to do was simply rerender the entire film but
from a slightly different viewpoint. This is where stereo and 3D computer graphics merge.

CHAPTER 1: Computer Graphics: From Then to Now 12

The Dawn of Computer Graphics

One of the fascinating things about the history of computer graphics, and computers in general, is that
the technology is still so new that many of the giants still stride among us. It would be tough to track
down whoever invented the buggy whip, but I know who to call if you wanted to hear firsthand how
the Apollo Lunar Module computers were programmed in the 1960s.

Computer graphics (frequently referred to as CG) come in three overall flavors: 2D for user interface,
3D in real time for flight or other forms of simulation as well as games, and 3D rendering where quality
trumps speed for non-real-time use.

MIT

In 1961, an MIT engineering student named Ivan Sutherland created a system called Sketchpad for his
PhD thesis using a vectorscope, a crude light pen, and a custom-made Lincoln TX-2 computer (a spin-
off from the TX-2 group would become DEC). Sketchpad’s revolutionary graphical user interface
demonstrated many of the core principles of modern UI design, not to mention a big helping of object-
oriented architecture tossed in for good measure.

NOTE: For a video of Sketchpad in operation, go to YouTube and search for Sketchpad or Ivan
Sutherland.

A fellow student of Sutherland’s, Steve Russell, would invent perhaps one of the biggest time sinks
ever made, the computer game. Russell created the legendary game of Spacewar in 1962, which ran
on the PDP-1, as shown in Figure 1–3.

CHAPTER 1: Computer Graphics: From Then to Now 13

Figure 1–3. The 1962 game of Spacewar resurrected at the Computer History Museum in Mountain View,
California, on a vintage PDP-1. Photo by Joi Itoh, licensed under the Creative Commons Attribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

By 1965, IBM would release what is considered the first widely used commercial graphics terminal,
the 2250. Paired with either the low-cost IBM-1130 computer or the IBM S/340, the terminal was
meant largely for use in the scientific community.

Perhaps one of the earliest known examples of computer graphics on television was the use of a 2250
on the CBS news coverage of the joint Gemini 6 and Gemini 7 mannded space missions in December
1965 (IBM built the Gemini’s onboard computer system). The terminal was used to demonstrate
several phases of the mission on live television from liftoff to rendezvous. At a cost of about $100,000
in 1965, it was worth the equivalent of a nice home. See Figure 1–4.

Figure 1–4. IBM-2250 terminal from 1965. Courtesy NASA.

CHAPTER 1: Computer Graphics: From Then to Now 14

University of Utah

Recruited by the University of Utah in 1968 to work in its computer science program, Sutherland
naturally concentrated on graphics. Over the course of the next few years, many computer graphics
visionaries in training would pass through the university’s labs.

Ed Catmull, for example, loved classic animation but was frustrated by his inability to draw—a
requirement for artists back in those days as it would appear. Sensing that computers might be a
pathway to making movies, Catmull produced the first-ever computer animation, which was of his
hand opening and closing. This clip would find its way into the 1976 film Future World.

During that time he would pioneer two major computer graphics innovations: texture mapping and
bicubic surfaces. The former could be used to add complexity to simple forms by using images of
texture instead of having to create texture and roughness using discrete points and surfaces, as
shown in Figure 1–5. The latter is used to generate algorithmically curved surfaces that are much
more efficient than the traditional polygon meshes.

Figure 1–5. Saturn with and without texture

Catmull would eventually find his way to Lucasfilm and, later, Pixar and eventually serve as president
of Disney Animation Studios where he could finally make the movies he wanted to see. Not a bad gig.

Many others of the top names in the industry would likewise pass through the gates of University of
Utah and the influence of Sutherland:

 John Warnock, who would be instrumental in developing a device-independent
means of displaying and printing graphics called PostScript and the Portable
Document Format (PDF) and would be cofounder of Adobe.

 Jim Clark, founder of Silicon Graphics that would supply Hollywood with some of
the best graphics workstations of the day and create the 3D framework now
known as OpenGL. After SGI he cofounded Netscape Communications, which
would lead us into the land of the World Wide Web.

CHAPTER 1: Computer Graphics: From Then to Now 15

 Jim Blinn, inventor of both bump mapping, which is an efficient way of adding
true 3D texture to objects, and environment mapping, which is used to create
really shiny things. Perhaps he would be best known creating the revolutionary
animations for NASA’s Voyager project, depicting flybys of the outer planets, as
shown in Figure 1–6 (compare that with Figure 1–7 using modern devices). Of
Blinn, Sutherland would say, “There are about a dozen great computer graphics
people, and Jim Blinn is six of them.” Blinn would later lead the effort to create
Microsoft’s competitor to OpenGL, namely, Direct3D.

Figure 1–6. Jim Blinn’s depiction of Voyager II’s encounter with Saturn in August of 1981. Notice the streaks
formed of icy particles while crossing the ring plane. Courtesy NASA.

Figure 1–7. Compare with Figure 1---6, using some of the best graphics computers and software at the time, with
a similar view of Saturn from Distant Suns 3 running on a $500 iPad.

Coming of Age in Hollywood

Computer graphics would really start to come into their own in the 1980s thanks both to Hollywood
and to machines that were increasingly powerful while at the same time costing less. For example, the
beloved Commodore Amiga that was introduced in 1985 cost less than $2,000, and it brought to the

