Build the next-gen multiplayer game web app right
in your mobile or desktop browser

Web Game Apps

Using HTML5, (553 and JavaScript

Juriy Bura
APIess®

Pro Android Web Game

Apps
Using HTML5, CSS3, and JavaScript

Juriy Bura

Apress’

Pro Android Web Game Apps: Using HTMLS5, CSS3, and JavaScript
Copyright © 2012 by Juriy Bura and Paul Coates

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3819-5
ISBN 978-1-4302-3820-1 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in
an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. Android
and all Android- and Google-based marks are trademarks or registered trademarks of Google, Inc., in the
U.S. and other countries. Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written
without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Chris Nelson

Technical Reviewer: Charles Cruz

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,
Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Brigid Duffy

Copy Editor: Kimberly Burton

Compositor: Bytheway Publishing Services

Indexer: SPi Global

Artist: SPi Global

Cover Art By: Sergey Lesiuk

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apzress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

To Elena and Alysa

o

Contents at a Glance

About the AUthOrs.......cccciniissemmmmnisseesnnnsse s s nn s xiii
Acknowledgmentsccuuiseeeemmmemsssssssnssssnnsssssssssssnssnsnsssssssssssnnnnnnnsssssssssnnnnnnnns Xiv
INtroductioncciseeminnissemnmnnssssennnsssnsnmssnanne s nnn s nnnn e nnnn e nnnn e nnnnnnns Xv
Section I: 2D WOrldsccuuisemmmmmissensmmmssssssmmsssssssmnssssssssassssssssssssssnssnsssssnnsnsssnnnns
Chapter 1: Getting Startedcccccmmmiininniinnnseess s 1
Chapter 2: Graphics in the Browser: The Canvas Element........ccuuseeeeennnnnnnns 11
Chapter 3: Creating the First Gamecoccceemmrmrnnsssssssessssnmmmmssssssssssssnnnns 89
Chapter 4: Animation and Sprites........cccinmmeemmmmmiensnmmmsesssmmmsessnmsessmmm.- 123
Chapter 5: Event Handling and User Input........cccoovmmmmmmnnnnsssssssssssssssnnnnnns 173
Chapter 6: Rendering Virtual Worldsccoumssesmsssasssssasssssnsssssnsssssnsssssnnsnsss 217
Chapter 7: Making an Isometric ENgiNecuccsusssesmmssesmsssasssssasssssnsssssnnsasss 255
Section I1: 3D WOrldscuueemmmmmisensmmmmsssssnsmmmssssssmnssssssssssssssnsssssssnnssasssssnnsasssnnnns
Chapter 8: 3D in @ BrOWSEcuuseeemmmmsssnmnmssssssasssssssssssassssssnsasssssnnsesssnnnnssss 333
Chapter 9: USing WeDGL.......cuccumisenmsssenmsssnnssssanssssnnssssanssssnnsssnnnssssnsassnnnsssnns 357
Section llI: Connecting Worlds........cccusesmmssesmssssssssssnsssssssnssssssssssasssssnsssssnnssssnnnss
Chapter 10: Going Server-Sideccccuummmemmmmmmmmmmmmssssssssmmmmnssssssssnmms 397
Chapter 11: Talking to the Server.........cccummmssenmmssesmsssssmsssasssssasssssnsssssnnsasss 449
Chapter 12: The Anatomy of a Network Game.........ouceemmmmmnnnnsssssssnssnnnnnnnss 477
Section IV: Improving Worldsccucceumssesmmssessssssssmsssssssssssssssssssssasssssnnssssanssssnnnss
Chapter 13: Al iN GAMES ..uvueeerrnnsssemnmmmssssnmsssssssnssssssnssesssssssnssssssnsnsssssnnnnssssns 513
Chapter 14: JavaScript Game Engines......ucceeemmmmmmmsssssssmsnmmmssssssssssssssssnnnss 541
Chapter 15: Building Native Applicationsccuccccnnmmissmncnnmmmssessnnsssssssnnnnes 565
Chapter 16: Adding Soundcccceerrsssseemsmnnesnnmmmmmssssssssssnennsssssssssnnns 599
Appendix: Debugging Client-side JavaScriptccocccciummsseenmnnsssnnsnnsssssnsnnns 615

o

Contents

About the Authors......cuu————————— s ———_ Xiii
Acknowledgmentscccceummmmmmmmssssnsssmssssnnssnssssnnsssssssnnssnssssnnsssssssnnnnsnsssnnnnnss xiv
INtroductioncceeeeeeeeeeeeemmeneeeeeeee e —————————— XV
Section I: 2D Worlds ...
Chapter 1: Getting Startedccccnmsemmmmsemnmmssenmsssasmsssssmsssssssssssssssnnssssnnssssnnnas 1
010 2
L L LT T 1T 3
Java DevelopPMENT Kit.........cceiiiicscsesese s 6
Integrated Development ENVIFONMENL ... se st ss s e e 7

L (ST £ 14
The Android SDK and EMUIALOTccvviieienininiesinns s ssessssesssssesssessssssssssssssssssssssssssssessssesssssssasssesessens 17
TECRNIGUESt e s e e s g e b b s a e s ae e ae e an e 22
T T 22
Object-Oriented Programming..........cocccerneeniiese s s s s s se e sesssesssts s sssnssssssnsnsnsas 28

A 'Word ADOUL MODIIE BrOWSEIScivvuiererriseresrissresess e e s e e s sasssss e e sesssassssssassssssssse seesssassenssasssnssenes 38
SUMMEAIY ...t r s s s e ae e n e p e e R e e r e e ne e 39
Chapter 2: Graphics in the Browser: The Canvas Element.........cooseeeeennnnnnnns 11
The Anatomy 0f the GAME........ccvvercrcer s 42
Drawing INSide the BrOWSETcccceevreresieseseses s sss s e snes 43
The BasiC HTIML SELUPceecirercirrer e s n e e sn e s sn s sre s 44
WRAL IS CANVAS?......cc e s s san e s n e 45
THE CONEEXL. .. citerieerirrie st e e R e e R e e e RO e R e e e e Re e e e Re e e e R e e e e R e e e e R 47
The COOrdiNAte SYSIEIM ... e se e e b e e bbbt 48
Drawing SRAPEScccvverierrirrer e s 52
RECIANGIES ...ttt e bbb E bR e R e R R e R R AR e 52

= L 55

CONTENTS

R 110G T Lo N o 66
RS 10 0 [0 OO RS 66
LT 10 LT OO 67
| L1 ¢ OO 72

Stacking Transformations
Context State......ccovvvvnininr s
Context Transformations in the Sample Project

The Sample Game Project ReSUM.........ccccvvercrrercrcrr e

Chapter 3: Creating the First GAMEccinmemmmmsemmmmssssssssnsssssasssssssssssnsssssnss 89

HTMLS GAme SKEIETON......cvccieiieeriesrirrsisesisersse s s s s ssn s se s s s s e s sn s sanessnessnassanenns
BT T o 10]] o O
L0 (o< I 01T 72 (P

GAME ArChItECIUNEecceercie e e e

MaKINg the GAME........ccceeerrerrerireres e s e sr e sr e nenn s
Rendering the BOard...........cccuueeieiiininssesese s ssssssssssssans
Game State and Logic
Wiring Components Together: The Game Class
Adding the Game to the HTML Skeleton...................

Chapter 4: Animation and Sprites.......ccccunseemmmmmmnnmmmmmnseesssssnmmsnssssssssnns 123
R3] 4] (SRS

LOAAING IMAGESvevvreeuireiriresesre s bbb ee e ne e

Drawing @n IMAJEcccvveveeerernrnrsrereseeiesess s se e e e e e e e s bbb e e se e s e s EabaRaRasn e s s s nnn e

SPIIEE SNBELScuceceeerere iR
Basics of ANIMALION ..o

The SImpleSt ANIMALION........ccciiiieserese s e ne e

JavaScript Threading Model

L1013

Chapter 5: Event Handling and User Input...........ccccinnnsemnnnnsssesessnmmssssnsnnnnns 173

BrOWSEI EVENES ..o s s s s s snssne s s s nne s 174
Desktop Browser vs. Android BrowSer INPUL........ccccvviiinininninm s ssssesssssssssssssessssssenees 174
Using Events t0 CatCh USEE INPUL ..o st e ses s se e s 176
Getting MOre from EVENES ..ot e e e s 180

vi

Handling the Differences Between Touch and Mouse INtErfaces........ccuvvvnivnnininninnnesesse s esesesenes 182
(T3 011 T4 187
Custom Event Listeners and EMItters........ccoovoeeececscs e s 188

EventEmitter: THe Base Class.........cucuerrrerenissrnnesessss s e sessssssssesessssssssesessssssssesessassesnenes

EVENtS VS. CallDACKScoccecererereccir e e
CUSTOM EVENLS ...t ss s sn s sn s sn s sn s snesn e sn e sn e n e sn e n s sn e nn e n e nnnns

Implementing InputHandlerBase

Creating MouselnputHandlerccccceunuean.

Creating TouchinputHandler
Advanced INPUL ..o e

DT 0 T0] oS

Pixel-Perfect Picking and IMage MaskSc.ccvvrrrrrnrnnrnnssssssssssssss s sesesssesssssssssesssesesssssssssssssssssssesens 206

COMPOSILE OPBIALIONSccviererererererrreresrs s b R e ne e e E R e R R R s 208
SIMUIALING JOYSTICK......cceieriiere e sa e sa e nn s 213
BT 101 SRS 216

Chapter 6: Rendering Virtual Worldscccuseemmmmmssemnmmmsssessmmssssssssssssssssnnnsns 217
L 3

The Idea Behind Tile Mapsccccovvininnessennnmnenennsrs s sssssnsns

Implementing a Tile Map....

MBASUIING FPS ... s e e e e e e e e e b e e e b e e e s
Optimizing Rendering Performanceccoovvvinnisnienessie s sseens 228

Draw Only What IS REQUITEA........cceeiiiesisese s ss s s se e s sssssssssnssssssens 228

L0 E e T 1N - O 231

Caching the Area Around the VIBWPOIT.........ccovrrernnmnenisse s sss s ssesesssessssssssssesesses 235
WOKIH ODJECTSueerrereerreree s s nr s 240

C00rdiNAte SYSIEMS.....cvivieiiciciccccce s e R R 240

Implementing WorldObjeCRENAEIENcovriirrr e 242

RENUEIING OBcoviveeeeeieisierereeesees s e e bR R e R s e e n e 245

OPEIMIZALIONSvcvcececcccese s e AR R R e e R R R R R an 247
ISOMEINIC VIBW ...t sne e s 250
BT 101 SRS 253

Chapter 7: Making an Isometric ENginecccccurmssssseesssssnnnssssssssssssssnnnnes 299
R3] 11 SR

The Plan.......coovreeeencncncncncneene

Preparing the Workspace ...
BASIC COUE......veuireriiiererterinise s e e e b e e e E s
1] SO
Y0 L (=T U o
C00rdiNate SYSTEMS......cviiciccccc s e e e e bR
RENUEIING THBS...ceieierrrererrrrnrsrsrerereesee s e ne e e E bbb R R e Re e s e s n e

CONTENTS

vii

CONTENTS

viii

Implementing ISOMEHCTIELAYENccccoveerererererererere s sn s 277
ReNdering ODJECTS.......cccveerirereerreres s se s s sr s 287

Implementing OBJECE CIUSTEIScuiiiieresererre s s 291

L] 1= T T L OO SE TSRS

Handling MOVEMENT..........ccciiiiiiciiise s s e
COMPOSITE ODJECLS. ...uiuiirsrrererirere s bR bR e nE e e e e E R e R e R R s
ODbJECE LAYEI: NEXE STEPS ..e.cucecrrrrereieerersesessssrs e se st ss s sssessssnsssnesenses
Dirty RECIANGIES.......coveereerrcree e sn e
HOW IEWOIKSceeerereirenisis s s se e sasasasssssnans
Implementation...................
Integrating with Layers.......
Marking Dirty RECtanglesccuvrereninreneienssrsnssesssssnesessssssseesesssssnnes
Ul and Layer Manager
I T Ty o -] OSSOSO

]
Interaction
Event Propagation and Handling ..o se e e sesesesesesssesesssssssassssssssssesesens 325
StOPPING the PrOPAgationccccuiecccrere st et bbb bbb b an 329
BT 101 SRS 331

Section I1: 3D WOrldscuueemmmmmisensmmmmsssssnsmmmssssssmnssssssssssssssnsssssssnnssasssssnnsasssnnnns
Chapter 8: 3D in @ BrOWSercuemmmmmssemsmmmssseasnmsssssssssssssssssasssssnsnssssssanssssss 333
Introducing 3D Rendering

How 3D Rendering Works
The Math.......ccovvvnnnr e
A 3D Example
The Hello World 3D Engine

10T 1= =T T BT =T 2 T

Chapter 9: Using WebGL........cooccccmmmmmmmmmssssssssnsssmmmmssssssssssssssmsssssssssssssssnssssss 39 71

BasSiCS OF WEDGLcoeeeeerecerrr e e
INHANZING WEDGLc.vveiicte sttt
(L1011 1) OSSOSO ST
OpenGL ES 2.0 Rendering Pipeline
Using Buffers.........ccceueuenen
Shaders and GLSL

Basic Example: Render a 3D Cube
Using Shaders in a Web Page
Rendering Hello WOKId ..o s sa s s s s sns e

EXPIOrING WEDGL ..ot

] OO 381
=) - OO 386
L0 101 T 0 Tt S 391
SUMMEAIY ...ttt r s sa s e e s e a e e ae e nn e s b e e Renn e e nrannns 394

Section lll: Connecting Worlds........cccusesmmssesmsssssssssanssssssssssssssssssasssssnsssssnsnsssnnnss
Chapter 10: Going Server-Sidecccccrmmmnmmmmmmmmmmmmmsssssssssssmmmsssssssssssssssenes 397

NOGE.JS BASICS.....ccvrerereresrisine s
Introducing Node.js
Programming Model
Installing Node.js................
DebUGGING NOUE SCHPLS.....cveereerrrrerecrerre s
Writing SCripts fOr NOUE.JSevveeeircerr st 407
EXCEPLIONS ANd STACK TFACES ..vvvvvireriiererrireresreseressssesassssses s e s sass s e ssseses s e sssesas e sas b esssas s e sesssns et ensaneen 407
Global Namespace and NOUE MOGUIESccvviieriniierinsrerissse s sesssse s sessss s sessssesassssesasssesassese s 408
Writing the FirSt MOTUIEcucueiecccrcre st e e 412
DiSCOVEIING MOUUIESvvierieicreeeec s e 415
USING NPV ...t e E bR R R e R an e 4117
Getting Real: Building a Server for the Game...........cccuceeerrsernsensesiensseseses e 420
Web Development Frameworks fOr NOUEcviviirniierinniiersnnsesisisesssssesessssessssssessssssessssssssssssssssssssesesssssessens 420
BaSIC QUEDULcueueiie s e R 421
ReNdEring WED PAGEScccveririiiririiiiiisese s s se s e e e sssssssss s s s s s s sssssns sesesssssssssssssnsssssssens 425
Parsing USEI INPUL.........coiieiisseecscesse s s an e 431
WOrKing With SESSIONScuiceviiiieriiirr e e e e e ennn 433
Understanding MiddIEWArE..........ccccuveerseresinsesnssse s sss e snesens 434
HOUSEKEEPINGecvreeerereersseree st sesss e sss e s s s s sr s s s sn s sas s snssnssns
REPOItiNG EFTOIS ...c.covierireriniers s se s sssasassssssans
LOgging.....coevererererererenenns
Server Configurations
BT 101 SRS
Chapter 11: Talking to the Server.........cccnnmmmmmnnnmnnnseeesssnnnnsssssssssnn: 449
The Evolution of Networking in BrOWSErS........c.ccccvcririeniniesiessessesseseses s sesses e
LT 1]] L1 S SRSR S

Using XMLHttpRequest API for Basic HTTP Requests
HTTP Request with Plain Old XHR
Handling Errors with XHR ...
XMLHttpRequest Level 2
Working with Binary Data............ccoeeevvnininnnenesesesenenens

REVEISE AJAX ...uveeerrserressssessssseessesessessesessessssessssssssssesessessssesssssssessesessessessassssssssssssnsens
THE PIODIBIM ...ttt e e
THE SOIULONS ...c.evereeiere e e s E e

CONTENTS

CONTENTS

THE BEST SOIULIONSvvcreicrercrciccicse s s ne e 463
The Acceptable SOIUTIONS ... —————— 465
The ODSOIELE SOIULIONSvecieeieirerece s e e 471
Testing Transports in the Field ..o 472
DDMS (Dalvik Debug MONITOr SEIVEL).......ccovererererererersresssrsrsrssssesssssssssssssssssssesesesesesesssssssssssssssssssesssssasssssssssssens 473
Specialized Software That Simulates @ Bad NETWOIKccccvvevrininnninnn s ssseseses sessesees 474
SUMMEAIY ...ttt r s sa s e e s e a e e ae e nn e s b e e Renn e e nrannns 475
Chapter 12: The Anatomy of a Network Game........cccccussseennsnssseesnsssssnannnnnss 477
Game Architecture: Moving from Single Player to MUltiplayer...........cccocvinnnnnrnrnnresis s sseses e 480
PrOJECE SITUCIUIEceeiicte ettt ee bbb bbb bR e 483
Game Lobby With SOCKEL.I0cccucirerismmnsnnssssssssssssss s sssssssssssssssens 484
Client-Server COMMUNICALIONSvcririrsrsrisreessisessss s se e e e b s b bs s sa s e srnpnpnEnpararasannnnain 486
Adding the Lobby Screen t0 the GAME ... ——————— 489
Adding the GAMEPIAYccceeereerrere e s n s 495
Sharing Logic Between the Client and the SErver..........cc 496
e 41T L OO TESE TSRS 498
LR =T oL OO ST RSSO 504
SUMMEAIY ...ttt r s sa s e e s e a e e ae e nn e s b e e Renn e e nrannns 511

Section IV: Improving Worldsccuccumssesmmssessssssssssssssssssssssssssssssnsssssnsssssnsssssnnnns
Chapter 13: Al in GAMES ..uuccriisseenmmnnmmmsssssssssssssssssssssssssssnssssssssssssnnnsnssnssssss 913

Do I Need Alin MY GAME?........ccccovirinneren e e 514
Introducing Pathfinding..........cccocevrinnni 515
LC T2 o RSSO 517
LT 3 o I U 518
Implementing Graphs in JAVASCIIPL ... 521
Building Pathfinding Al............coeciinirnrisese e 525
Sl 1041 OO 525
Methods of Building the Pathfinding Graph...........cocvvrnninc s ens 532
DeCiSioN MaKiNg.........ccceeviiiieiiiiinrie e e e 535
BT 101 SRS 539
Chapter 14: JavaScript Game Engines.......c.ucccsnmmmssnnssssssssnsssssssssnsssssssnnssssss 941
Graphical APIs, Libraries, and Game ENginescccccecvvmnvnrnnsennnssessessesssessessannns 542
LT L0 7 o 542
LT Lo T 0T T 543
(2T L= I =04 =T OO 544
1 1SS 546
Entity COMPONENT SYSTEIMvcviiciicicccese s e e e e e e e 546
Crafty HEllo WOKIH........c.ououeicccccce sttt s e e e e e ne bbb bbb 550
(0 V14 1 T OO 554

T2 1T LT £ T ST 561
SUMMEAIY ...ttt a s e e s a e nae e e e s e e e Renr e e nranens 564
Chapter 15: Building Native Applicationsccuucemmmmiseecmmmmmssessnmnssssssnnnnes 565
Native APPlICAtIONScoeeiierercrer e sa e e saeae e 566
Setting up Apache Cordova (PRONEGAP)cccveeererrerrrsersesssessssessesessesessssessessssessanens 569
SEHNG UP COTAOVAvvivciccccccccce st b s e e e e e e E e Enp R e R R s 570
Setting UP APACIE ANL.......o oo R Re s 570
21T o 1T [0 WA PRV AY o o] o U1 o] S 571
Creating an Empty Android ProjECL.........ccciumiiiiiisc s s se e sttt nen 571
Testing the Empty Android ProjJECTcovvrrrnsisss s s s ssssnsans 573
BasiC COrdova PIOJECT........c.cceccccccc st sp s e e e s e e 574
L] 4043 o TP 579
Final Touches: Name, Icon, and FullSCreen MOde. ...ttt sttt 581
USING NALIVE APIS.........coveicicicicinne sttt e e bbb e e e e bbb 584
Preparing for Markets ... e s 588
SigNING APPlICALIONSvveeececeee e 588
Publishing 0N GOOGIB PIAYccccvuuiieriiiiicsis s b s ssss b s sssi s 591
Updating Your APPlICALIONcceuiuiiiccse s e e e 597

BT 101 SRS 598
Chapter 16: Adding SOUNdcccceerrssssssemsmnmessmmmmmmsssssssssssseessssssssssssnsnnss 599
Audio 0N WED PAQESccovereerrrerreiressssesse e s e e ss e s e sssssssessssssnsssssssssnsanes 600
THE AUGIO TG ..curuererrereiuerersesessssr s se e s s e e s e e E e 600
The Web AUIO APl ... 602
SouUNd iN ANAFOIA BIOWSETc.civierererrrisisisis s se e s s ne e bbb papa s nnnns 603
USiNg SOUNAMANAQEI2........ccceevreeerereressine s se s sre e sns e sranens 605
14 TE (= LIS 1] o OSSOSO 605
L0 o1] 1 N 607
Adding SOUNd 10 The GAMEcccuiiiricccrc s e 609
Playing Sound in Cordova Applications..........ccucvrcrvmrcnninsn e 611
LT {0 T=] 1= 1 T 612
SUMMAIY ...ttt a s e e s e s e e ae e e s s p e e Renn e nranens 613
GOING FUMNEE .. 614
Appendix: Debugging Client-side JavaScriptccccnnnnseemmmmmnnnssssssssnnnnnn 615
DebUg EXAMPIE ..o nnnnen 616
Debugging in @ DeSKIOP BrOWSE..........ccocvvirinniniinnen s sse s 617
Debugging on a Mobile DEVICecccoverireierinnrree e 620
Logging (Almost) Without Code Changes.........cccucrerrseresresesiesessesssessessssesesssesseens 622
1] LT 624

CONTENTS

Xi

CONTENTS

SUMMEAIY ...t a s e s e e s e a s e e ae e e e s e e e Renr e e nranens 626
What This BOOK IS ADOUL......c..cciieriiiiieriisennse s se s sttt ne st st s s e e ses e sennne Xvii
What This BOOK IS NOT ADOULcevriiierininer sttt sre e st e s se s Xviii
WHO IS THiS BOOK FOI?vvieriiiierini st sttt st s sttt Xviii
ADOUE ThE AT FIlES ... e e e e e e e e e b s XiX
How This Book Is Structured XiX

DoWnIoading the COUE.........ccuiiiiicererer e bbb e se e e e ne et XXi
Contacting the Author

T [: 7.

xii

o

About the Authors

Juriy Bura is an independent consultant living between Kiev, Ukraine, and Zurich, Switzerland.
His main area of expertise is games and real-time web applications for both desktop and mobile
platforms. He is a co-owner of Deadline Solutions (http://deadline-solutions.com/about.html).
Juriy is also a leader of the JavaScript User Group in Ukraine, a frequent conference speaker, and
a passionate web developer seeking how to push the browser to its limits. Having more than
seven years of experience in Java and JavaScript, he is sure that game development is the area
with the most fun concentrated within a line of code.

Juriy spends his spare time with his family and playing board games in a small “geek”
club. Juriy blogs at http://juriy.com and tweets as @juriy.

Paul Coates is a freelance copy editor and EFL teacher, based in Burton Upon Trent, UK, and
Kyiv, Ukraine. He made sure that Juriy’s ingredients had the right touch of English flavor for
publication. When not teaching students of all ages how to speak his native tongue, Paul provides
copy editing and proofreading for foreign works in English, as well as Russian and Ukrainian
translations. Paul enjoys video gaming, cinema, and traveling.

Paul occasionally blogs at http://psykspopcornjungle.blogspot.com and occasionally
tweets at @Psyklax.

xiv

—

Acknowledgments

This book would be impossible without the help and support from many great people. 'm most
grateful to my wife, Elena, whose love gave me inspiration when I needed it most, and my
parents, Alexander and Vera Bura.

I'm grateful to my good friends: Vadim Voituk for his brilliant ideas and technical
expertise; Alexey Kondratov, who was the first to explain to me how a book is different from a
600-page blog; and Artyom Volkhonskiy. I'm so glad that you guys have always been there when I
needed your support and opinion. Your help has improved this book tremendously.

A very special thanks to a brilliant artist—Sergey Lesiuk (http://nitro-
killer.deviantart.com), who created the cover art and graphical assets for the isometric engine,
and the guys at Marcus Studio (www.marcusstudio.com.ua/) for the fabulous animated knight
character. With their help, we now have more free high-quality art to use in our game projects.

Thanks to the Apress team, who did a great job bringing this book to life: Steve Anglin,
Brigid Duffy, Charlie Cruz, Kimberly Burton, Anna Ishchenko, Stephen Moles, Jonathan Gennick,
Jean Blackburn, and many others working behind the scenes to publish this book.

Personal thanks to Chris Nelson for his review, advice, and for dealing with never-ending
changes to the chapters’ structure. With your help, this book shaped up. Working with you is a
great pleasure.

Thanks to Paul Coates for his invaluable contribution to this book and his readiness to
review all those “last minute edits” in the middle of the weekend.

And, of course, thank you, my little angel Alysa. No more “Daddy is working again
tonight.” I promise.

—TJuriy Bura

I want to thank Juriy for a great job, Stephen and Chris at Apress for making our first book a
pleasure to write, and most of all Sasha, without whom none of this would be possible.

—Paul Coates

—

Introduction

This book is about making web games with JavaScript for today’s most promising mobile
platform—Android. Game development is a challenging subject. Games aim to simulate life in
some form or another, and the more realistic you want a simulation to be, the more knowledge
and skill you have to apply to make it believable. Video games is the place where mathematics—
which is quite typical in programming—meets kinematics, optics, acoustics, artificial
intelligence, art, music, and storytelling. Where else can you find a mix like that?

Why JavaScript and HTML5? If you are holding this book in your hands, then you
probably already have your answer to that question. If you are curious about my reasoning, it’s
because JavaScript is the most popular cross-platform client-side solution that developers have at
their disposal. Every device that has Internet access also has a browser—from desktop computers
and smartphones to tablets and set-top boxes. And without a doubt, every browser has
JavaScript. An application built with a standard HTML5 stack will run on most devices. You want
your game to be fast? You want it on desktops, mobiles, and tablets on Windows, i0S, Linux, and
Android? You don’t want to rewrite the code for a set of heterogeneous platforms in different
programming languages? HTML5 comes to rescue!

The goal of this book is to give you a deep understanding of the algorithms and
approaches that stand behind the most common types of games. I prefer this approach to that of
streamlined how-to guides that often sacrifice important details in favor of immediate results.
While the “how-to” approach might look like a quicker way to get to the goal, it usually leaves
readers with knowledge gaps to fill on their own. Of course, this book has plenty of how-to
examples in addition to thorough coverage of the underlying concepts.

That’s why I couldn’t avoid putting some math in the book. Yeah, there are few formulas
on the pages. Real gamedev is impossible without fair amount of math. You don’t need to have
any special knowledge of mathematics beyond what you already know from school to master
every subject in this book. If you are already proficient with math, you might find some
explanations too obvious—feel free to skip them.

In this book, I deliberately avoided using any existing “Swiss Army knife”-style libraries
like jQuery, prototype.js, or Underscore.js because I didn’t want the examples to be hard-wired
with any of them. While there are many great libraries, every developer has his own preferences. I
find library-agnostic code to be the friendliest.

What This Book Is About

This book is about making games for the Android platform with HTML5 and JavaScript. It will
guide you from an empty HTML page to a full-blown HTML5 game with animations, sound,
endless worlds, and multiplayer support.

The following are among the many things you learn in this book:

How to draw game elements with the Canvas element; how to use sprites and sprite
sheets; and how to capture user input.

How the exciting world of 3D programming works—including WebGL, one of the
most promising APIs for web game development.

How to create multiplayer games with the help of Node.js—the tool that brings the
power of JavaScript to the server.

How to establish real-time communication between users and let them play against
each other in online matches. All of this is possible with JavaScript. You don’t need to
know any other server-side language to write efficient server-side code!

How to make computer-controlled characters behave intelligently—have them find
their way through the world and make decisions with the help of AT algorithms.

How to add some neat sound effects.

How to publish our masterpiece in the Android Market.

This book covers many gamedev algorithms and optimizations, most of which are not
limited to JavaScript. Once you learn them, you will be able to quickly master game development
on other platforms. Understanding how 3D rendering or pathfinding works will help you to build
games for any platform, not just the web.

This book is about making games and writing the most exciting applications in the
world—and having real fun while doing so.

What This Book Is Not About

This book is not about web programming in general. I will not cover what HTML is or how HTTP
works. I assume that you already know how to write basic JavaScript and embed it into an HTML
page. You don't need to be a web development guru, but at the very least, you need understand
the language core. Operators, functions, objects, and variables should be familiar to you. If you
don’t feel comfortable with these concepts, you might want to start with Terry McNavage’s
JavaScript for Absolute Beginners (Apress, 2010).

This book is not about game design—creating levels, building character personalities, or
designing economics for the online world. Everything related to the gameplay, story, plot,
characters, and game mechanics is out of scope. While these topics are extremely interesting,
there are special books devoted to them. One such book that I would recommend is Game
Design: Theory and Practice, Second Edition, by Richard Rouse III Jones & Bartlett, 2004).

Who Is This Book For?

This book is for programmers. It will guide you through the technical aspects of creating a
game—rendering 2D and 3D graphics, user input, networking, sound, artificial intelligence, and
publishing the game on the application market. Every concept explained here is illustrated with

INTRODUCTION

code examples that you can run on your Android smartphone or tablet. I tried to make the book
as practical as possible—working code is a very important way to provide a kick-start.

If you are a web developer and you want to learn how to make games for Android
devices, this book is for you. You don’t need experience with any specific JavaScript library—or
even experience making sites for mobile platforms—to get the most out of this book. If you know
how to make a personal web page from the scratch with some JavaScript in it, that’s about
enough to get started.

If you are a game developer who created games for other platforms, and you want to
leverage your experience to HTML5 and Android, this book is also for you. If this is the case, some
sections might look familiar or even obvious to you. For example, if you have worked with
OpenGL from within a Java application, you probably know what a shader is or how to map
texture to polygons. Feel free to skip such sections and focus on practical aspects—JavaScript
listings and examples that come with the book.

About the Art Files

This book comes with some great art created especially for it by Sergey Lesiuk (isometric tiles and
buildings) and the guys at Marcus Studio (an animated knight character). You may use this art in
your own projects—free or commercial—without tricky restrictions. The complete license text is
distributed with the files.

Free and unrestricted art is very important in the early stages of development. It feels so
much better to work on a game that looks like a game rather than a mess of stub graphics. The
initiative to share commercial-looking sprites for free was inspired by Daniel Cook on his
wonderful web site at www.lostgarden.com. I encourage you to join and share your gamedev assets
for free—the developer community will be most grateful.

How This Book Is Structured

The book is divided into four parts that we jokingly call “worlds.”

2D Worlds

This part of the book is devoted to 2D graphics and the Canvas element. It also gets you started in
Chapter 1, “Preparing the Environment,” by setting up required tools: the IDE, the web server,
Java SDK, and the Android emulator. Once all of these are set, you are ready for action.

Chapter 2, “Graphics in the Browser: The Canvas Element,” is where the magic starts.
You will learn how to render shapes on HTML5 Canvas, how to use paths and curves, gradients
and fills, transformations, and states of the 2D context.

In Chapter 3, “Creating the First Game,” you create your first project—the Four Balls
game. This small project uses elements you created in Chapter 2 and illustrates important, basic
game development concepts, such as game state, mechanics, turn validation, and win/lose
conditions.

Modern games are impossible without colorful animations. Chapter 4, “Animation and
Sprites,” guides you through the process of loading the images and drawing a running character
frame by frame. You will also learn more advanced animation effects, such as interpolation,
acceleration, deceleration, and easing functions.

Chapter 5, “Event Handling and User Input,” will introduce you to the methods of
working with input in your game. You'll learn how to capture browser events and build a high-
level API for complex input models. We'll explore drag-and-drop and pixel-perfect picking with
color masks.

At this point, you will be able to create your own simple games, as you will have all the
“starter tools” under your belt. So it is time to move to the more advanced topics—rendering
game worlds.

In Chapter 6, “Rendering Virtual Worlds,” you'll learn how to render Really Big Worlds.
We start with the simplest tile-map technique and gradually optimize it. You learn how to cache
the fragments of the map, how to use the offscreen buffer, and render the world objects such as
trees and rocks.

Chapter 7, “Making an Isometric Game,” is the longest chapter of the book. It is devoted
to isometric 2D game engines. The isometric view is the most popular way to represent the game
world in strategy games, RPGs, tactics, and many other popular genres. You will learn about
isometric projection, the shape of tiles, and the ways to render them. In addition to techniques
described in Chapter 6, we’ll introduce more rendering optimizations—the dirty rectangles
algorithm and clustering of world objects. The result of this chapter is our second big project—an
isometric engine ready to be used in the next strategy game or RPG.

3D Worlds

The “3D Worlds” part introduces 3D graphics—from the basic rendering concepts to WebGL.

In Chapter 8, “3D in a Browser,” we learn what 3D is, how it works, and the math
behind it.

Chapter 9, “Using WebGL,” is devoted to WebGL—a very promising web standard that is
making its way into the mobile world. You'll learn how to initialize WebGL, write shaders, work
with geometry data, load textures, and work with 3D models.

Connecting Worlds

“Connecting Worlds” is all about communication and talking to the server. We start with learning
Node.js and the Express framework in Chapter 10, “Going Server-Side.” This chapter ranges from
Node installation to a simple game server with proper templates, session handling, logging, error
handling, and notifications.

In Chapter 11, “Talking to the Server,” we move back to the client-side and learn how to
connect to a server from a web page and exchange data with other players. We will look at
different ways of communication, often called transports, and learn their pros and cons.

In Chapter 12, “Making Multiplayer Games,” you make your third big project—the
multiplayer version of Four Balls—with Node.js, Express, and Socket.10.

Improving Worlds

The final part is devoted to various small aspects of game development.

Chapter 13, “Al in Games,” is about artificial intelligence—breathing life into computer-
controlled opponents. You will learn basic approaches to pathfinding and decision making—a
good start to making bots look intelligent.

Chapter 14, “JavaScript Game Engines,” discusses game engines and introduces
Crafty.js—a small yet quite powerful game engine written in JavaScript. Here’s where you
complete a fourth project—an Escaping Knight game.

Chapter 15, “Building Native Applications,” explains what it takes to publish an HTML5
game as the native application to the Android Market. We will go through all steps of the
process—packaging the game, signing it with the key, preparing it for market, and publishing—
and then update the game to the next version.

INTRODUCTION

Chapter 16, “Adding Sound,” adds the final touch to the game—sound. In this chapter,
you'll use SoundManager? to load and play sounds in the Escaping Knight game. You will learn
how to loop background MP3s, play “click sounds,” and notify the user about game events.

Appendix

Appendix A, “Debugging Web Applications,” explains how to debug JavaScript games. We try
hard to write good code, but we're all human—mistakes are unavoidable. This appendix will give
you a good understanding of how to find bugs and quickly eliminate them, saving more time for
development.

Contacting the Author
If you have any questions, suggestions, comments, or ideas regarding this book or HTML5 game

development in general, I'd be happy to receive your feedback via e-mail at
juriy.bura@gmail.com, my web site at http://juriy.com, or on Twitter at @juriy.

Xix

S

Chapter

Getting Started

The goal of this chapter is to prepare a comfortable workspace for development.
The environment and tools for mobile development are always a little more
complicated than regular desktop projects. When it comes to Android and
JavaScript in a single application, the right tools in the right place can make a
huge difference. But a workspace is not only about tools. It is also very
important to set up coding standards and best practices to follow during the
development process. Coding conventions and basic architectural decisions are
also discussed in this chapter.

Being a seasoned developer, you already have certain preferences in tools and
coding approaches. For example, every web programmer has his favorite
integrated development environment (IDE) and browser for basic testing. You
probably also have your own vision on writing good and maintainable JavaScript
code. If you are comfortable with your preferences, use them. At the very least, |
encourage you to try the tools and techniques that are described in this chapter.
You might find some of them more convenient.

This chapter is divided into two parts—tools and techniques—each describing
its own important aspect of development. In this chapter, we will do the
following:

Tools:
Install Java Development Kit
Compare IDEs with good support of JavaScript
Install web server (nginx in the first part of the book)

Install Android SDK and configure the emulator

2 CHAPTER 1: Getting Started

Create a basic web page and make sure that it loads in a
desktop browser, a real device, and the emulator

Technigues:
Review the JavaScript best coding practices

Implement a simple inheritance mechanism that will be
used for OOP code throughout the book

Tools

In this section, we review and set up tools that are required to build JavaScript
applications. JavaScript is a mature platform that is used to create complex
state-of-the-art software. Naturally, there are a lot of software components that
help to create, test, and debug rich JavaScript pages.

JavaScript is a dynamic language, unlike Java or C++. The major difference
between static and dynamic languages is that a static language must define the
data structures before runtime. In a static language, for example, a programmer
who wants to create a class called Van has to explicitly describe all the
properties and methods that it has: color, maxSpeed, drive(), and so forth.
Every object of the Van type has the same strictly defined interface. No surprises
here.

Dynamic languages like JavaScript allow adding, removing, or changing the
structure of any class or object af runtime. So, tricks like the following are
possible and valid:

var van = getTheRandomVan();
van.drive = racingCar.makeUTurn; // valid assignment of the new property

Just like that, you can take the method from the object of a different class and
use it instead of the existing method. In this case, only one instance of van is
affected, the rest of the objects stay intact!

As you can see, a lot of things can happen with the JavaScript data structures at
runtime: the variables can change their types, and existing objects can be
extended with the new methods using the local code or the code that was
downloaded from the remote server via Ajax call.

The dynamic behavior gives extreme power to the language, but makes it way
harder for tools like IDEs to predict the structure of the objects and their types.
The dynamic nature of JavaScript prevents code analyzers from helping you in
the same way they help with the “classic” static-typed languages.

CHAPTER 1: Getting Started

What We’ll Need

Since we are going to make games for the web, we need to set up a small web-
like infrastructure that mimics a real environment. As a bare minimum, we need
the following three components:

An integrated development environment (IDE)

A web server to serve static files: HTML pages, JavaScript
files, images, and others

A device emulator or a real device to test the product
This list is far from complete, of course, but it’s a good start.

The goal of this section is to create a plain “Hello World” HTML page that can
be viewed with an emulator, a real device, and a desktop browser. Once you
see that this setup works, you can forget about the environment and focus on
writing applications.

Almost every tool, except for the emulator, gives you some options. For
example, there’s no “best” IDE for JavaScript and there are around a dozen
popular web servers that are good at serving static files. Once you get a basic
setup going, feel free to experiment with individual components, and fine-tune
them.

NOTE: When | write about software products, | often mention prices and versions. |
think this information is useful. It is nice to know upfront how much you are expected
to invest in a tool. This kind of information is, of course, subject to change and should
be read as the “price at the time of writing.” For the most up-to-date information,
please refer to the respective companies’ web sites.

NOTE: Everybody who writes code makes mistakes. No matter how experienced you
are, if you are human, you will eventually introduce bugs in your program. Debugging
is part of the process, just like development, and not the easiest part | must admit.
Debugging tools are also very important to set and use. But this topic is outside the
scope of this chapter. A more in-depth discussion about hunting bugs in mobile-
oriented code is found in Appendix A.

CHAPTER 1: Getting Started

Environment Variables
Most tools that we use in this book follow the same installation pattern:
Install the tool or extract archive

Set environment variable TOOL_HOME, for example, JAVA_HOME or
ANT_HOME

Add the folder with executables, usually TOOL HOME/bin to the
PATH so that you can call the tool straight from the console or
terminal without typing the whole path

Setting and changing environment variables depends on your OS.

Windows 7

In Windows 7, right-click My Computer and select Properties from the drop-
down menu. In the opened window, click Advanced System Settings »
Environment Variables. Under System Variables, click New. Enter a variable
name (for example, JAVA_HOME), the variable value, and then click OK. Note that
you have to reopen any opened console windows to make them “see” the
changes.

Adding certain folders to PATH works the same way. Find the variable called PATH
in the environment variable list and click Edit. Put the cursor at the end of the
line, add a semicolon (;), and type the path to the folder. Usually when you add
the new tool to the path, you refer the existing variable, as follows:

;%JAVA_HOME%\bin

To check that the variable is set correctly, open a new console window and
execute:

> echo %JAVA_HOME%

Use the name of your variable instead of JAVA_HOME, of course. You should see
the path immediately printed in the console window.

Mac OS X Lion
In Mac OS X Lion, first create the file called .bash_profile in your home folder.
Open the terminal window and execute:

$touch ~/.bash_profile
$ open -e ~/.bash_profile

CHAPTER 1: Getting Started

The file should now be opened in the text editor. Add the following line for every
environment variable that you want to create:

export TOOL_HOME=/path/to/tool

For example:

export NODE_PATH="/node
export ANDROID HOME=~/android

The last line of this script should be the line that updates the PATH variable:
export PATH=$PATH:$ANDROID HOME/tools:$NODE_PATH

PATH is a colon-separated list of paths where Mac OS looks for programs when
you call them from the terminal without providing the exact location of the
executable file. Save the .bash profile, go back to the terminal window, and
execute the following to reload the newly defined variables:

$. .bash_profile

Now check that the variables are available. Type the following:
$ echo $VARIABLE_NAME

Use your own variable instead of VARIABLE NAME, of course. You should
immediately see the path defined for this variable. If you ever need to edit one of
the variables, edit the file and change the value appropriately.

Paths

When you work with tools, you are often asked to enter different kinds of paths.
In this book, | usually refer to them explicitly, like “IDE installation path” or “the
project path” (meaning the path to your project folder). It is easy to understand
what it means most of the time. There are cases, however, when | can’t use that
kind of explanation; for example, the screenshots usually show a certain state of
the program, and if | take the screenshot from my system, it shows my paths, of
course. Code listings and config files sometimes refer to paths too; in this case,
| also use the real paths that | use for development.

The paths are different for Windows users and Mac users, but since the
software that we use is mostly cross-platform, any path format can be used.
Most tools accept the forwardslash(/) in Windows paths for distinguishing
between the path separator and escape characters. If you try to use code like
var path = "c:\nginx", for example, it will not work correctly. The \n will be
treated as the escape sequence and transformed to the “new line” character.
This issue is not JavaScript specific; most programming languages use the
backslash(\) to denote that the character standing after it will be processed in a

CHAPTER 1: Getting Started

special way. You must use either "c:\\nginx" or "c:/nginx" to specify the valid
path, and both strings will work fine. | recommend using the second approach (it
is easier to read at least). The cases when you need to specify the absolute

paths in JavaScript are quite rare and usually relate to server-side development.

Personally, | like to use the c:\apps folder for the development-related tools like
IDEs, development kits, emulators, and everything else that can be executed. |
keep my projects in c:\apps\projects. You are free to use your own
conventions, of course. Just keep in mind that when you see a path like
c:\apps\projects\myproject in this book, you have to use your own value
instead.

The other good reason to use the real paths in listings is that you know the
expected format straightaway. There are many ways to specify the location of a
file or folder in a file system: absolute, relative, or in the form of URI (with
file:// protocol). The relative paths may be calculated either from the current
working folder or from the folder where the currently executing file is located,
and so forth. It is often good to see a real example rather than a placeholder like
%YOUR_PROJECT PATH.

Java Development Kit

Java Development Kit, or simply JDK, is an essential part of Android
development, even if you don’t plan to write a single line of Java code. The
Android emulator requires Java to run and some JavaScript IDEs require it too.
JDK is a set of tools used to compile and run programs written in Java. We will
not use JDK directly in this book, but several components that we will need
require it.

For windows users, JDK can be downloaded from the official site at
www.oracle.com/technetwork/java/javase/downloads/index.html (click Java on
this page), select the version according to your OS, and install it. Once this is
done, you will have to set the environment variable called JAVA_HOME to let other
programs know where they can find Java. Also, add JAVA_HOME/bin to PATH.

For Mac users, open the terminal and type:
$ java -version

If you see the version number, then JDK is already installed. Otherwise, you will
be prompted to install the best available package. Type the same command
once again after the installation to make sure that JDK is ready. The installation
path on Mac OS X 10.7.x is:

/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

CHAPTER 1: Getting Started

It might be slightly different, depending on the particular Java version. Create
the new variable called JAVA_HOME and point to this folder.

That’s it. You have just installed Java and you’re ready for more exciting things.

Integrated Development Environment

Sometimes JavaScript projects are as simple as a couple of scripts that can
hide fields from an HTML form or load some content with Ajax. In this case, you
can get by with a text editor—it loads faster than an IDE, has a simple interface,
and saves a lot of memory (IDEs are really memory-hungry these days). For tiny
projects all you need is a syntax highlighter to make your code look pretty and
to save you from trivial typos.

For anything bigger than that, an IDE is essential. You will need a set of
advanced features that a typical text editor doesn’t have: good code analysis,
inspections, checking for potential errors, autocompletion, refactoring tools,
integration with version control systems, bug trackers, and many others.

As | mentioned already, there’s no perfect IDE in the market. Some are good for
JavaScript while others are not. They differ in price, system requirements,
supported platforms, and featuresets. When choosing an IDE, it is most
important that you feel comfortable with it. The first steps with a new IDE might
seem hard, but if you feel like you’re struggling with each line of code even after
a couple of weeks, you should try other products. The increase in productivity
will most likely make up for the lack of a feature or two.

If you’ve worked with JavaScript before, you might have picked a favorite IDE
already. If not, then the following are a couple of options:

Intellid Idea (www.jetbrains.com/idea/) has good support for
the whole web stack: HTML, CSS, JavaScript, and server-side
languages like PHP and Java. If your project is open-sourced,
IntelliJ Idea is free—otherwise you will have to pay around
$200 for it. Intellid has several lightweight IDEs derived from
Idea. WebStorm is the one for HTML and JavaScript, and it is
only $69.

Aptana Studio (http://aptana.com) is based on the glorious
and powerful Eclipse project (www.eclipse.oxrg). It is extremely
feature-rich, and has a plug-in for virtually anything from
exploring databases and building enterprise reports to
reminding you that your tea is ready. Aptana is free and open
source.

8 CHAPTER 1: Getting Started

S

The choice between the two usually comes down to one’s own preference.
There is an army of Eclipse fans and a similar army of IntelliJ fans, which tend to
start a holy war each time one side releases a new version. If you're in doubt, try
both and choose the IDE you like best. Next, | give you a brief look at these IDEs
and demonstrate how they work by making a Hello World project in each of
them.

IntelliJ Idea

Download the installer from the official site (www. jetbrains.com/idea/download/
index.html) and launch it. Follow the regular installation process (there are no
odd questions here; IntelliJ Idea only wants to know an installation folder
location).

After the installation has completed and you launch Intellid Idea for the first time,
you will need to choose which plug-ins to enable. If you plan to use IntelliJ as
your IDE, it is better to review the lists and select only the plug-ins that you will
really use. A smaller number of enabled plug-ins improves the startup time.
Otherwise, just leave all the checkmarks with default values. Finally, you see the
Welcome screen shown in Figure 1-1; it has several rows of buttons. Click
Create New Project to see the New Project window, and choose Create Project
from Scratch.

Arwaroiaiic I = B e
PRIV ELCOME]

Ducumentation Pluging G s s

Recent Projects i_‘l o AP S

Figure 1-1.IntelliJ Idea welcome screen

CHAPTER 1: Getting Started

IntelliJ Idea treats a “project” as a set of one or more modules. For example, if
you write a chat application, the “chat application” as a whole is the project. The
modules of this project could be Server, Android Client, Desktop Client, and so

forth. The idea behind the modules i

s to separate the different components of

the projects since they might have different dependencies or build steps, or they
may use different programming languages. The project doesn’t have to use

many modules, of course. For a sim

ple application, one module is enough.

Each module has a type: Java, J2ME, Android, Grails, and the most important

type of module for this book—a We

b Module. Select it from the list on the left,

as shown in Figure 1-2. If you decide to use IntelliJ Idea as your main IDE, use
these steps for every new project that you make.

I New Project

Project name: HelloWorld

Project files jocation:

Project file format: ipr {file based)

i Create module

Module name: HelloWorld

Intelli/IDEA

CapphorjecevisioWotd

23

ol |

Content oot

o i Module file location:
- ..

_‘;E; Java Module
)?ﬁ Plugin Module

ofl J2ME Module

-}_";.. ActionScript / Flash / Flex Module

€l Android Module

& Maven Module

@ Grails Application

@ Griffon Application

Figure 1-2. Creating a new project

C\apps\projects\HelloWorld
(Chappsi\projects\HelloWaorld

Description
Provides faciities for developing web applications.

| Brevious Help

[Enish || cancet |

Enter the project name and the location you wish to use for project files, and
then click Finish. Your project is created and you are presented with a blank

workspace, as shown in Figure 1-3.

10

CHAPTER 1: Getting Started

Dl HelloWorld - [C:\apps\projects\HelloWorid] - Intelli) IDEA 11.0 = L0 -
.ille Edit View Navigate Code Analyze Refactor Build Ryn Tools VIS Wmdow Help
B2 sg i3 Ak B ~-~-rer id B
1 HelloWorld

i Praject C:\apps'projects \HeloWerkd -1 o

2

|| view 3s: 08 Project »| V= & 4

; 1

I HelloWorld.iml

I HelloWorld.ipr E

P HelloWorid.iws i"?

i External Libraries E‘

g

£

&

e

o

! ;
&

& #

fa 4
v
£
-
&

B & 1000 Event Log
§ @ [137Mof 494M

Figure 1-3. The look of the blank new project

Now you can write the Hello World page. In our simple example, we have only
one module—HelloWorld. Right-click the folder icon with this name in IDE, and
then select New File. Enter index.html in the dialog and press Enter. Idea
creates a new empty file and you can start typing right away. Enter the code
from Listing 1-1.

Listing 1-1. Basic HTML5 Page

<IDOCTYPE html>
<html lang="en">
<head>
<title>Hello World</title>
</head>
<body>
It Works!
</body>
</html>

Open the newly created file in your favorite desktop browser and make sure that
it renders the page. We still cannot open this file with a mobile device or in an
emulator since both of them need the file to be accessible via HTTP. Neither a

