User Interface Guidelines
and Database Best Practices

05 Table Views

for iPhone, iPad, and iPod touch

Tim Duckett

Apress-

Pro iOS Table Views
for IPhone, iIPad, and
IPod Touch

Tim Duckett

Apress®

Pro iOS Table Views for iPhone, iPad, and iPod Touch
Copyright © 2012 by Tim Duckett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its
current version, and permission for use must always be obtained from Springer. Permissions for
use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.

ISBN 978-1-4302-3348-0
ISBN 978-1-4302-3349-7 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Tom Welsh

Technical Reviewer: Brent Simmons

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Tracy Brown

Copy Editors: Valerie Greco, Sharon Wilkey

Compositor: MacPS, LLC

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/.

For Lucy, Kath, and Isaac

iv

Contents at a Glance

1T) v
About the AULhOL............cooiiimimmmmmnrr s asaaasnsnsnnnnnnnns XXi
About the Technical ReVIEWErucurusssssssssssssssssssssssssssssssnsnsnsnnnnnnnnnnsnsnsnsssnnnnnns XXii
Acknowledgmentsccuiirmmmmnmmmnnnnsmmmmnsnssssmmmnnnssssssnnsssssssensnnsssssnsnnnsssssnnnnnnnsss Xiii
INtroductionccoiiiimmmmmmmeees s nnnnnnnnannn Xiii
Chapter 1: Table Views from the Ground Up.......cccismmmmmmmmmnnssssssssmmsnnnssssssssssssnns 1
Chapter 2: How the Table Fits Togethercccoimmmmmmmmmsnismmsmmnnnnnsssssssssnmns 25
Chapter 3: Feeding Data to Your Tablesccccuummmmmmmmmnmsssssssssnnnnnnsnnsnsnsssssnnn 43
Chapter 4: How the Cell Fits Togethercccimmmmmmmmmmmsnsmmmmmmnnnsssssssssssmnmmns 63
Chapter 5: Using Tables for Navigationcccummmmmsssssssssssssssssssssssssssnsnsnnnnnnnes 83
Chapter 6: Indexing, Grouping, and Sortingccceemmemememsssssssseesnnnssnsnsnnns 113
Chapter 7: Selecting and Editing Table Contentccccceeeeemniiiiiirnnnnnnnnnennnnn 145
Chapter 8: Improving the Look of GellScuemsimmmmmmmsmmnmssssmssssssssssnnnnnes 183
Chapter 9: Creating Custom Cells with Subclasses.........ccurmmssrrrnnnnnsssrnnnnes 213
Chapter 10: Improving the Cell’s Interactioncccceeeeeeeessssssssessnnnsnnnnsnnnns 241
Chapter 11: Table Views on iPad......cccceeeeeuisiissmmmmmmnsssssessssssssmssssnnsssssssssnss 289
INA@X ceeuuiiirnnnnnsnnnnnnsssssnnnnssssssnnnssssssnnnnssssssnnnsssssssnnnssssssnnnnnsssssnnnnnsssssnnnnnssssnnnnnns 313

Contents

Contents at @ GIANCE........ccvrrmmmiinrnmmmsmnrrnsss s s snnssssssssnssssssnnnnnssssnns 1V
About the Author.......cccoureeimimeminmsnmeesrres s sssnssssnssss s XXI
About the Technical ReVIEWErccuremusmsemssssensssssnssssnnnsssnsssssssnsssssnssssnnnsnnnnnsssss XXII
Acknowledgments ..uccumreesmssmmmmsnsmsnssammssssssssssssssnssssnnnsssnnssssnnsssssnsssnnnnasnnnnnnnes XX

T L0 L0 LT T2 10 O ¢ { |

Chapter 1: Table Views from the Ground Up......ccccemmmmmmeeessssssssssssssssssssssssns 1

WHat Are TADIE VIBWS?eeeeeeiieiscsese st s s s s saesaesas e assaesaessena e s e s et e e et e e e e e e nnes 1
The Anatomy of a Table View
Creating @ Simple TaDIE VIEW AP .. .ot e s s s s e e s e e s e s ae e s e e e sa e e s ae e e ne e e ane e sneeesneananean 5
Creating the Application SKEIETON...........ccceviirirrecceere et r e s e s e se e s s s e s e e s e e ae s s e eae s eae s e e snesnesaennnesanens 6
Generating SOME DAta.........cccocuiiiiiiir e a e s a R R e e e e e e e e e 8
Creating the Table VIBW ... s s e s s s e 12
Conforming o the Table VIEW ProtOCOIS........ccci i e s s s n e s s s eme e s me e e e e enes 14
Wiring Up the Data Source and Delegate..........cccueverierieircirer et sne s n e s n e s s 15
DisSplaying the Data..........cociiiiiiiii e e e 16
NUMDBErOfSectioNSINTADIEVIBW:cccerereee e s sn e nne e s s ne e e e e ne e e e nnenns 17
tableView:numberOfROWSINSECHON:........cocicererere e s s 17
tableView:cellForROWALINAEXPAL:c.couieeee et ne 18
Adding SOME INTErACTIVITYccceierercriririe s s 20
tableView:didSelectROWALINAEXPALh:cceeeeeeeeeee et ssn e se e 21
Understanding How the App’s Objects Fit TOGETNETcccvverieerceice et ne e 23
EST 101 1 - T 24
Chapter 2: How the Table Fits Togetherccciimmmmmmmsnnnnnnnsnnnnnnnsssssssssn: 29
Understanding TabIe VIBWS ..ottt s s s s s s e s 25
Working with the UITableView FAMIIYccocceiierierinnsissessee s sseese s e sssssses s sssssssessssssessssssesssessssssssssesssessenns 26
The UITableView ClIass HIBIarChYccccevccreerieererrerreerseesesseeseesesssesseeseessesssesssessesssssssssssensessssssesasssssenns 26
Choosing the Type of TaDIe VIEW ... s s 27
THE PlAIN TADIE ...ttt e s s s e n s e e e s e e ae e s e e e e s nenneenseanenseannensennnessnanen 27
The INAEXEA TADIE........cceiceecerceree e s s e s n e s esae s e e s e e s seannesanesan e seenenseennnsanesannnsnanen 28
The SECONE TADIEcoueiiiiee s s e e e s ae s e saesaesrennesan e 29

LI CT o THT LT I o R 30
Setting TableView DIMENSIONSccceierrerirerissresssessesssesssessesssesssessesssesssessssssssssssssessssssssnsesssessessssssassssssessnnssense 32

CONTENTS

Controlling the Background of @ UITADIEVIEW..........ccccceerereercercc vt ssee s e s e s s e e s s sa s e e s s ne s e enneens
What UlTableView Inherits from UISCIOIVIEW..........ccciveiieiiiriersierie s e s s s ss e e st s s
Creating UITADIEVIBWScociuiiiiieieci sttt sae b a e saenae e
Creating a UlTableView in Interface BUIIUErcoccereieiiiiriiirscie s e e s n e s
Creating a UlTableView ProgrammatiCally...........cccceevuerierrerserieesersesseesesseesssesesssessaesseessesssesnesasssnsssessnssaees
Creating a UlTableView with UlTableViewController....
U111

The Key Information Required By @ UITADIEVIEWccuciueiieiriiircsiee et se s s sne s s ne s 53
How the Key Information Is Obtained by the Table...........ccccoveiiiiniieie e 54
Cell, Section, and Row-Related UlTableViewDataSource Methodsccccceeiricceiiin s 56
Title and Index-Related UlTableViewDataSource Methods..........ccceevvrernerreneesscssersee e 56
Insertion, Removal, and Reordering-Related UlTableViewDataSource Methods...........cccccevevverierrcersercenrnnns 57
The Thing to Bear in Mind About dataSource Methods ..o 57
All ADOUL INAEXPATNS ...t s r e s ae s n e s e e se s s e e ae e s anenesannnnesnenneennnnnnnsanan 58
The Model-View-Controller Design PAtternccceververciererrire st e s eesseese e s e ss e seesae s e sne e s 59
Why Use the Model-View-Controller PAttern? ..o s s sse s 61
T T T 0L SRR 61
MVC aNd tADIEVIBWSc.eeeeeeeeeeeeesseesee s s e e s ses s sas s s s e s e s e e e e s nesaesnnesas e s e e snnannssaeannesanesnsssessnesanans 62
£ 0111111 F= S 62
Chapter 4: How the Cell Fits Togetherccommmmmmmmnssssssssssssssnsnsnsnnnnnssnssnnnnnnes 63
Understanding the Anatomy of @ UITableVIEWGCEII...........cceeoeeceererre st see s s rae s s ssae s e e s e sane e e snesnnenns 63
Basic Structure of the Cellccocoviviiiiiinenne
Content and Accessory Views......
Working with Standard Cell Types
Using UlTableViewCellStyleDefaultt 65
Using UITableVieWCelISTYIEVAIUET ...ttt s s 66
Using UITableVieWCEIISTYIEVAIUEZ...........cccerieeeerreerseesseesesssesesssesssesssessesssesssesssessesssssssessssssessssssssssssssessnesssnns 67
Using UITableViewWCelIStYI@SUDTILIEc.eeeeeeecece ettt e 67
Selecting @ DEfault STYIE. ..o 67

Configuring the Default Cell’s CONtENt.........cccoiiiiiir e 68
L34 0 SRR 68
EtIITEXILADEL. ... 68
100 F2 T LT 69
(010 11 (=] 01T SRR 69
Formatting Text in Default Cell TYPES ..c.cevverierrerieere e st see s s ree e ssae e s e s s sne e e s aesse s e saeesnesnsessnesnnans 69

WOrking With ACCESSOIY VIBWSccuiiuieieitiisist ettt s saesannne s 69
Using UlTableViewCellAccessoryDiSclosurelNdiCator ... 70
Using UlTableViewCellAccessoryDetailDiSclosurelndicatorceeceeeeervererrersersee e ee e 70

Using UITableViewCellACCESSOrYCRECKMAIKccccicriiececeeee et emeeme e e nnnnnannean 70
Using UITableViewCelIACCESSOrYNONE........cc.coeeuireiniieisieie et s n 70
Setting the ACCESSOIY VIEW TYPE.....ccccceirerrrersiesessseseessesssesssesssssesssessesssesssssssessssssessssssssssssnsesssssssessesssesssesnns 71
Using an Accessory View to Show Cell Selection State..........ccccveeerierveercrrccs e 71
Creating CUSTOM ACCESSOIY VIBWScccciiiuireriiisinisesesese s s s s nesnessesnas 72
Creating and REUSING CelIS.......c.ccveiieiierieii i s cseese s s e s e s s s s e s e sae s s s e s sse s e e s e e ene s ne e e e enennesaeannessensnnnsenns 73
VL= 30 1o T T 1 Lo PSP 73
Speed and SMOOTNNESSoiiieeeeee s e a e s e e s s e e e s e e s et e eae e s e e aesenesanennnan 73
Just-in-Time Creation and RECYCIING........c.ccvoeiiiiiireren e e s 74
The Table View’s “COnVEYOr BEIL”ccociieinerirrccrsressee e sesssessee s s sssessse e s ssnesnsssssssessnessssssesnsssnssssesnes 74
Side Effects of Cell Reuse and CaChiNgccceeeererreerseererserrtessee s s seessee s s sseseessa e s e e saesaeseessesaessnssasessnenanen 80
BT 01 1 - T PRSP 80
Chapter 5: Using Tables for Navigation.........ccccccnnmmmmmmssmmnnsssmmnsssssssssssssss: 83
The Navigation Controller Interface Pattern..........ocoiiiiicin e 84
Introducing the UINavigatioNnCONTIOIIENcccceeueiiieeirsieeeee e sne s sn e s e s re e e nnenan 86

Creating a Navigation CONTrOIEr APD.....coiciiiiiiiiiicee e s e s s e e s e s e e s ae e s ae e s se e e sne e s eaeesnnessneesanen 87
Creating the NAME CIASSccccriirierriree s st sae s s s e s ss s e s sn e s e e eae s n e ae e e e e ae s e e nne e s enaesnnesanenanen 89
Creating Some DUMMY Dat@.......cccocciiiiiericcere et s e e ae s n e s ne e e nae s 94
Connecting Up the TADIE VIEWeccceeieieriiinessies e sessse e e e s s sr e s e s s e s sne s s e sne s s s snene s s esnesnsessnansnas 96
Feeding the Table With DAta...........ccoiriiiici e e e s e e s s sne e ne e ean 100
BUilding the DEtail VIEWccociiiiiiiienesee s s 102
Implementing the Navigation CONTIOIIETcoceeeiceiecec e s 104
How the Navigation Controller IS Wired UpPc.coiirriiriiiiiie e s s e s s s sne s s s s s s sne s s e 105
Linking the Navigation Controller and Detail Views TOQEther.........ccccvvreerieriernerce e 107
Wiring Up the DETalilcoeiiiiieeeciie st 109

£ 101 1 - T 111

Chapter 6: Indexing, Grouping, and Sortingcccesseeeecensssssssnsnsnnnnsssssssnn: 113

USING INEXEU TADIESceeiiiiiiiiie e e b b 113

Using Sectioned and Grouped TADIESccceverrerrierierrerrerreereeserseessse s e s ssesssessaessessaeessesssesasesassesssessessessesnnes 114

Creating a Simple INAEXed TADIEcccceverierireerseeree e ra e sa e s s sa e s sn e s se e sae e neenneesennnes 115
Setting Up the BasiC TaDIE.........cco e 116
Creating the SOUICE Data.........ccceceiieriinerse e s e e s sn e s s s s e e ne s nne e e nnennnesanann 116
Feeding the Table With Data...........cccooiiiiiieiii e e s e e e e e eme e neeean 117

Building Practical Sectioned TabIES ... 121

Creating the Data for a Table with Sections and INAEXES ... 122
D g VL0) 71 -\ P SPSROE 124
UlLocalizedINdeXedCOIALIONccccvererierieerisree e rr s sr e sa e s sae s e esaesas e ae s s e s e e naennns 125

Creating the All-Singing, All-Dancing TaDIE..........ccooiiiiiiiniie e 126
Creating the App from @ TEMPIATEcccoceececercr e s n e s nesn s 126
Creating Some Data in @ PliSt File.......ccccvveriiiircc e s s s e e s ae s n e e ne s 126
Sorting Out the USEr INTEITACEcccoueiierieiiicc s e 130
Extending the VIieWCONIrOHEr CIASSccucceiveernirneiseeseessiesesseesses e sssessesssessse s sesssssessssssssssssssssssssssesssessnnnns 131

Creating Table and Section Header and FOOLEr VIEWS..........ccceceeruerreerieererserseerseeseesessaesseeseesaeessessnessesneensesnnes 137

Moving the Table ProgrammatiCallycccceeririiininisesese e 140
scrollToRowAtIndexPath:atScrollPosition:animated: 141

scrollToNearestSelectedRowAtScrollPosition:animated:...

CONTENTS

CONTENTS

Finding the Current Scroll Position in the TaDIEcccee e 141
1101 1 7 TSSOSO 143
Chapter 7: Selecting and Editing Table Content...........c..ccvremniinnreeesssnnnnnnns 145
A Recap of the Model-View-Controller PAternccvcevviriineniieniee s sae e s sss e s s s saeens 145
Why the Model-View-Controller Pattern Is Important...146
LTS 1= o o SRR 147
WHat SEIECHON IS FOTcieiieieeeieireee st e s sn e e e sae s e sa s n s e s e e e e e e e e e e g e e e e e e nn s 147
ViSUALIZING SEIECTION ..o bbb e e 149
Selection DOS @nd DON’ES ..o 156
Responding to Selections With More Detail...........ccccevveercerrerree e rcee st r e e s e s sae s e e sne e enes 156
Design Patterns and UITADIEVIBWSc.couiciriiiiniic e 157
2T Lo SO PRSPPI 157
{5 (TS 157
Update...... 158
Delete.....oovvevercerrerieererinene158
Inserting and Deleting Rows....................159
Putting the Table into EAiting MOE..........ccoeeiiiieiiicircie s s r s n e s s ean s enn e 162
Controlling Whether Rows Can Be EdIitedccocuririririniniinisiess s s 163
Controlling Each ROW’S Editing STYIEcoceoiiiiiiiere s 164
Dealing With ROW DeIEIONSccueiiiieicee ettt n e s n s ae e e ae e s ne e e neeean 165
Dealing With ROW INSEITIONSccciiiieieeccree ettt n e s n e s e s sne s s e ae e n e e e e e aennns 169
Rearranging TabIES ... 176
MOVING ROWS AFOUNGciuiiiiisiincssescse s sa s e na s sa s e na e s 178
Enabling Batch Insertion and DeIetion..........cccoceeicieiiiiccicerceer s s e s s s n e an e 181
1101 1 - T SRS 181
Chapter 8: Improving the Look of Cellsccemmmmmmmmmmnssssssssssnsssssssesssn: 183
LT (o] 1 0 T4 o T 0= OSSR 183
Which Method SNOUIA | USE?coceiiieieierieenis s res e s sse s ssse s sse s s sse s s s s snesseasnesas e s e ssnessnesasansesnsens 184
Adding Subviews to the Cell’s CONTENIVIEW.........cceecerieererieerre e s s e s s nne e ssnennesnnens 184
Creating the EIements in the Cell.........c.ooeeeieee ettt r s s e e s se e e s s e e ne s e e s ae e neenens 186
Creating Custom Cells Visually Using Interface Builder.... ...191
The Stages of Creating Cells ViSually...........cocooeierimriiiiiiies s 192
Creating a New NIB File.........cccccerueeneen. ...192
Creating the Cell’S CONTENTcoiiiiiiiriee e n 197
Referencing Tagged CONTIOIS.ot s 199
Creating Cells @t RUNTIMEcoceeieiececcer e s e sne e s n e ne s s e e s s nne e e nnennennnnnn 199
NEW I HOS B! ..ottt s e R R e R e se e e R e eR e e R e nReee e e e ne e e e e e e e e e nnenna e e nnnnnans 201
Putting It All Together202
Handling Cell RESIZINGcociueiiiiiiiiiiiii s bbb s 203

g P2 T 1o T3 T T o 11 o P 204

Handling Rotation Events......209
£ 101 1T T 211
Chapter 9: Creating Custom Cells with Subclasses..............cccrrrrreennecnnnnnn: 213
Why Create a Custom Cell SUDCIASS? ..o 213

The Process of Creating CuSTOM CelISc.ccevcerieiririeereesseesessee e e ssse s e s s s sse s e s s e sae e s sn e nnnesnens 214
Designing Your Cell........ccoeeeeeeveerceererieennes

Creating the Class for the Custom Cell

Creating the SUDCIASSEScccvierreerirrirsieres et ree s s e s e s e e e s s e s e s s e aesae e s aeesaesne s s enae e s eennesanans
Building the Cell in Interface Builder ...
Creating the nib File........ccccvvevcnrercennene
Laying Out Controls in INterface BUIIETcoceerieeirreree st s e s e s e s sn e s ne e 220
Conforming the Cell 10 the CUSIOM CIASScociiiiiiinrr e 221
LiNK Up CUSTOM CONEFOIS.......cicviieecierieeiieeseses s seese s s s sae s se s e e s e e s sne e s e s e s s s s e e s nneese e s ansesssnnseasnesnnesanans
Creating the EVENCEIL........... ettt s n e e n e n e st e e ene e e ne e s n e e ne e s ane s
Setting the Cell Heightsccoccvvvveccnnnenne
Creating Instances of the Custom Cells......
Handling Selection in Custom Cells
Drawing Cells in Code with layoutSubviews
Overriding the layoutSubviews Method............. .
Building the Cell in Code with the CONTENTVIEWc.cocveeeriiice e e 231
Creating the Cell SUDCIASSEScccciiiiiiiiiiiieicie e s e s ae e s s ae e a e e s ne e e ae e s sne e s ne e e nneenane s 231
Setting Up the SUDCIASS PrOPEILIESccveverieerieriirree s st s e sae e sn e e sa e s sn e sn e s e e snnens 232
BUIIAING the CEIIScveieieieictete e a s se s e e s n e 233
L F= TP T Ty T ST =T 1 g S 235
DEDUQGGING LAYEISeeeieeicieicie s e et s st s s s s ae s s s e s s e s n e s e e s e ae e s se e s ene e e ane e s ae e s eneeaane e e aneeeanesnaseensneeenneannnenns 237
1101 1 - T SRRSO 238
Chapter 10: Improving the Cell’s Interactionccccceeeeeesissiicrnrnnnnnnnnscsnnnnnn: 241
Embedding Custom Controls iNt0 CelIS.........coiiieiiireiinnc e 241
Reacting to INdividual CONTIOIScceeceeierieeiiece s s sne e e s e se e neannesannnns 244
A Practical Example of CONtrols in CelIScociiiiiiiiiiccier e s sn e s r e s ne e s snn e 247
AddiNg GESTUIES 10 CIIS.....cueereeeieceeeee ettt s a e s e e s e e sa e s a e e e e ae e sae e a e e aeeeaeeneeseesaessnesanens 250
0T 1o T TN 0= TSR 252
HOW SWIPING WOIKScviiiiiiiiiiis s sa s sa s sa s s 252
Creating the Swipe-t0-Reveal TADIEcccvierrerierc et ree s s e e s e s e s s s e se e e ae e sneenneenens 253
Tidying Up the Swipe FUNCHONAIILY........ccceiiiiiiiiiri s 262
Adding Pull-to-Refresh 10 TADIE VIBWSc.cecueeieiieriirirsie e ss e s e sse s s s sse s sesnesse s s ssessnssnnnsnesnnans 267
HOW PUII-tO-RErESH WOTKSeeeeeeeeceerseerces s s e s s e s s e s n e nsne s e snesnesnennns 268
Implementing PUll-T0-RefrESh........ouiiceeece e s e a e n e e nnne 270
SCArCHING IN TADIES ... e e bbb e e e b b e b e e e b s e e e e e e e e e r s 274
How the UISearchDisplayController WOTKScccocveernersnnesssesseesesssesseesesssessesssssssessssssssssssssessssssesssesssnnns 274
Adding the Search Bar Protocols...................
Adding the Search Bar to the Table....
(Optionally) Setting Up the Scopes “
Adding the Delegate and Search Methods...........cciiiriiii i 280
Updating Methods with tableView Parameters..........cccevverierersersereesses s e ses s s s seesee s s sse s s ssesseessennns 281
More Details on Search Display CONrOlIErS..........ccooiiiirieiiirie it 281
Lo Yo OV 5 Lo Ly T I UL S 281
Are the Cells CACNEA?........coeeeeeireereesiesee s e e e e e e s e e e et e e e e e e e e g e e e g e e e e e e e nennenaes 282
Do Your Table Cells Have Varying HEIghtS? ...ttt e 282
Cut the Cost of Compositing283
SUMMANY ..ot sne e ne s naneean 288
Chapter 11: Table Views on iPad......cccccccccsssisssmnmmnmnmssssmsssssssssssnsnsnssssssssssssss 289
The UISPIIRVIEWCONTIOIIEEeeeeeceee ettt sttt st s e e s s e e e s ae e s ae e e sae e e s ae e s ane e e nn e e s aneesaneananesnns 289
Creating @ UISPlitVieWCONIrOlEr APP ..c..ciicireererrerieerieesesssesseesee s e sssessse s e s ssessessnessessnesse s e essessnessessnesssesnnessesnnes 293

CONTENTS

CONTENTS

(T LT o = T T Y] o o o o 295
Creating the View Controllers for EACh Sideccccviiiriniiniinininnsrssre s 296
Setting up the Split-View CONTIOIIENcceceiiieiicieree st s e e sne s e s e snennneenens 300
Handling ROTALIONo..eeeee et s s e s sn e s a e e ne e e e e e s e e s enneannneaan 303
Linking the List With the Detailccceveiiirierer et s n s sae e s e n e nens 307
£S04 1 - TSR 312

1 -G, 3 [

About the Author

Tim Duckett designs and builds software with tools such as Objective-C and
Ruby on Rails. Having been online since the early 1990s, he’s worked with all
kinds of clients in all kinds of sectors. Along the way he picked up an MBA and
is a certified project manager, but asks that you don’t hold those against him.

He lives in Sheffield in the UK with his family and far too many pets. In his
spare time, he walks the dog, enjoys single malts, takes photos, and dismantles
gadgets.

You can find him online at http://adoptioncurve.net, and on places
including Twitter and GitHub as timd.

About the Technical Reviewer

Brent Simmons has been programming since his first Apple II Plus back in 1980. More recently
he created TapLynx, a framework for creating iOS apps without programming. He also created
the RSS reader NetNewsWire and the weblog editor MarsEdit. He’s a cofounder of Sepia Labs,
where he writes Glassboard for iOS. He blogs at inessential.com.

Acknowledgments

It’s my name on the cover, but there’s a whole host of people without whom this book would
never have happened.

At Apress, Tracy Brown, Michelle Lowman, and Tom Welsh cracked the whip that got me
from one end of the project plan to the other, and were very gracious about my procrastination
and constant content changes. Sharon Wilkey and Valerie Greco unsplit all my infinitives. Brent
Simmons was both kind and constructive as the technical reviewer, and if he laughed at my
mistakes, he didn’t tell me.

Aral Balkan and Sam Easterby-Smith were my metaphorical training wheels as I wobbled off
to start my career as an Objective-C developer. And there are other people, too numerous to
mention individually, who over the years who have provided support, inspiration, ideas, and
source code. Tom Armitage is responsible for taking the only decent picture of me in existence.

Finally, none of this would have happened without the unconditional love and support of my
family, who put up with all my grumbling and grumping while I wrote this book. I'm very lucky to
have them.

xiv

Introduction

If you're an iOS app developer, chances are you’ll be using table views somewhere in your
development projects. Table views are the bread and butter of iOS apps. With them, you can
create everything from the simplest of lists to fully tricked-out user interfaces.

Table views are one of the more complex components found in UIKit. Using them for
(potentially boring!) standard user interfaces is quite simple, but customizing them can become
much more challenging.

This book has a task-oriented focus to assist you when implementing customized table
views. Although it delves deeply into the table view API, you can always choose the level of detail
you want to dive into. This book aims to be a reference and customization cookbook at the same
time, useful for beginners as well as intermediate developers.

What This Book Covers

Chapter 1, “Creating a Simple Table-View App,” introduces the table view with some
examples of the current state of the art. After showing you something of what’s possible, we’ll
start out with a very simple table view—based app for the iPhone, which will introduce you to the
UITableView and its main elements. The app will also act as a starting point for later versions, and
it’ll be a working prototype that you can use as the basis for your own experiments.

In Chapter 2, “How The Table Fits Together,” you'll look at how the parts of the table view
work together. You'll see the main types of UITableViews and their anatomy. You'll learn how to
create them both with Interface Builder and in code, and how to use the UITableViewController
class as a template.

Chapter 3, “Feeding Your Tables With Data,”is about where the table gets its data and how
you get it there. It shows how the table keeps track of sections and rows, and covers some of the
software design patterns that the UITableView classes exploit.

Chapter 4 “How The Cell Fits Together,” focuses on the cells that make up tables. You'll see
how cells are structured internally, and how they’re created and reused. It also covers the
standard cells types that come for free with the UITableView classes.

Chapter 5, “Using Tables for Navigation,” covers an almost-ubiquitous feature of the iOS
user interface, and shows how tables can be used to navigate through a hierarchy of datain a
simple and consistent way.

The constrained size of the iOS user interface presents some challenges when it comes to
presenting large amounts of data. Chapter 6, “Indexing, Grouping, and Sorting,” presents some
ways of arranging the data in tables, to help users find their way.

Chapter 7, “Selecting and Editing Table Content,” shows how you can use tables to manage
data. It covers how to add, delete, and rearrange the information, and some of the interface
aspects that this entails.

In Chapter 8, “Improving the Look of Cells,” you will start to look at the process of going
beyond standard cell types to customize the look and feel of your table views. This chapter covers
two of the quickest ways to make the cells look the way you need them to.

INTRODUCTION

Chapter 9, “Creating Custom Cells with Subclasses,” takes customizing cells to the next
level. You’ll learn how to use custom UITableViewCell subclasses to gain detailed control over
cells’ appearance.

In addition to changing the look and feel of cells, you can make them truly interactive by
embedding controls such as buttons and sliders. Chapter 10, “Improving the Cell’s Interaction,
presents how to do this, as well as building cool table features such as slide-to-reveal, pull-to-
refresh, and search.

Finally, in Chapter 11, “Table Views on the iPad,” you’ll look at the iPad’s split-view
controller, which provides a flexible two-pane interface familiar from apps such as Mail.

”»

The Style of This Book

I've tried to bridge the gap between two styles of book—the in-depth treatment of every last little
detail, and the cookbook of specific point solutions. Both have their place, but sometimes I find
that descriptions of very detailed, elegant solutions with lots of features can obscure the detail of
the problem I'm trying to solve. Equally, sometimes cookbook solutions are too specific and don’t
easily lend themselves to adapting to my specific situation.

In the code examples that follow, I've tried to balance the two styles. The visual polish and
extraneous functions are kept to a minimum, which hopefully results in examples that illustrate
how to build a solution while also acting as a building block for your own code.

The Book’s Source Code

You can download the source code for each chapter’s examples from the Apress site or from
GitHub at http://github.com/timd/Pro-i0S-TableViews.

Although that’s the quickest way to get up and running, I encourage you to take the extra
time to key in the code yourself as you go along. With Xcode’s code completion, it doesn’t take
that long, and code that has flowed through your eyes and brain, and then out to your fingers, is
much more likely to sink in and make sense.

Where to Find Out More

Beyond the pages of this book, there’s a wealth of other information available online (not to
mention the great range of other Apress titles):

For a general overview, Apple’s “Table View Programming Guide for iOS” is a
detailed guide that covers most of the topics in this book. This is available online at
http://developer.apple.com/library/ios/#documentation/userexperience/concep
tual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.html, or in
Xcode’s documentation.

Apple’s i0S Developer Library has full documentation for all Cocoa Touch
libraries. It tends not to include examples in the documentation itself, but the
Library is the one-stop shop for a detailed reference for each class, protocol, and
library. Again, this is available online, at
http://developer.apple.com/library/ios/navigation/ or in Xcode’s
documentation library.

Online forums are a fantastic resource. Sites such as Stack Overflow

(www. stackoverflow.com) are the place to go for practical advice. Chances are, a
number of people will have met and overcome the same problem that you're
experiencing, and the answer will be there. Stack Overflow’s customs and practices
can be a little daunting at first, but it’s worth persevering. There are no stupid
questions, after all, just questions that haven’t been answered yet.

XV

INTRODUCTION

A general Google search will often throw up answers from blogs. There are some
extremely talented individuals out there who regularly post about how to do this or
that with iOS and Objective-C, and many of them also point to source code on their
sites or GitHub and the like.

Apple also provides some fairly detailed source code examples. Your mileage may
vary with these. I sometimes find that they can be a bit overcomplicated and can
obscure the core technique that I'm trying to grasp. But they shouldn’t be
overlooked, if only because they’'ve been written by engineers with an intimate
understanding of the frameworks.

Universities such as Stanford and MIT place entire semesters’ worth of lecture
modules online, both on their sites and on iTunes U. Their technical education is
some of the best on the planet, and some of the online lectures are taught by Apple
engineers. These are definitely worth checking out.

Local user groups, including CocoaDev, CocoaHeads, and NS$city$ (where $city$
is a location near you), are groups that meet regularly around the world. It’s an iron
law of software that there’s always someone who knows more than you do about a
topic, and problems are always less daunting when discussed with them over a
beer or two.

Mailing lists such as cocoa-dev don’t perhaps have the profile of sites such as Stack
Overflow these days, but can still be a useful resource. An excellent example (which
covers not just coding topics, but design and business issues as well) is
http://iosdevweekly.com.

Finally, if you've battled with—and resolved—some gnarly issue, then post about it yourself,
whether that’s on your own blog or a site like Stack Overflow. Even if the topic has been covered
numerous times before, there’s always room for another take on a problem. Your unique point of
view could be just what someone else needs.

Contacting the Author

Tim Duckett can be found online at http://adoptioncurve.net and on Twitter as @timd.

S

Chapter

Table Views from the
Ground Up

In this chapter, you’ll start your exploration of table views. It begins with an overview of
what table views are and some examples of how they’re used in practice. Then in the
second section, you’ll build a simple “Hello, world”-style table view app to introduce you
to the components behind the user interface and help you to contextualize the detail
that’s going to come in later chapters.

If you’re just starting to use table views, it’s worth taking some time to build a very
simple one from scratch before diving into the gnarly details. However, if you’'ve reached
the stage where you feel more confident about how the components of the table view
jigsaw fit together and want to get straight into the code, feel free to skip the rest of this
chapter completely. I'll cover the elements in detail later, so you won’t miss out.

What Are Table Views?

Examples of table views are to be found everywhere in iOS apps. You are already
familiar with simple tables, implemented as standard controls such as the iPhone’s
Contacts app or the iPad’s Mail app, shown in Figure 1-1.

CHAPTER 1: Table Views from the Ground Up

Carrier = 10:50 AM = pae = s o)
(7] =
All Inboxes Tom Chuchrs
T Fastmall Janusry 1. 2012 High-school 1ootball; Portisndis. snd more
Gmai
John Adams '
John Quincy Adams L-4 Fastmail
1 Gmail
Chester Arthur
James Buchanan
George H W Bush
George W Bush
Jimmy Carter
The iPhone’s Contacts app Mail on the iPad

Figure 1-1. Some basic table-based applications

At the other end of the scale, the default look, feel, and behavior of the table view and
cells can be customized to the point where they are hardly recognizable as table views
at all. Figure 1-2 shows some examples.

CHAPTER 1: Table Views from the Ground Up

e Read Later Bt

Between the Lines - Features - Los Ange.

Tom T. @ Look Mum No Hands

D0 mveurai v 41w e e P Sheffield Eccleshall Road

Poptimist: Take Me to the River | Featur. Blood Pr i > -
. Sheffield - Broomhill

Joha P. @ Manchester Piccadil
b Sheffield - Devonshire Street ket

Rhirome | Economic Uncanny Valley

Marco G. @ Gaffolandia

-
N
~
A

Sheffield - Orchard Square

Rhizome | City of QR Codes . I o = ’ [~ i i - N s
4 ’ iy Sheffield - Fargate (4) 2 ma .
Instapaper Starbucks Foursquare
«_ Orange =+ 1758

Q" theguardian

E W A Thames Dion Cricket

The Guardian 40D Catch Up Rightmove Path
Figure 1-2. Examples of table views in action on the iPhone

On the iPad, table views are often used as components of a larger user interface.
Figure 1-3 shows an example from the wildly successful (and addictive!) Carcassonne
game.

CHAPTER 1: Table Views from the Ground Up

CaRcassonne

Figure 1-3. Two table views in action on the iPad

The Anatomy of a Table View

The table view displays a list of elements—or cells—that can be scrolled up and down
vertically. They are instances of the UITableView class and come in two physical parts:

B The container part—the tableView itself—is a subclass of
UIScrollView and contains a vertically scrollable list of table cells.

= Table cells, which can either be instances of one of four standard
UITableViewCell types or custom subclasses of UITableViewCell that
can be customized as required.

Figure 1-4 illustrates the parts of a table view.

CHAPTER 1: Table Views from the Ground Up

Carrior 7

Row one
Row two
Cell 3 Row three
Row four
tableView il
Frame Row six

Row seven

Row eight

Row nine

Row ten

Figure 1-4. The basic anatomy of a table view

Rows

Table view operations are supported by two UITableView protocols:

UITableViewDatasource provides the table view with the data that it
needs to construct and configure itself, as well as providing the cells

that the table view displays.

UITableViewDelegate handles most of the methods concerned with

user interaction, such as selection and editing.

Creating a Simple Table View App

In the rest of this chapter, you’ll build a simple “Hello, world”-style table view app from
scratch. It will show you how the container, cells, data source, and delegate all fit
together and give you an app that you can use as the basis for your own experiments.

I’m going to take it deliberately slowly and cover all the steps. If you’re a confident
Xcode driver, you won’t need this hand-holding—just concentrate on the code instead.

Still with me? Okay—you’re going to do the following:

Create a simple, window-based application skeleton

Generate some data for feeding the table

CHAPTER 1: Table Views from the Ground Up

Create a simple table view
Wire up the table view’s data source and delegate
Implement some very simple interactivity

It’s all very straightforward but useful practice. Onward!

Creating the Application Skeleton

For this application, you’re going to use a simple structure: a single view managed by a
view controller, and a NIB file to provide the content for the view. Fire up Xcode and
select the Single View Application template, as shown in Figure 1-1.

NOTE: With each new release of Xcode, Apple frequently (and pointlessly) changes the templates
that are included. You may see a set that is different from those shown in Figure 1-5. Check the
description of the templates to find the one that will provide a single-view application.

Choose a template for your new project:

A ios (]
—
27 |
i | £ 8 —-
Framework & Library 9
Other : =
Master-Detail OpenGL Game Page-Based
“ Mac OS5 X Application Application pp
Application ; . P
Framework & Library \t H H
Application Plug-in [-] ,/ b Eanasd
System Plug-in
Other Tabbed Application Utility Application Empty Application
m Single View Application
This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel reviou | Next |

Figure 1-5. Xcode’s template selection pane

Call the application SimpleTable. You’re going to build an iPhone version. You don’t
need the storyboard or unit tests, but you do want automatic reference counting. Make
sure those options are selected as needed, as shown in Figure 1-6.

CHAPTER 1: Table Views from the Ground Up

Choose options for your new project:

—

Product Name | SimpleTable
Company Identifier uk.co.charismaticmegafauna
Bundle Identifier
Class Prefix CM
Device Family | iPhone

Use Storyboard
:'_\4I Use Automatic Reference Counting

Include Unit Tests

Cancel Previous | Next _I
Figure 1-6. Name the application.

The Class Prefix setting will be prefixed to the names of any classes that you create
within the application—so in this case, the AppDelegate class would be hamed
CMAppDelegate. This prevents any chance of you inadvertently creating classes that
clash with existing ones, either in the iOS SDK or any libraries that you might be using.

The choice of the class prefix is entirely up to you. | tend to use CM for Charismatic
Megafauna, but you could use something along the lines of ST for Simple Table instead.

Finally, you’ll need to select a location to save the project to. You don’t need to worry
about creating a local Git repository for this project unless you particularly want to.

When you’ve reached this point, you’ll see the project view of Xcode, with the initial
skeleton of your application. It’ll look something like Figure 1-7, assuming that you’ve
stuck with the SimpleTable application name.

CHAPTER 1: Table Views from the Ground Up

¥ Limked Framewerks snd Libearias

£ s . AsdTegm Walidate Settingt =

Figure 1-7. The initial Xcode view showing our new skeleton application

You’ll see that you have the following:
An app delegate (STAppDelegate.h and .m)
A table-view controller (STViewController.h and .m)
A NIB file containing the view (STViewController.xib)

At the end of this chapter, you’ll look again at how these fit together. For the moment,
you’ll be working with the table view controller and its NIB file.

Generating Some Data

Before you start with the table view itself, you need to create some data to feed it.
Because this is a simple table example, the data is going to be simple too. You’ll create
an NSMutableArray of NSStrings that contains some information to go into each cell.

The data array will need to be ready by the time the data source is called by the table
view—so where to create it? There are several options, but one obvious place is in the
view controller’s viewDidLoad method. This method gets called the first time the view
controller is loaded, which takes place well before the table will try to populate itself, so
you’ll be safe to create it here.

CHAPTER 1: Table Views from the Ground Up

You’re also going to need a way of passing the array of data around the application. This
process requires a property that can be accessed by the various methods that will need
access to the data.

Let’s get started. Open the STViewController.h file (shown in Figure 1-8) and begin by
creating the property.

NOTE: To save space from now on, I’'m not going to show the full Xcode interface—just the code
that you’ll need to enter.

8060 [SimpleTable.xcodeproj — [h] STViewController.h
() Xeode T —— —
'\:‘/l] Sim iPhone 5.0 Simulator = I_E_I | & " EI (= | L=
Run Scheme Breakpoints Editor View Organizer
Bz ® A =E = @ |= 4> 4 SimpleTable SimpleTable . b/ STWiewController.h + Mo Selection

| 1 SimpleTable
L Semple Table
h! 5TAppDelegate.h
m! STAppDelegate.m
Ty
m S5TViewControlier.m
STViewController.xib

» (L] Supporting Files
» | Frameworks
> [Products

|* o@E(®

Figure 1-8. Editing the STViewController. h file

Add in a declaration for the property so that the code looks like Listing 1-1.
Listing 1-1. Declaring the Property
#import <UIKit/UIKit.h>

@interface STViewController : UIViewController
@property (nonatomic, strong) NSMutableArray *tableData; // holds the table data

end

Save this file and then switch to the implementation file.

10

CHAPTER 1: Table Views from the Ground Up

TIP: In Xcode 4, you can flip quickly between the . h and .m files with the Ctrl + Command + Up
Arrow key combination, or by clicking the filename in the breadcrumb display at the top of the
code editor then selecting the file from the drop-down menu that appears.

First, you’ll need to synthesize the tableData property. Add the following line after
@implementation STViewController:

@synthesize tableData;

Now you’re going to create the actual data array itself. In the View lifecycle section of
the STViewController.m file, you’ll need to find the viewDidLoad method.

Our data array will be a simple array of ten NSStrings, each with a number. Add the
code shown in Listing 1-2.

Listing 1-2. Creating the Data Array

- (void)viewDidLoad

// Run the superclass's viewDidlLoad method
[super viewDidLoad];

// Create the array to hold the table data
self.tableData = [[NSMutableArray alloc] init];

// Create and add 10 data items to the table data array
for (NSUInteger i=0; i < 10; i++) {

// The cell will contain a string "Item X"
NSString *dataString = [NSString stringWithFormat:@"Item %d", i];

// Here the new string is added to the end of the array
[self.tableData addObject:dataString];

}

// Print out the contents of the array into the log
NSLog(@"The tableData array contains %@", self.tableData);

}

Having created the tableData array in the viewDidLoad method, you’ll need to clean up
after yourself. There’s no right or wrong place to do this. However, I’'ve developed a
habit: if | create an object in one method that needs to persist, | try to put the cleanup
code in a corresponding method.

Because you create the tableData array in the viewDidLoad method, you can clean it up
in the viewDidUnload method. That’s what the code in Listing 1-3 does.

CHAPTER 1: Table Views from the Ground Up

Listing 1-3. Cleaning Up

- (void)viewDidUnload
[super viewDidUnload];

self.tableData = nil;
}

Let’s run the application to see that data array being created. The user interface isn’t
much to write home about yet, but you’ll be able to see the data that you’re going to
feed to the table.

Run the application in the Simulator by pressing Command + R or by choosing Product >
Run, and then take a look at the logger output:

YYYY-MM-DD HH:MM:SS.sss SimpleTable[21502:ef03] The tableData array contains (
"Item 0"
"Item
"Item
"Item
"Item
"Item
"Item
"Item
"Item
"Item

L T VR SR VY

kDOO\IO’\U‘I_-PUJNl—\O

A NOTE ABOUT MEMORY MANAGEMENT IN 10S 5

Newcomers to i0OS often arrive having heard hair-raising tales of the hideous complexity of memory
management in Objective-C. There’s a school of thought that says that all “modern” languages should
have baked-in memory management such as garbage collection, and managing memory manually is
somehow old-fashioned, difficult, and a waste of time. Someone in Apple was obviously listening to that
school of thought, because perhaps the single most-anticipated feature of i0S 5 was automatic reference
counting (ARC).

Put simply, ARC uses some compiler magic to take care of all the memory management issues that you
had to worry about in previous versions. Prior to i0S 5, in order to prevent memory leaks, you had to
“balance” any alloc, retain or copy of an object with a corresponding release (or autorelease).
Miss a release, and you had a potential memory leak. Over-release, and you risked crashing your app by
sending messages to deallocated objects. Having ARC means this is no longer something you need to
worry about; switch it on in the compiler, and memory management will be taken care of “automagically.”

NOTE: Automatic reference counting is supported in only iOS 5 and Xcode versions 4.2 and
above.

12

CHAPTER 1: Table Views from the Ground Up

Creating the Table View

As it stands, the user interface for our application is a bit dull. You haven’t added the
table yet! This needs fixing.

Click the STViewController.xib file in the project explorer, and you’ll see the NIB file
open in the Interface Builder pane, as shown in Figure 1-9.

STViewController, xib

epro)

(») (m) [simpleTable i05 Device ™ haciedl | Tudoy ax.1b:ah [] [W= £ [=] (1 sl
et L [view Cuganizer
T = - '
Vaw | OB =" & ©

¥ Semadated Metrics

hame Breabpaints

D (ll®im

Figure 1-9. Editing the NIB file in Interface Builder

In the Objects browser at the bottom right, find the Table View item and drag it out onto
the view in the center. By default, the table view will try to expand to fit the full view, but
you need to resize it by grabbing the resize handles and making it smaller. Finally, grab a
Label from the object browser and drop that onto the top of the view so it looks like
Figure 1-10.

CHAPTER 1: Table Views from the Ground Up

Simple Table View

Brea
Burlingame
Canoga Park
Carlsbad

Chula Vista

Figure 1-10. Resizing the table view

Believe it or not, that’s all you need to do in order to implement the most basic table
view. It won’t display any data yet, because you haven’t implemented the
UITableViewDataSource protocol methods, and it certainly won’t have any interactivity —
but the app will run.

To prove this, run it again (Command + R), and marvel at our awesome application in the
Simulator, as shown in Figure 1-11.

13

