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Introduction

This book is about making web games with JavaScript for today’s most promising mobile
platform—Android. Game development is a challenging subject. Games aim to simulate life in
some form or another, and the more realistic you want a simulation to be, the more knowledge
and skill you have to apply to make it believable. Video games is the place where mathematics—
which is quite typical in programming—meets kinematics, optics, acoustics, artificial
intelligence, art, music, and storytelling. Where else can you find a mix like that?

Why JavaScript and HTML5? If you are holding this book in your hands, then you
probably already have your answer to that question. If you are curious about my reasoning, it’s
because JavaScript is the most popular cross-platform client-side solution that developers have at
their disposal. Every device that has Internet access also has a browser—from desktop computers
and smartphones to tablets and set-top boxes. And without a doubt, every browser has
JavaScript. An application built with a standard HTML5 stack will run on most devices. You want
your game to be fast? You want it on desktops, mobiles, and tablets on Windows, i0S, Linux, and
Android? You don’t want to rewrite the code for a set of heterogeneous platforms in different
programming languages? HTML5 comes to rescue!

The goal of this book is to give you a deep understanding of the algorithms and
approaches that stand behind the most common types of games. I prefer this approach to that of
streamlined how-to guides that often sacrifice important details in favor of immediate results.
While the “how-to” approach might look like a quicker way to get to the goal, it usually leaves
readers with knowledge gaps to fill on their own. Of course, this book has plenty of how-to
examples in addition to thorough coverage of the underlying concepts.

That’s why I couldn’t avoid putting some math in the book. Yeah, there are few formulas
on the pages. Real gamedev is impossible without fair amount of math. You don’t need to have
any special knowledge of mathematics beyond what you already know from school to master
every subject in this book. If you are already proficient with math, you might find some
explanations too obvious—feel free to skip them.

In this book, I deliberately avoided using any existing “Swiss Army knife”-style libraries
like jQuery, prototype.js, or Underscore.js because I didn’t want the examples to be hard-wired
with any of them. While there are many great libraries, every developer has his own preferences. I
find library-agnostic code to be the friendliest.

What This Book Is About

This book is about making games for the Android platform with HTML5 and JavaScript. It will
guide you from an empty HTML page to a full-blown HTML5 game with animations, sound,
endless worlds, and multiplayer support.

The following are among the many things you learn in this book:



How to draw game elements with the Canvas element; how to use sprites and sprite
sheets; and how to capture user input.

How the exciting world of 3D programming works—including WebGL, one of the
most promising APIs for web game development.

How to create multiplayer games with the help of Node.js—the tool that brings the
power of JavaScript to the server.

How to establish real-time communication between users and let them play against
each other in online matches. All of this is possible with JavaScript. You don’t need to
know any other server-side language to write efficient server-side code!

How to make computer-controlled characters behave intelligently—have them find
their way through the world and make decisions with the help of AT algorithms.

How to add some neat sound effects.

How to publish our masterpiece in the Android Market.

This book covers many gamedev algorithms and optimizations, most of which are not
limited to JavaScript. Once you learn them, you will be able to quickly master game development
on other platforms. Understanding how 3D rendering or pathfinding works will help you to build
games for any platform, not just the web.

This book is about making games and writing the most exciting applications in the
world—and having real fun while doing so.

What This Book Is Not About

This book is not about web programming in general. I will not cover what HTML is or how HTTP
works. I assume that you already know how to write basic JavaScript and embed it into an HTML
page. You don't need to be a web development guru, but at the very least, you need understand
the language core. Operators, functions, objects, and variables should be familiar to you. If you
don’t feel comfortable with these concepts, you might want to start with Terry McNavage’s
JavaScript for Absolute Beginners (Apress, 2010).

This book is not about game design—creating levels, building character personalities, or
designing economics for the online world. Everything related to the gameplay, story, plot,
characters, and game mechanics is out of scope. While these topics are extremely interesting,
there are special books devoted to them. One such book that I would recommend is Game
Design: Theory and Practice, Second Edition, by Richard Rouse III Jones & Bartlett, 2004).

Who Is This Book For?

This book is for programmers. It will guide you through the technical aspects of creating a
game—rendering 2D and 3D graphics, user input, networking, sound, artificial intelligence, and
publishing the game on the application market. Every concept explained here is illustrated with
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code examples that you can run on your Android smartphone or tablet. I tried to make the book
as practical as possible—working code is a very important way to provide a kick-start.

If you are a web developer and you want to learn how to make games for Android
devices, this book is for you. You don’t need experience with any specific JavaScript library—or
even experience making sites for mobile platforms—to get the most out of this book. If you know
how to make a personal web page from the scratch with some JavaScript in it, that’s about
enough to get started.

If you are a game developer who created games for other platforms, and you want to
leverage your experience to HTML5 and Android, this book is also for you. If this is the case, some
sections might look familiar or even obvious to you. For example, if you have worked with
OpenGL from within a Java application, you probably know what a shader is or how to map
texture to polygons. Feel free to skip such sections and focus on practical aspects—JavaScript
listings and examples that come with the book.

About the Art Files

This book comes with some great art created especially for it by Sergey Lesiuk (isometric tiles and
buildings) and the guys at Marcus Studio (an animated knight character). You may use this art in
your own projects—free or commercial—without tricky restrictions. The complete license text is
distributed with the files.

Free and unrestricted art is very important in the early stages of development. It feels so
much better to work on a game that looks like a game rather than a mess of stub graphics. The
initiative to share commercial-looking sprites for free was inspired by Daniel Cook on his
wonderful web site at www.lostgarden.com. I encourage you to join and share your gamedev assets
for free—the developer community will be most grateful.

How This Book Is Structured

The book is divided into four parts that we jokingly call “worlds.”

2D Worlds

This part of the book is devoted to 2D graphics and the Canvas element. It also gets you started in
Chapter 1, “Preparing the Environment,” by setting up required tools: the IDE, the web server,
Java SDK, and the Android emulator. Once all of these are set, you are ready for action.

Chapter 2, “Graphics in the Browser: The Canvas Element,” is where the magic starts.
You will learn how to render shapes on HTML5 Canvas, how to use paths and curves, gradients
and fills, transformations, and states of the 2D context.

In Chapter 3, “Creating the First Game,” you create your first project—the Four Balls
game. This small project uses elements you created in Chapter 2 and illustrates important, basic
game development concepts, such as game state, mechanics, turn validation, and win/lose
conditions.

Modern games are impossible without colorful animations. Chapter 4, “Animation and
Sprites,” guides you through the process of loading the images and drawing a running character
frame by frame. You will also learn more advanced animation effects, such as interpolation,
acceleration, deceleration, and easing functions.

Chapter 5, “Event Handling and User Input,” will introduce you to the methods of
working with input in your game. You'll learn how to capture browser events and build a high-
level API for complex input models. We'll explore drag-and-drop and pixel-perfect picking with
color masks.



At this point, you will be able to create your own simple games, as you will have all the
“starter tools” under your belt. So it is time to move to the more advanced topics—rendering
game worlds.

In Chapter 6, “Rendering Virtual Worlds,” you'll learn how to render Really Big Worlds.
We start with the simplest tile-map technique and gradually optimize it. You learn how to cache
the fragments of the map, how to use the offscreen buffer, and render the world objects such as
trees and rocks.

Chapter 7, “Making an Isometric Game,” is the longest chapter of the book. It is devoted
to isometric 2D game engines. The isometric view is the most popular way to represent the game
world in strategy games, RPGs, tactics, and many other popular genres. You will learn about
isometric projection, the shape of tiles, and the ways to render them. In addition to techniques
described in Chapter 6, we’ll introduce more rendering optimizations—the dirty rectangles
algorithm and clustering of world objects. The result of this chapter is our second big project—an
isometric engine ready to be used in the next strategy game or RPG.

3D Worlds

The “3D Worlds” part introduces 3D graphics—from the basic rendering concepts to WebGL.

In Chapter 8, “3D in a Browser,” we learn what 3D is, how it works, and the math
behind it.

Chapter 9, “Using WebGL,” is devoted to WebGL—a very promising web standard that is
making its way into the mobile world. You'll learn how to initialize WebGL, write shaders, work
with geometry data, load textures, and work with 3D models.

Connecting Worlds

“Connecting Worlds” is all about communication and talking to the server. We start with learning
Node.js and the Express framework in Chapter 10, “Going Server-Side.” This chapter ranges from
Node installation to a simple game server with proper templates, session handling, logging, error
handling, and notifications.

In Chapter 11, “Talking to the Server,” we move back to the client-side and learn how to
connect to a server from a web page and exchange data with other players. We will look at
different ways of communication, often called transports, and learn their pros and cons.

In Chapter 12, “Making Multiplayer Games,” you make your third big project—the
multiplayer version of Four Balls—with Node.js, Express, and Socket.10.

Improving Worlds

The final part is devoted to various small aspects of game development.

Chapter 13, “Al in Games,” is about artificial intelligence—breathing life into computer-
controlled opponents. You will learn basic approaches to pathfinding and decision making—a
good start to making bots look intelligent.

Chapter 14, “JavaScript Game Engines,” discusses game engines and introduces
Crafty.js—a small yet quite powerful game engine written in JavaScript. Here’s where you
complete a fourth project—an Escaping Knight game.

Chapter 15, “Building Native Applications,” explains what it takes to publish an HTML5
game as the native application to the Android Market. We will go through all steps of the
process—packaging the game, signing it with the key, preparing it for market, and publishing—
and then update the game to the next version.
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Chapter 16, “Adding Sound,” adds the final touch to the game—sound. In this chapter,
you'll use SoundManager? to load and play sounds in the Escaping Knight game. You will learn
how to loop background MP3s, play “click sounds,” and notify the user about game events.

Appendix

Appendix A, “Debugging Web Applications,” explains how to debug JavaScript games. We try
hard to write good code, but we're all human—mistakes are unavoidable. This appendix will give
you a good understanding of how to find bugs and quickly eliminate them, saving more time for
development.

Contacting the Author
If you have any questions, suggestions, comments, or ideas regarding this book or HTML5 game

development in general, I'd be happy to receive your feedback via e-mail at
juriy.bura@gmail.com, my web site at http://juriy.com, or on Twitter at @juriy.

Xix
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Chapter

Getting Started

The goal of this chapter is to prepare a comfortable workspace for development.
The environment and tools for mobile development are always a little more
complicated than regular desktop projects. When it comes to Android and
JavaScript in a single application, the right tools in the right place can make a
huge difference. But a workspace is not only about tools. It is also very
important to set up coding standards and best practices to follow during the
development process. Coding conventions and basic architectural decisions are
also discussed in this chapter.

Being a seasoned developer, you already have certain preferences in tools and
coding approaches. For example, every web programmer has his favorite
integrated development environment (IDE) and browser for basic testing. You
probably also have your own vision on writing good and maintainable JavaScript
code. If you are comfortable with your preferences, use them. At the very least, |
encourage you to try the tools and techniques that are described in this chapter.
You might find some of them more convenient.

This chapter is divided into two parts—tools and techniques—each describing
its own important aspect of development. In this chapter, we will do the
following:

Tools:
Install Java Development Kit
Compare IDEs with good support of JavaScript
Install web server (nginx in the first part of the book)

Install Android SDK and configure the emulator
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Create a basic web page and make sure that it loads in a
desktop browser, a real device, and the emulator

Technigues:
Review the JavaScript best coding practices

Implement a simple inheritance mechanism that will be
used for OOP code throughout the book

Tools

In this section, we review and set up tools that are required to build JavaScript
applications. JavaScript is a mature platform that is used to create complex
state-of-the-art software. Naturally, there are a lot of software components that
help to create, test, and debug rich JavaScript pages.

JavaScript is a dynamic language, unlike Java or C++. The major difference
between static and dynamic languages is that a static language must define the
data structures before runtime. In a static language, for example, a programmer
who wants to create a class called Van has to explicitly describe all the
properties and methods that it has: color, maxSpeed, drive(), and so forth.
Every object of the Van type has the same strictly defined interface. No surprises
here.

Dynamic languages like JavaScript allow adding, removing, or changing the
structure of any class or object af runtime. So, tricks like the following are
possible and valid:

var van = getTheRandomVan();
van.drive = racingCar.makeUTurn; // valid assignment of the new property

Just like that, you can take the method from the object of a different class and
use it instead of the existing method. In this case, only one instance of van is
affected, the rest of the objects stay intact!

As you can see, a lot of things can happen with the JavaScript data structures at
runtime: the variables can change their types, and existing objects can be
extended with the new methods using the local code or the code that was
downloaded from the remote server via Ajax call.

The dynamic behavior gives extreme power to the language, but makes it way
harder for tools like IDEs to predict the structure of the objects and their types.
The dynamic nature of JavaScript prevents code analyzers from helping you in
the same way they help with the “classic” static-typed languages.
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What We’ll Need

Since we are going to make games for the web, we need to set up a small web-
like infrastructure that mimics a real environment. As a bare minimum, we need
the following three components:

An integrated development environment (IDE)

A web server to serve static files: HTML pages, JavaScript
files, images, and others

A device emulator or a real device to test the product
This list is far from complete, of course, but it’s a good start.

The goal of this section is to create a plain “Hello World” HTML page that can
be viewed with an emulator, a real device, and a desktop browser. Once you
see that this setup works, you can forget about the environment and focus on
writing applications.

Almost every tool, except for the emulator, gives you some options. For
example, there’s no “best” IDE for JavaScript and there are around a dozen
popular web servers that are good at serving static files. Once you get a basic
setup going, feel free to experiment with individual components, and fine-tune
them.

NOTE: When | write about software products, | often mention prices and versions. |
think this information is useful. It is nice to know upfront how much you are expected
to invest in a tool. This kind of information is, of course, subject to change and should
be read as the “price at the time of writing.” For the most up-to-date information,
please refer to the respective companies’ web sites.

NOTE: Everybody who writes code makes mistakes. No matter how experienced you
are, if you are human, you will eventually introduce bugs in your program. Debugging
is part of the process, just like development, and not the easiest part | must admit.
Debugging tools are also very important to set and use. But this topic is outside the
scope of this chapter. A more in-depth discussion about hunting bugs in mobile-
oriented code is found in Appendix A.
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Environment Variables
Most tools that we use in this book follow the same installation pattern:
Install the tool or extract archive

Set environment variable TOOL_HOME, for example, JAVA_HOME or
ANT_HOME

Add the folder with executables, usually TOOL HOME/bin to the
PATH so that you can call the tool straight from the console or
terminal without typing the whole path

Setting and changing environment variables depends on your OS.

Windows 7

In Windows 7, right-click My Computer and select Properties from the drop-
down menu. In the opened window, click Advanced System Settings »
Environment Variables. Under System Variables, click New. Enter a variable
name (for example, JAVA_HOME), the variable value, and then click OK. Note that
you have to reopen any opened console windows to make them “see” the
changes.

Adding certain folders to PATH works the same way. Find the variable called PATH
in the environment variable list and click Edit. Put the cursor at the end of the
line, add a semicolon (;), and type the path to the folder. Usually when you add
the new tool to the path, you refer the existing variable, as follows:

;%JAVA_HOME%\bin

To check that the variable is set correctly, open a new console window and
execute:

> echo %JAVA_HOME%

Use the name of your variable instead of JAVA_HOME, of course. You should see
the path immediately printed in the console window.

Mac OS X Lion
In Mac OS X Lion, first create the file called .bash_profile in your home folder.
Open the terminal window and execute:

$touch ~/.bash_profile
$ open -e ~/.bash_profile
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The file should now be opened in the text editor. Add the following line for every
environment variable that you want to create:

export TOOL_HOME=/path/to/tool

For example:

export NODE_PATH="/node
export ANDROID HOME=~/android

The last line of this script should be the line that updates the PATH variable:
export PATH=$PATH:$ANDROID HOME/tools:$NODE_PATH

PATH is a colon-separated list of paths where Mac OS looks for programs when
you call them from the terminal without providing the exact location of the
executable file. Save the .bash profile, go back to the terminal window, and
execute the following to reload the newly defined variables:

$ . .bash_profile

Now check that the variables are available. Type the following:
$ echo $VARIABLE_NAME

Use your own variable instead of VARIABLE NAME, of course. You should
immediately see the path defined for this variable. If you ever need to edit one of
the variables, edit the file and change the value appropriately.

Paths

When you work with tools, you are often asked to enter different kinds of paths.
In this book, | usually refer to them explicitly, like “IDE installation path” or “the
project path” (meaning the path to your project folder). It is easy to understand
what it means most of the time. There are cases, however, when | can’t use that
kind of explanation; for example, the screenshots usually show a certain state of
the program, and if | take the screenshot from my system, it shows my paths, of
course. Code listings and config files sometimes refer to paths too; in this case,
| also use the real paths that | use for development.

The paths are different for Windows users and Mac users, but since the
software that we use is mostly cross-platform, any path format can be used.
Most tools accept the forwardslash( /) in Windows paths for distinguishing
between the path separator and escape characters. If you try to use code like
var path = "c:\nginx", for example, it will not work correctly. The \n will be
treated as the escape sequence and transformed to the “new line” character.
This issue is not JavaScript specific; most programming languages use the
backslash(\ ) to denote that the character standing after it will be processed in a
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special way. You must use either "c:\\nginx" or "c:/nginx" to specify the valid
path, and both strings will work fine. | recommend using the second approach (it
is easier to read at least). The cases when you need to specify the absolute

paths in JavaScript are quite rare and usually relate to server-side development.

Personally, | like to use the c:\apps folder for the development-related tools like
IDEs, development kits, emulators, and everything else that can be executed. |
keep my projects in c:\apps\projects. You are free to use your own
conventions, of course. Just keep in mind that when you see a path like
c:\apps\projects\myproject in this book, you have to use your own value
instead.

The other good reason to use the real paths in listings is that you know the
expected format straightaway. There are many ways to specify the location of a
file or folder in a file system: absolute, relative, or in the form of URI (with
file:// protocol). The relative paths may be calculated either from the current
working folder or from the folder where the currently executing file is located,
and so forth. It is often good to see a real example rather than a placeholder like
%YOUR_PROJECT PATH.

Java Development Kit

Java Development Kit, or simply JDK, is an essential part of Android
development, even if you don’t plan to write a single line of Java code. The
Android emulator requires Java to run and some JavaScript IDEs require it too.
JDK is a set of tools used to compile and run programs written in Java. We will
not use JDK directly in this book, but several components that we will need
require it.

For windows users, JDK can be downloaded from the official site at
www.oracle.com/technetwork/java/javase/downloads/index.html (click Java on
this page), select the version according to your OS, and install it. Once this is
done, you will have to set the environment variable called JAVA_HOME to let other
programs know where they can find Java. Also, add JAVA_HOME/bin to PATH.

For Mac users, open the terminal and type:
$ java -version

If you see the version number, then JDK is already installed. Otherwise, you will
be prompted to install the best available package. Type the same command
once again after the installation to make sure that JDK is ready. The installation
path on Mac OS X 10.7.x is:

/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
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It might be slightly different, depending on the particular Java version. Create
the new variable called JAVA_HOME and point to this folder.

That’s it. You have just installed Java and you’re ready for more exciting things.

Integrated Development Environment

Sometimes JavaScript projects are as simple as a couple of scripts that can
hide fields from an HTML form or load some content with Ajax. In this case, you
can get by with a text editor—it loads faster than an IDE, has a simple interface,
and saves a lot of memory (IDEs are really memory-hungry these days). For tiny
projects all you need is a syntax highlighter to make your code look pretty and
to save you from trivial typos.

For anything bigger than that, an IDE is essential. You will need a set of
advanced features that a typical text editor doesn’t have: good code analysis,
inspections, checking for potential errors, autocompletion, refactoring tools,
integration with version control systems, bug trackers, and many others.

As | mentioned already, there’s no perfect IDE in the market. Some are good for
JavaScript while others are not. They differ in price, system requirements,
supported platforms, and featuresets. When choosing an IDE, it is most
important that you feel comfortable with it. The first steps with a new IDE might
seem hard, but if you feel like you’re struggling with each line of code even after
a couple of weeks, you should try other products. The increase in productivity
will most likely make up for the lack of a feature or two.

If you’ve worked with JavaScript before, you might have picked a favorite IDE
already. If not, then the following are a couple of options:

Intellid Idea (www.jetbrains.com/idea/) has good support for
the whole web stack: HTML, CSS, JavaScript, and server-side
languages like PHP and Java. If your project is open-sourced,
IntelliJ Idea is free—otherwise you will have to pay around
$200 for it. Intellid has several lightweight IDEs derived from
Idea. WebStorm is the one for HTML and JavaScript, and it is
only $69.

Aptana Studio (http://aptana.com) is based on the glorious
and powerful Eclipse project (www.eclipse.oxrg). It is extremely
feature-rich, and has a plug-in for virtually anything from
exploring databases and building enterprise reports to
reminding you that your tea is ready. Aptana is free and open
source.
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S

The choice between the two usually comes down to one’s own preference.
There is an army of Eclipse fans and a similar army of IntelliJ fans, which tend to
start a holy war each time one side releases a new version. If you're in doubt, try
both and choose the IDE you like best. Next, | give you a brief look at these IDEs
and demonstrate how they work by making a Hello World project in each of
them.

IntelliJ Idea

Download the installer from the official site (www. jetbrains.com/idea/download/
index.html) and launch it. Follow the regular installation process (there are no
odd questions here; IntelliJ Idea only wants to know an installation folder
location).

After the installation has completed and you launch Intellid Idea for the first time,
you will need to choose which plug-ins to enable. If you plan to use IntelliJ as
your IDE, it is better to review the lists and select only the plug-ins that you will
really use. A smaller number of enabled plug-ins improves the startup time.
Otherwise, just leave all the checkmarks with default values. Finally, you see the
Welcome screen shown in Figure 1-1; it has several rows of buttons. Click
Create New Project to see the New Project window, and choose Create Project
from Scratch.

Arwaroiaiic I = B e
PRIV ELCOME ]

Ducumentation Pluging G s s

Recent Projects i_‘l o AP S

Figure 1-1.IntelliJ Idea welcome screen
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IntelliJ Idea treats a “project” as a set of one or more modules. For example, if
you write a chat application, the “chat application” as a whole is the project. The
modules of this project could be Server, Android Client, Desktop Client, and so

forth. The idea behind the modules i

s to separate the different components of

the projects since they might have different dependencies or build steps, or they
may use different programming languages. The project doesn’t have to use

many modules, of course. For a sim

ple application, one module is enough.

Each module has a type: Java, J2ME, Android, Grails, and the most important

type of module for this book—a We

b Module. Select it from the list on the left,

as shown in Figure 1-2. If you decide to use IntelliJ Idea as your main IDE, use
these steps for every new project that you make.

I New Project

Project name: HelloWorld

Project files jocation:

Project file format: ipr {file based)

i Create module

Module name: HelloWorld

Intelli/IDEA

CapphorjecevisioWotd

23

ol |

Content oot

o i Module file location:
- ..

_‘;E; Java Module
)?ﬁ Plugin Module

ofl J2ME Module

-}_";.. ActionScript / Flash / Flex Module

€l Android Module

& Maven Module

@ Grails Application

@ Griffon Application

Figure 1-2. Creating a new project

C\apps\projects\HelloWorld
(Chappsi\projects\HelloWaorld

Description
Provides faciities for developing web applications.

| Brevious Help

[ Enish || cancet |

Enter the project name and the location you wish to use for project files, and
then click Finish. Your project is created and you are presented with a blank

workspace, as shown in Figure 1-3.
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Dl HelloWorld - [C:\apps\projects\HelloWorid] - Intelli) IDEA 11.0 = L0 -
.ille Edit View Navigate Code Analyze Refactor Build Ryn Tools VIS Wmdow Help
B2 sg i3 Ak B ~-~-rer id B
1 HelloWorld

i Praject C:\apps'projects \HeloWerkd -1 o

2

|| view 3s: 08 Project »| V= & 4

; 1

I HelloWorld.iml

I HelloWorld.ipr E

P HelloWorid.iws i"?

i External Libraries E‘

g

£

&

e

o

! ;
&

& #

fa 4
v
£
-
&

B & 1000 Event Log
§ @ [137Mof 494M

Figure 1-3. The look of the blank new project

Now you can write the Hello World page. In our simple example, we have only
one module—HelloWorld. Right-click the folder icon with this name in IDE, and
then select New File. Enter index.html in the dialog and press Enter. Idea
creates a new empty file and you can start typing right away. Enter the code
from Listing 1-1.

Listing 1-1. Basic HTML5 Page

<IDOCTYPE html>
<html lang="en">
<head>
<title>Hello World</title>
</head>
<body>
It Works!
</body>
</html>

Open the newly created file in your favorite desktop browser and make sure that
it renders the page. We still cannot open this file with a mobile device or in an
emulator since both of them need the file to be accessible via HTTP. Neither a



