

 i

Pro Android Apps
Performance
Optimization

■ ■ ■

Hervé Guihot

Pro Android Apps Performance Optimization

Copyright © 2012 by Hervé Guihot

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3999-4

ISBN-13 (electronic): 978-1-4302-4000-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0
Attribution License. Android and all Android and Google-based marks are trademarks or
registered trademarks of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not
affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: James Markham
Technical Reviewer: Charles Cruz, Shane Kirk, Eric Neff
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Jill Steinberg
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

iii

Contents at a Glance

Contents ... iv

About the Author .. viii

About the Technical Reviewers ... ix

Acknowledgments .. x

Introduction ... xi

■Chapter 1: Optimizing Java Code .. 1�

■Chapter 2: Getting Started With the NDK ... 33�

■Chapter 3: Advanced NDK .. 73�

■Chapter 4: Using Memory Efficiently ... 109�

■Chapter 5: Multithreading and Synchronization ... 133�

■Chapter 6: Benchmarking And Profiling .. 163�

■Chapter 7: Maximizing Battery Life ... 177�

■Chapter 8: Graphics ... 207�

■Chapter 9: RenderScript .. 231�

Index ... 265

iv

Contents

Contents at a Glance .. iii�
About the Author .. viii�
About the Technical Reviewers ... ix�

Acknowledgments .. x�

Introduction ... xi�

■Chapter 1: Optimizing Java Code .. 1�

How Android Executes Your Code ... 2�

Optimizing Fibonacci .. 4�

From Recursive To Iterative ... 5�

BigInteger .. 6�

Caching Results .. 11�

android.util.LruCache<K, V> .. 12�

API Levels ... 13�

Fragmentation .. 16�

Data Structures ... 17�

Responsiveness .. 20�

Lazy initializations ... 22�

StrictMode ... 23�

SQLite ... 25�

SQLite Statements ... 25�

Transactions .. 28�

Queries ... 30�

Summary .. 31�

■Chapter 2: Getting Started With the NDK ... 33�

What Is In the NDK? .. 34�

Mixing Java and C/C++ Code ... 37�

Declaring the Native Method ... 37�

Implementing the JNI Glue Layer ... 38�

Creating the Makefiles ... 40�

Implementing the Native Function ... 41�

Compiling the Native Library .. 43�

Loading the Native Library ... 43�

■ CONTENTS

v

Application.mk .. 44�

Optimizing For (Almost) All Devices ... 46�

Supporting All Devices ... 47�

Android.mk ... 50�

Performance Improvements With C/C++ .. 53�

More About JNI .. 57�

Native Activity ... 62�

Building the Missing Library .. 64�

Alternative .. 70�

Summary .. 71�

■Chapter 3: Advanced NDK .. 73�

Assembly .. 73�

Greatest Common Divisor .. 74�

Color Conversion .. 79�

Parallel Computation of Average ... 82�

ARM Instructions .. 87�

ARM NEON ... 96�

CPU Features ... 97�

C Extensions ... 98�

Built-in Functions ... 99�

Vector Instructions ... 99�

Tips ... 103�

Inlining Functions ... 104�

Unrolling Loops .. 104�

Preloading Memory .. 105�

LDM/STM Instead Of LDR/STD ... 106�

Summary .. 107�

■Chapter 4: Using Memory Efficiently ... 109�

A Word On Memory ... 109�

Data Types .. 111�

Comparing Values .. 113�

Other Algorithms .. 115�

Sorting Arrays .. 116�

Defining Your Own Classes .. 117�

Accessing Memory .. 118�

The Cache’s Line Size .. 119�

Laying Out Your Data .. 120�

Garbage Collection .. 125�

Memory Leaks ... 125�

References ... 127�

APIs ... 131�

Low Memory ... 131�

Summary .. 132�

■Chapter 5: Multithreading and Synchronization ... 133�

Threads ... 134�

AsyncTask ... 137�

Handlers and Loopers ... 140�

■ CONTENTS

vi

Handlers ... 140�

Loopers .. 142�

Data Types .. 143�

Synchronized, Volatile, Memory Model .. 143�

Concurrency .. 147�

Multicore ... 148�

Modifying Algorithm For Multicore .. 149�

Using Concurrent Cache .. 152�

Activity Lifecycle ... 154�

Passing Information ... 156�

Remembering State ... 158�

Summary .. 161�

■Chapter 6: Benchmarking And Profiling .. 163�

Measuring Time .. 163�

System.nanoTime() .. 164�

Debug.threadCpuTimeNanos() ... 165�

Tracing .. 167�

Debug.startMethodTracing() .. 167�

Using the Traceview Tool ... 168�

Traceview in DDMS .. 170�

Native Tracing .. 172�

Logging ... 174�

Summary .. 176�

■Chapter 7: Maximizing Battery Life ... 177�

Batteries ... 177�

Measuring Battery Usage ... 180�

Disabling Broadcast Receivers ... 183�

Disabling and Enabling the Broadcast Receiver .. 186�

Networking ... 187�

Background Data ... 188�

Data Transfer ... 189�

Location .. 191�

Unregistering a Listener .. 193�

Frequency of Updates .. 193�

Multiple Providers .. 194�

Filtering Providers .. 196�

Last Known Location .. 198�

Sensors ... 199�

Graphics .. 200�

Alarms ... 201�

Scheduling Alarms ... 203�

WakeLocks .. 204�

Preventing Issues ... 205�

Summary .. 206�

■Chapter 8: Graphics ... 207�

Optimizing Layouts ... 207�

RelativeLayout ... 209�

■ CONTENTS

vii

Merging Layouts .. 213�

Reusing Layouts ... 214�

View Stubs ... 215�

Layout Tools .. 217�

Hierarchy Viewer .. 218�

layoutopt .. 218�

OpenGL ES .. 218�

Extensions .. 219�

Texture Compression ... 221�

Mipmaps .. 226�

Multiple APKs ... 228�

Shaders .. 228�

Scene Complexity .. 229�

Culling .. 229�

Render Mode .. 229�

Power Consumption ... 229�

Summary .. 230�

■Chapter 9: RenderScript .. 231�

Overview ... 231�

Hello World .. 233�

Hello Rendering .. 236�

Creating a Rendering Script ... 237�

Creating a RenderScriptGL Context ... 238�

Extending RSSurfaceView .. 239�

Setting the Content View ... 239�

Adding Variables to Script .. 240�

HelloCompute .. 243�

Allocations ... 244�

rsForEach ... 245�

Performance .. 248�

Native RenderScript APIs .. 249�

rs_types.rsh ... 250�

rs_core.rsh ... 253�

rs_cl.rsh ... 255�

rs_math.rsh ... 259�

rs_graphics.rsh .. 260�

rs_time.rsh .. 261�

rs_atomic.rsh ... 262�

RenderScript vs. NDK .. 263
Summary .. 263�

Index ... 265

viii

About the Author

Hervé Guihot started learning about computers more than 20 years ago with
an Amstrad CPC464. Although the CPC464 is most likely the reason why he still
appreciates green-screened devices (ask him about his phone), Hervé started
working with Android as it became a popular platform for application
development. It was also was the only platform that combined two of his main
passions: software and pastries. After many years working in the world of
interactive and digital television, he is focused on bringing Android to more
devices to encourage more developers to leverage the power of Android and
more people to have access to the technology. Hervé is currently a software
engineering manager in MediaTek (www.mediatek.com), a leading fabless

semiconductor company for wireless communications and digital multimedia solutions. He
holds an engineering degree from the Institut de Formation Supérieure en Informatique et
Télécommunication in Rennes, Brittany, and you can sometimes find him waiting in line for an
éclair on 18th and Guerrero.

ix

About the Technical Reviewers

Charles Cruz is a mobile application developer for the Android, iOS, and
Windows Phone platforms. He graduated from Stanford University with B.S.
and M.S. degrees in Engineering. He lives in Southern California and, when
not doing technical things, plays lead guitar in an original metal band
(www.taintedsociety.com) and a classic rock tribute band. Charles can be
reached at cruzcj@soundandcodecreations.com and @CodingNPicking on
Twitter.

Shane Kirk earned his B.S. in Computer Science from the University of
Kentucky in 2000. He’s currently a software engineer for DeLorme, a mapping
and GPS technology company based in Yarmouth, Maine, where he spends his
days writing C++ and Java code for mobile and desktop applications. When
Shane isn’t coding, you’ll usually find him making lots of noise with his guitar
or lost in the pages of a good book.

Eric Neff is an experienced technical architect with more than 14 years of
overall experience in as a technical architect and senior software developer. He
is an expert in full life-cycle application development, middle-ware, and n-tier
application development, with specific expertise in Microsoft .NET application
development. He specializes in object-oriented analysis and design in systems
development with a focus on the scheduling of service personal or
manufactured items and was instrumental in the design and implementation
of data relation schemas for the lexicography industry. Eric was recently
promoted to Director of Mobile Innovations at Kiefer Consulting, Inc, putting
into practice several years of hobbyist development in the mobile space on

iPhone, Android, and Windows Mobile. Eric is active in the local development community
through his participation in the Sacramento Google Technology Group and as a board member of
the Sacramento Dot Net User Group. He has given presentations on mobile web technologies,
mobile development, and ASP.NET techniques.

x

Acknowledgments

I thank the team at Apress who made this book possible: Steve Anglin, Corbin Collins, Jim
Markham, and Jill Steinberg. Working with all of them was a real pleasure and I can with
confidence recommend them to any author.

I also want to thank the tech reviewers: Charles Cruz, Shane Kirk, and Eric Neff. They
provided invaluable feedback, often catching mistakes I would not have seen even after dozens of
readings.

To all my friends whom I did not get to see as often as I would have liked while I was working
on this book, I give my thanks too: Marcely, Mathieu, Marilen, Maurice, Katie, Maggie, Jean-René,
Ruby, Greg, Aline, Amy, and Gilles, I promise I will make up for the lost time. Last but not least, I
owe a lot to three people: Eddy Derick, Fabrice Bernard, and Jean-Louis Gassée. Sometimes all it
takes is an injured toe and a broken suitcase.

xi

Introduction

Android quickly became almost ubiquitous. With the world transitioning from feature phones to
smartphones, and then discovering that tablets are, after all, devices we can hardly live without,
application developers today have a choice between mostly two platforms: Android and iOS.
Android lowered, some may even say broke, the barrier of entry for application developers,
because all you need to write Android applications is a computer (and of course some
programming knowledge). Tools are free, and almost anyone can now write applications
reaching millions of customers. With Android now spreading to a variety of devices, from tablets
to televisions, it is important to make sure your applications can not only run well on all these
devices but also run better than competing applications. After all, the barrier of entry was lowered
for all application developers and you will in many cases find yourself competing for a slice of the
ever-growing Android applications market. Whether you write applications to make a living,
achieve stardom, or simply make the world a better place, performance will be one of the their
key elements.

This book assumes you already have some familiarity with Android application development
but want to go one step further and explore what can make your applications run faster. Although
the Android tools and online documentation make it easy to create applications, performance
optimization is sometimes more of an art than a science and is not documented as thoroughly. I
wrote Pro Android Apps Performance Optimization to help you find easy ways to achieve good
performance on virtually all Android devices, whether you are trying to optimize an existing
application or are writing an application from scratch. Android allows developers to use Java,
C/C++, and even assembly languages, and you can implement performance optimizations in
many different ways, from taking advantage of the CPU features to simply using a different
language more tailored to a specific problem.

Chapter 1 focuses on optimizing your Java code. Your first applications will most likely
exclusively use the Java language, and we will see that algorithms themselves are more important
than their implementation. You will also learn how to take advantage of simple techniques such
as caching and minimizing memory allocations to greatly optimize your applications. In
addition, you will learn how to keep your applications responsive, a very important performance
indicator, and how to use databases efficiently.

Chapter 2 takes you one step further (or lower, depending on who you talk to) and introduces
the Android NDK. Even though the Java code can be compiled to native code since Android 2.2,
using C code to implement certain routines can yield better results. The NDK can also allow you
to easily port existing code to Android without having to rewrite everything in Java.

Chapter 3 takes you to the abyss of assembly language. Albeit rarely used by most application
developers, assembly language allows you to take advantage of every platform's specific
instruction set and can be a great way to optimize your applications, though at the cost of
increased complexity and maintenance. Though assembly code is typically limited to certain
parts of an application, its benefits should not be ignored as tremendous results can be achieved
thanks to carefully targeted optimizations.

Chapter 4 shows you how using less memory can improve performance. In addition to
learning simple ways to use less memory in your code, you will learn how memory allocations
and memory accesses have a direct impact on performance because of how CPUs are designed.

■ INTRODUCTION

xii

Chapter 5 teaches you how to use multi-threading in your Android applications in order to
keep applications responsive and improve performance as more and more Android devices can
run multiple threads simultaneously.

Chapter 6 shows you the basics of measuring your applications' performance. In addition to
learning how to use the APIs to measure time, you will also learn how to use some of the Android
tools to have a better view of where time is spent in your applications.

Chapter 7 teaches you how to make sure your applications use power rationally. As many
Android devices are battery-powered, conserving energy is extremely important because an
application that empties the battery quickly will be uninstalled quickly. This chapter shows you
how to minimize power consumption without sacrificing the very things that make Android
applications special.

Chapter 8 introduces some basic techniques to optimize your applications' layouts and
optimize OpenGL rendering.

Chapter 9 is about RenderScript, a relatively new Android component introduced in
Honeycomb. RenderScript is all about performance and has already evolved quite a bit since its
first release. In this chapter you learn how to use RenderScript in your applications and also learn
about the many APIs RenderScript defines.

I hope you enjoy this book and find many helpful tips in it. As you will find out, many
techniques are not Android specific, and you will be able to re-use a lot of them on other
platforms, for example iOS. Personally, I have a sweet tooth for assembly language and I hope the
proliferation of the Android platform and support for assembly language in the Android NDK will
entice many developers, if only to learn a new skill. However, I do want to emphasize that good
design and good algorithms will often already take care of all performance optimizations you
need. Good luck, and I am looking forward to your Android applications!

1

 Chapter

Optimizing Java Code
Many Android application developers have a good practical knowledge of the Java
language from previous experience. Since its debut in 1995, Java has become a very
popular programming language. While some surveys show that Java lost its luster trying
to compete with other languages like Objective-C or C#, some of these same surveys
rank Java as the number 1 language popularity-wise. Naturally, with mobile devices
outselling personal computers and the success of the Android platform (700,000
activations per day in December 2011) Java is becoming more relevant in today’s
market than ever before.

Developing applications for mobile devices can be quite different from developing
applications for personal computers. Today’s portable devices can be quite powerful,
but in terms of performance, they lag behind personal computers. For example, some
benchmarks show a quad-core Intel Core i7 processor running about 20 times faster
than the dual-core Nvidia Tegra 2 that is found in the Samsung Galaxy Tab 10.1.

NOTE: Benchmark results are to be taken with a grain of salt since they often measure only part

of a system and do not necessarily represent a typical use-case.

This chapter shows you how to make sure your Java applications perform well on
Android devices, whether they run the latest Android release or not. First, we take a look
at how Android executes your code. Then, we review several techniques to optimize the
implementation of a famous mathematical series, including how to take advantage of the
latest APIs Android offers. Finally, we review a few techniques to improve your
application’s responsiveness and to use databases more efficiently.

Before you jump in, you should realize code optimization is not the first priority in your
application development. Delivering a good user experience and focusing on code
maintainability should be among your top priorities. In fact, code optimization should be
one of your last priorities, and may not even be part of the process altogether. However,
good practices can help you reach an acceptable level of performance without having
you go back to your code, asking yourself “what did I do wrong?” and having to spend
additional resources to fix it.

1

CHAPTER 1: Optimizing Java Code 2

How Android Executes Your Code
While Android developers use Java, the Android platform does not include a Java Virtual
Machine (VM) for executing code. Instead, applications are compiled into Dalvik
bytecode, and Android uses its Dalvik VM to execute it. The Java code is still compiled
into Java bytecode, but this Java bytecode is then compiled into Dalvik bytecode by the
dex compiler, dx (an SDK tool). Ultimately, your application will contain only the Dalvik
bytecode, not the Java bytecode.

For example, an implementation of a method that computes the nth term of the
Fibonacci series is shown in Listing 1–1 together with the class definition. The Fibonacci
series is defined as follows:

F0 = 0
F1 = 1
Fn = Fn-2 + Fn-1 for n greater than 1

Listing 1–1. Naïve Recursive Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeRecursively (int n)
 {
 if (n > 1) return computeRecursively(n-2) + computeRecursively(n-1);
 return n;
 }
}

NOTE: A trivial optimization was done by returning n when n equals 0 or 1 instead of adding

another “if” statement to check whether n equals 0 or 1.

An Android application is referred to as an APK since applications are compiled into a
file with the apk extension (for example, APress.apk), which is simply an archive file. One
of the files in the archive is classes.dex, which contains the application’s bytecode. The
Android toolchain provides a tool, dexdump, which can convert the binary form of the
code (contained in the APK’s classes.dex file) into human-readable format.

TIP: Because an apk file is simply a ZIP archive, you can use common archive tools such as

WinZip or 7-Zip to inspect the content of an apk file..

Listing 1–2 shows the matching Dalvik bytecode.

Listing 1–2. Human-Readable Dalvik Bytecode of Fibonacci.computeRecursively

002548: |[002548] com.apress.proandroid.Fibonacci.computeRecursively:(I)J
002558: 1212 |0000: const/4 v2, #int 1 // #1
00255a: 3724 1100 |0001: if-le v4, v2, 0012 // +0011
00255e: 1220 |0003: const/4 v0, #int 2 // #2
002560: 9100 0400 |0004: sub-int v0, v4, v0

CHAPTER 1: Optimizing Java Code 3

002564: 7110 3d00 0000 |0006: invoke-static {v0},
 Lcom/apress/proandroid/Fibonacci;.computeRecursively:(I)J
00256a: 0b00 |0009: move-result-wide v0
00256c: 9102 0402 |000a: sub-int v2, v4, v2
002570: 7110 3d00 0200 |000c: invoke-static {v2},
 Lcom/apress/proandroid/Fibonacci;.computeRecursively:(I)J
002576: 0b02 |000f: move-result-wide v2
002578: bb20 |0010: add-long/2addr v0, v2
00257a: 1000 |0011: return-wide v0
00257c: 8140 |0012: int-to-long v0, v4
00257e: 28fe |0013: goto 0011 // -0002

The first number on each line specifies the absolute position of the code within the file.
Except on the very first line (which shows the method name), it is then followed by one
or more 16-bit bytecode units, followed by the position of the code within the method
itself (relative position, or label), the opcode mnemonic and finally the opcode’s
parameter(s). For example, the two bytecode units 3724 1100 at address 0x00255a
translate to “if-le v4, v2, 0012 // +0011”, which basically means “if content of virtual
register v4 is less than or equal to content of virtual register v2 then go to label 0x0012
by skipping 17 bytecode units” (1710 equals 1116). The term “virtual register” refers to the
fact that these are not actual hardware registers but instead the registers used by the
Dalvik virtual machine.

Typically, you would not need to look at your application’s bytecode. This is especially
true with Android 2.2 (codename Froyo) and later versions since a Just-In-Time (JIT)
compiler was introduced in Android 2.2. The Dalvik JIT compiler compiles the Dalvik
bytecode into native code, which can execute significantly faster. A JIT compiler
(sometimes referred to simply as a JIT) improves performance dramatically because:

� Native code is directly executed by the CPU without having to be
interpreted by a virtual machine.

� Native code can be optimized for a specific architecture.

Benchmarks done by Google showed code executes 2 to 5 times faster with
Android 2.2 than Android 2.1. While the results may vary depending on what
your code does, you can expect a significant increase in speed when using
Android 2.2 and later versions.

The absence of a JIT compiler in Android 2.1 and earlier versions may affect
your optimization strategy significantly. If you intend to target devices running
Android 1.5 (codename Cupcake), 1.6 (codename Donut), or 2.1 (codename
Éclair), most likely you will need to review more carefully what you want or
need to provide in your application. Moreover, devices running these earlier
Android versions are older devices, which are less powerful than newer ones.
While the market share of Android 2.1 and earlier devices is shrinking, they still
represent about 12% as of December 2011). Possible strategies are:

� Don’t optimize at all. Your application could be quite slow on these
older devices.

CHAPTER 1: Optimizing Java Code 4

� Require minimum API level 8 in your application, which can then be
installed only on Android 2.2 or later versions.

� Optimize for older devices to offer a good user experience even
when no JIT compiler is present. This could mean disabling features
that are too CPU-heavy.

TIP: Use android:vmSafeMode in your application’s manifest to enable or disable the JIT
compiler. It is enabled by default (if it is available on the platform). This attribute was introduced

in Android 2.2.

Now it is time to run the code on an actual platform and see how it performs. If you are
familiar with recursion and the Fibonacci series, you might guess that it is going to be
slow. And you would be right. On a Samsung Galaxy Tab 10.1, computing the thirtieth
Fibonacci number takes about 370 milliseconds. With the JIT compiler disabled, it takes
about 440 milliseconds. If you decide to include that function in a Calculator application,
users will become frustrated because the results cannot be computed “immediately.”
From a user’s point of view, results appear instantaneous if they can be computed in
100 milliseconds or less. Such a response time guarantees a very good user experience,
so this is what we are going to target.

Optimizing Fibonacci
The first optimization we are going to perform eliminates a method call, as
shown in Listing 1–3. As this implementation is recursive, removing a single
call in the method dramatically reduces the total number of calls. For example,
computeRecursively(30) generated 2,692,537 calls while
computeRecursivelyWithLoop(30) generated “only” 1,346,269. However, the
performance of this method is still not acceptable considering the response-
time criteria defined above, 100 milliseconds or less, as
computeRecursivelyWithLoop(30) takes about 270 milliseconds to complete.

Listing 1–3. Optimized Recursive Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeRecursivelyWithLoop (int n)
 {
 if (n > 1) {
 long result = 1;
 do {
 result += computeRecursivelyWithLoop(n-2);
 n--;
 } while (n > 1);
 return result;
 }
 return n;
 }
}

CHAPTER 1: Optimizing Java Code 5

NOTE: This is not a true tail-recursion optimization.

From Recursive To Iterative
For the second optimization, we switch from a recursive implementation to an iterative
one. Recursive algorithms often have a bad reputation with developers, especially on
embedded systems without much memory, because they tend to consume a lot of stack
space and, as we just saw, can generate too many method calls. Even when
performance is acceptable, a recursive algorithm can cause a stack overflow and crash
an application. An iterative implementation is therefore often preferred whenever
possible. Listing 1–4 shows what is considered a textbook iterative implementation of
the Fibonacci series.

Listing 1–4. Iterative Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeIteratively (int n)
 {
 if (n > 1) {
 long a = 0, b = 1;
 do {
 long tmp = b;
 b += a;
 a = tmp;
 } while (--n > 1);
 return b;
 }
 return n;
 }
}

Because the nth term of the Fibonacci series is simply the sum of the two previous
terms, a simple loop can do the job. Compared to the recursive algorithms, the
complexity of this iterative algorithm is also greatly reduced because it is linear.
Consequently, its performance is also much better, and computeIteratively(30) takes
less than 1 millisecond to complete. Because of its linear nature, you can use such an
algorithm to compute terms beyond the 30th. For example, computeIteratively(50000)
takes only 2 milliseconds to return a result and, by extrapolation, you could guess
computeIteratively(500000) would take between 20 and 30 milliseconds to complete.

While such performance is more than acceptable, it is possible to to achieve even faster
results with a slightly modified version of the same algorithm, as showed in Listing 1–5.
This new version computes two terms per iteration, and the total number of iterations is
halved. Because the number of iterations in the original iterative algorithm could be odd,
the initial values for a and b are modified accordingly: the series starts with a=0 and b=1
when n is odd, and it starts with a=1 and b=1 (Fib(2)=1) when n is even.

CHAPTER 1: Optimizing Java Code 6

Listing 1–5. Modified Iterative Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeIterativelyFaster (int n)
 {
 if (n > 1) {
 long a, b = 1;
 n--;
 a = n & 1;
 n /= 2;
 while (n-- > 0) {
 a += b;
 b += a;
 }
 return b;
 }
 return n;
 }
}

Results show this modified iterative version is about twice as fast as the original one.

While these iterative implementations are fast, they do have one major problem: they
don’t return correct results. The issue lies with the return value being stored in a long
value, which is 64-bit. The largest Fibonacci number that can fit in a signed 64-bit value
is 7,540,113,804,746,346,429 or, in other words, the 92nd Fibonacci number. While the
methods will still return without crashing the application for values of n greater than 92,
the results will be incorrect because of an overflow: the 93rd Fibonacci number would be
negative! The recursive implementations actually have the same limitation, but one
would have to be quite patient to eventually find out.

NOTE: Java specifies the size of all primitive types (except boolean): long is 64-bit, int is 32-bit,

and short is 16-bit. All integer types are signed.

BigInteger
Java offers just the right class to fix this overflow problem: java.math.BigInteger. A
BigInteger object can hold a signed integer of arbitrary size and the class defines all the
basic math operations (in addition to some not-so-basic ones). Listing 1–6 shows the
BigInteger version of computeIterativelyFaster.

TIP: The java.math package also defines BigDecimal in addition to BigInteger, while
java.lang.Math provides math constant and operations. If your application does not need

double precision, use Android’s FloatMath instead of Math for performance (although gains

may vary depending on platform).

CHAPTER 1: Optimizing Java Code 7

Listing 1–6. BigInteger Version of Fibonacci.computeIterativelyFaster

public class Fibonacci {
 public static BigInteger computeIterativelyFasterUsingBigInteger (int n)
 {
 if (n > 1) {
 BigInteger a, b = BigInteger.ONE;
 n--;
 a = BigInteger.valueOf(n & 1);
 n /= 2;
 while (n-- > 0) {
 a = a.add(b);
 b = b.add(a);
 }
 return b;
 }
 return (n == 0) ? BigInteger.ZERO : BigInteger.ONE;
 }
}

That implementation guarantees correctness as overflows can no longer occur.
However, it is not without problems because, again, it is quite slow: a call to
computeIterativelyFasterUsingBigInteger(50000) takes about 1.3 seconds to
complete. The lackluster performance can be explained by three things:

� BigInteger is immutable.

� BigInteger is implemented using BigInt and native code.

� The larger the numbers, the longer it takes to add them together.

Since BigInteger is immutable, we have to write “a = a.add(b)” instead of simply
“a.add(b)”. Many would assume “a.add(b)” is the equivalent of “a += b” and many would
be wrong: it is actually the equivalent of “a + b”. Therefore, we have to write “a =
a.add(b)” to assign the result. That small detail is extremely significant as “a.add(b)”
creates a new BigInteger object that holds the result of the addition.

Because of BigInteger’s current internal implementation, an additional BigInt object is
created for every BigInteger object that is allocated. This results in twice as many
objects being allocated during the execution of
computeIterativelyFasterUsingBigInteger: about 100,000 objects are created when
calling computeIterativelyFasterUsingBigInteger (50000) (and all of them but one will
become available for garbage collection almost immediately). Also, BigInt is
implemented using native code and calling native code from Java (using JNI) has a
certain overhead.

The third reason is that very large numbers do not fit in a single, long 64-bit value. For
example, the 50,000th Fibonacci number is 34,7111–bit long.

NOTE: BigInteger’s internal implementation (BigInteger.java) may change in future

Android releases. In fact, internal implementation of any class can change.

CHAPTER 1: Optimizing Java Code 8

For performance reasons, memory allocations should be avoided whenever possible in
critical paths of the code. Unfortunately, there are some cases where allocations are
needed, for example when working with immutable objects like BigInteger. The next
optimization focuses on reducing the number of allocations by switching to a different
algorithm. Based on the Fibonacci Q-matrix, we have the following:

F2n-1 = Fn
2 + Fn-1

2

F2n = (2Fn-1 + Fn) * Fn

This can be implemented using BigInteger again (to guarantee correct results), as
shown in Listing 1–7.

Listing 1–7. Faster Recursive Implementation of Fibonacci Series Using BigInteger

public class Fibonacci {
 public static BigInteger computeRecursivelyFasterUsingBigInteger (int n)
 {
 if (n > 1) {
 int m = (n / 2) + (n & 1); // not obvious at first – wouldn’t it be great to
have a better comment here?
 BigInteger fM = computeRecursivelyFasterUsingBigInteger(m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigInteger(m - 1);
 if ((n & 1) == 1) {
 // F(m)^2 + F(m-1)^2
 return fM.pow(2).add(fM_1.pow(2)); // three BigInteger objects created
 } else {
 // (2*F(m-1) + F(m)) * F(m)
 return fM_1.shiftLeft(1).add(fM).multiply(fM); // three BigInteger
objects created
 }
 }
 return (n == 0) ? BigInteger.ZERO : BigInteger.ONE; // no BigInteger object
created
 }

 public static long computeRecursivelyFasterUsingBigIntegerAllocations(int n)
 {
 long allocations = 0;
 if (n > 1) {
 int m = (n / 2) + (n & 1);
 allocations += computeRecursivelyFasterUsingBigIntegerAllocations(m);
 allocations += computeRecursivelyFasterUsingBigIntegerAllocations(m - 1);

 // 3 more BigInteger objects allocated
 allocations += 3;
 }
 return allocations; // approximate number of BigInteger objects allocated when
computeRecursivelyFasterUsingBigInteger(n) is called
 }
}

A call to computeRecursivelyFasterUsingBigInteger(50000) returns in about 1.6
seconds. This shows this latest implementation is actually slower than the fastest
iterative implementation we have so far. Again, the number of allocations is the culprit as

CHAPTER 1: Optimizing Java Code 9

around 200,000 objects were allocated (and almost immediately marked as eligible for
garbage collection).

NOTE: The actual number of allocations is less than what

computeRecursivelyFasterUsingBigIntegerAllocations would return. Because
BigInteger’s implementation uses preallocated objects such as BigInteger.ZERO,
BigInteger.ONE, or BigInteger.TEN, there may be no need to allocate a new object for

some operations. You would have to look at Android’s BigInteger implementation to know

exactly how many objects are allocated.

This implementation is slower, but it is a step in the right direction nonetheless. The
main thing to notice is that even though we need to use BigInteger to guarantee
correctness, we don’t have to use BigInteger for every value of n. Since we know the
primitive type long can hold results for n less than or equal to 92, we can slightly
modify the recursive implementation to mix BigInteger and primitive type, as shown in
Listing 1–8.

Listing 1–8. Faster Recursive Implementation of Fibonacci Series Using BigInteger and long Primitive Type

public class Fibonacci {
 public static BigInteger computeRecursivelyFasterUsingBigIntegerAndPrimitive(int n)
 {
 if (n > 92) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyFasterUsingBigIntegerAndPrimitive(m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigIntegerAndPrimitive(m -
1);
 if ((n & 1) == 1) {
 return fM.pow(2).add(fM_1.pow(2));
 } else {
 return fM_1.shiftLeft(1).add(fM).multiply(fM); // shiftLeft(1) to
multiply by 2
 }
 }
 return BigInteger.valueOf(computeIterativelyFaster(n));
 }

 private static long computeIterativelyFaster(int n)
 {
 // see Listing 1–5 for implementation
 }
}

A call to computeRecursivelyFasterUsingBigIntegerAndPrimitive(50000) returns in
about 73 milliseconds and results in about 11,000 objects being allocated: a small
modification in the algorithm yields results about 20 times faster and about 20 times fewer
objects being allocated. Quite impressive! It is possible to improve the performance even
further by reducing the number of allocations, as shown in Listing 1–9. Precomputed
results can be quickly generated when the Fibonacci class is first loaded, and these
results can later be used directly.

CHAPTER 1: Optimizing Java Code 10

Listing 1–9. Faster Recursive Implementation of Fibonacci Series Using BigInteger and Precomputed Results

public class Fibonacci {
 static final int PRECOMPUTED_SIZE= 512;
 static BigInteger PRECOMPUTED[] = new BigInteger[PRECOMPUTED_SIZE];

 static {
 PRECOMPUTED[0] = BigInteger.ZERO;
 PRECOMPUTED[1] = BigInteger.ONE;
 for (int i = 2; i < PRECOMPUTED_SIZE; i++) {
 PRECOMPUTED[i] = PRECOMPUTED[i-1].add(PRECOMPUTED[i-2]);
 }
 }

 public static BigInteger computeRecursivelyFasterUsingBigIntegerAndTable(int n)
 {
 if (n > PRECOMPUTED_SIZE - 1) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyFasterUsingBigIntegerAndTable (m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigIntegerAndTable (m - 1);
 if ((n & 1) == 1) {
 return fM.pow(2).add(fM_1.pow(2));
 } else {
 return fM_1.shiftLeft(1).add(fM).multiply(fM);
 }
 }
 return PRECOMPUTED[n];
 }
}

The performance of this implementation depends on PRECOMPUTED_SIZE: the bigger, the
faster. However, memory usage may become an issue since many BigInteger objects
will be created and remain in memory for as long as the Fibonacci class is loaded. It is
possible to merge the implementations shown in Listing 1–8 and Listing 1–9, and use a
combination of precomputed results and computations with primitive types. For
example, terms 0 to 92 could be computed using computeIterativelyFaster, terms 93
to 127 using precomputed results and any other term using recursion. As a developer,
you are responsible for choosing the best implementation, which may not always be the
fastest. Your choice will be based on various factors, including:

� What devices and Android versions your application target

� Your resources (people and time)

As you may have already noticed, optimizations tend to make the source code harder to
read, understand, and maintain, sometimes to such an extent that you would not
recognize your own code weeks or months later. For this reason, it is important to
carefully think about what optimizations you really need and how they will affect your
application development, both in the short term and in the long term. It is always
recommended you first implement a working solution before you think of optimizing it
(and make sure you save a copy of the working solution). After all, you may realize
optimizations are not needed at all, which could save you a lot of time. Also, make sure
you include comments in your code for everything that is not obvious to a person with
ordinary skill in the art. Your coworkers will thank you, and you may give yourself a pat

CHAPTER 1: Optimizing Java Code 11

on the back as well when you stumble on some of your old code. My poor comment in
Listing 1–7 is proof.

NOTE: All implementations disregard the fact that n could be negative. This was done

intentionally to make a point, but your code, at least in all public APIs, should throw an

IllegalArgumentException whenever appropriate.

Caching Results
When computations are expensive, it may be a good idea to remember past results to
make future requests faster. Using a cache is quite simple as it typically translates to the
pseudo-code shown in Listing 1–10.

Listing 1–10. Using a Cache

 result = cache.get(n); // input parameter n used as key
 if (result == null) {
 // result was not in the cache so we compute it and add it
 result = computeResult(n);
 cache.put(n, result); // n is the key, result is the value
 }
 return result;

The faster recursive algorithm to compute Fibonacci terms yields many duplicate
calculations and could greatly benefit from memoization. For example, computing the
50,000th term requires computing the 25,000th and 24,999th terms. Computing the
25,000th term requires computing the 12,500th and 12,499th terms, while computing the
24,999th term requires computing… the same 12,500th and 12,499th terms again! Listing
1–11 shows a better implementation using a cache.

If you are familiar with Java, you may be tempted to use a HashMap as your cache, and it
would work just fine. However, Android defines SparseArray, a class that is intended to
be more efficient than HashMap when the key is an integer value: HashMap would require
the key to be of type java.lang.Integer, while SparseArray uses the primitive type int
for keys. Using HashMap would therefore trigger the creation of many Integer objects for
the keys, which SparseArray simply avoids.

Listing 1–11. Faster Recursive Implementation Using BigInteger, long Primitive TypeAnd Cache

public class Fibonacci {
 public static BigInteger computeRecursivelyWithCache (int n)
 {
 SparseArray<BigInteger> cache = new SparseArray<BigInteger>();
 return computeRecursivelyWithCache(n, cache);
 }

 private static BigInteger computeRecursivelyWithCache (int n,
SparseArray<BigInteger> cache)
 {
 if (n > 92) {
 BigInteger fN = cache.get(n);

CHAPTER 1: Optimizing Java Code 12

 if (fN == null) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyWithCache(m, cache);
 BigInteger fM_1 = computeRecursivelyWithCache(m – 1, cache);
 if ((n & 1) == 1) {
 fN = fM.pow(2).add(fM_1.pow(2));
 } else {
 fN = fM_1.shiftLeft(1).add(fM).multiply(fM);
 }
 cache.put(n, fN);
 }
 return fN;
 }
 return BigInteger.valueOf(iterativeFaster(n));
 }

 private static long iterativeFaster (int n) { /* see Listing 1–5 for implementation
*/ }
}

Measurements showed computeRecursivelyWithCache(50000) takes about 20
milliseconds to complete, or about 50 fewer milliseconds than a call to
computeRecursivelyFasterUsingBigIntegerAndPrimitive(50000). Obviously, the
difference is exacerbated as n grows: when n equals 200,000 the two methods
complete in 50 and 330 milliseconds respectively.

Because many fewer BigInteger objects are allocated, the fact that BigInteger is
immutable is not as big of a problem when using the cache. However, remember that
three BigInteger objects are still created (two of them being very short-lived) when fN is
computed, so using mutable big integers would still improve performance.

Even though using HashMap instead of SparseArray may be a little slower, it would have
the benefit of making the code Android-independent, that is, you could use the exact
same code in a non-Android environment (without SparseArray).

NOTE: Android defines multiple types of sparse arrays: SparseArray (to map integers to
objects), SparseBooleanArray (to map integers to booleans), and SparseIntArray (to map

integers to integers).

android.util.LruCache<K, V>
Another class worth mentioning is android.util.LruCache<K, V>, introduced in Android
3.1 (codename Honeycomb MR1), which makes it easy to define the maximum size of
the cache when it is allocated. Optionally, you can also override the sizeOf() method to
change how the size of each cache entry is computed. Because it is only available in
Android 3.1 and later, you may still end up having to use a different class to implement a
cache in your own application if you target Android revisions older than 3.1. This is a
very likely scenario considering Android 3.1 as of today represents only a very small
portion of the Android devices in use. An alternative solution is to extend

CHAPTER 1: Optimizing Java Code 13

java.util.LinkedHashMap and override removeEldestEntry. An LRU cache (for Least
Recently Used) discards the least recently used items first. In some applications, you
may need exactly the opposite, that is, a cache that discards the most recently used
items first. Android does not define such an MruCache class for now, which is not
surprising considering MRU caches are not as commonly used.

Of course, a cache can be used to store information other than computations. A
common use of a cache is to store downloaded data such as pictures and still maintain
tight control over how much memory is consumed. For example, override LruCache’s
sizeOf method to limit the size of the cache based on a criterion other than simply the
number of entries in the cache. While we briefly discussed the LRU and MRU strategies,
you may want to use different replacement strategies for your own cache to maximize
cache hits. For example, your cache could first discard the items that are not costly to
recreate, or simply randomly discard items. Follow a pragmatic approach and design
your cache accordingly. A simple replacement strategy such as LRU can yield great
results and allow you to focus your resources on other, more important problems.

We’ve looked at several different techniques to optimize the computation of Fibonacci
numbers. While each technique has its merits, no one implementation is optimal. Often
the best results are achieved by combining multiple various techniques instead of relying
on only one of them. For example, an even faster implementation would use
precomputations, a cache mechanism, and maybe even slightly different formulas. (Hint:
what happens when n is a multiple of 4?) What would it take to compute FInteger.MAX_VALUE
in less than 100 milliseconds?

API Levels
The LruCache class mentioned above is a good example of why you need to know what
API level you are going to target. A new version of Android is released approximately
every six months, with new APIs only available from that release. Any attempt to call an
API that does not exist results in a crash, bringing not only frustration for the user but
also shame to the developer. For example, calling Log.wtf(TAG, “Really?”) on an Android
1.5 device crashes the application, as Log.wtf was introduced in Android 2.2 (API level
8). What a terrible failure indeed that would be. Table 1–1 shows the performance
improvements made in the various Android versions.

CHAPTER 1: Optimizing Java Code 14

Table 1–1. Android Versions

API level Version Name Significant performance improvements

1 1.0 Base

2 1.1 Base 1.1

3 1.5 Cupcake Camera start-up time, image capture time, faster
acquisition of GPS location, NDK support

4 1.6 Donut

5 2.0 Éclair Graphics

6 2.0.1 Éclair 0.1

7 2.1 Éclair MR1

8 2.2 Froyo V8 Javascript engine (browser), JIT compiler, memory
management

9 2.3.0

2.3.1

2.3.2

Gingerbread Concurrent garbage collector, event distribution,
better OpenGL drivers

10 2.3.3

2.3.4

Gingerbread MR1

11 3.0 Honeycomb Renderscript, animations, hardware-accelerated 2D
graphics, multicore support

12 3.1 Honeycomb MR1 LruCache, partial invalidates in hardware-accelerated
views, new Bitmap.setHasAlpha() API

13 3.2 Honeycomb MR2

14 4.0 Ice Cream Sandwich Media effects (transformation filters), hardware-
accelerated 2D graphics (required)

However, your decision to support a certain target should normally not be based on
which API you want to use, but instead on what market you are trying to reach. For
example, if your target is primarily tablets and not cell phones, then you could target
Honeycomb. By doing so, you would limit your application’s audience to a small subset
of Android devices, because Honeycomb represents only about 2.4% as of December
2011, and not all tablets support Honeycomb. (For example, Barnes & Noble’s Nook

CHAPTER 1: Optimizing Java Code 15

uses Android 2.2 while Amazon’s Kindle Fire uses Android 2.3.) Therefore, supporting
older Android versions could still make sense.

The Android team understood that problem when they released the Android
Compatibility package, which is available through the SDK Updater. This package
contains a static library with some of the new APIs introduced in Android 3.0, namely the
fragment APIs. Unfortunately, this compatibility package contains only the fragment
APIs and does not address the other APIs that were added in Honeycomb. Such a
compatibility package is the exception, not the rule. Normally, an API introduced at a
specific API level is not available at lower levels, and it is the developer’s responsibility
to choose APIs carefully.

To get the API level of the Android platform, you can use Build.VERSION.SDK_INT.
Ironically, this field was introduced in Android 1.6 (API level 4), so trying to retrieve the
version this way would also result in a crash on Android 1.5 or earlier. Another option is
to use Build.VERSION.SDK, which has been present since API level 1. However, this
field is now deprecated, and the version strings are not documented (although it would
be pretty easy to understand how they have been created).

TIP: Use reflection to check whether the SDK_INT field exists (that is, if the platform is

Android 1.6 or later). See Class.forName(“android.os.Build$VERSION”).getField(“SDK”).

Your application’s manifest file should use the <uses-sdk> element to specify two
important things:

� The minimum API level required for the application to run
(android:minSdkVersion)

� The API level the application targets (android:targetSdkVersion)

It is also possible to specify the maximum API level (android:maxSdkVersion), but using
this attribute is not recommended. Specifying maxSdkVersion could even lead to
applications being uninstalled automatically after Android updates. The target API level
is the level at which your application has been explicitly tested.

By default, the minimum API level is set to 1 (meaning the application is compatible with all
Android versions). Specifying an API level greater than 1 prevents the application from being
installed on older devices. For example, android:minSdkVersion=”4” guarantees
Build.VERSION.SDK_INT can be used without risking any crash. The minimum API level
does not have to be the highest API level you are using in your application as long as you
make sure you call only a certain API when the API actually exists, as shown in Listing 1–12.

Listing 1–12. Calling a SparseArray Method Introduced in Honeycomb (API Level 11)

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 sparseArray.removeAt(1); // API level 11 and above
 } else {
 int key = sparseArray.keyAt(1); // default implementation is slower
 sparseArray.remove(key);
 }

