

i

Design Driven Testing
Test Smarter, Not Harder

■ ■ ■

Matt Stephens
Doug Rosenberg

ii

Design Driven Testing: Test Smarter, Not Harder

Copyright © 2010 by Matt Stephens and Doug Rosenberg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2943-8

ISBN-13 (electronic): 978-1-4302-2944-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names,
logos, and images only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Jeffrey Kantor and David Putnam
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Ann Fugate
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

iv

Contents at a Glance

■Contents...v
■Foreword ..xiv
■About the Authors..xv
■About the Technical Reviewers ..xvi
■Acknowledgments ...xvii
■Prologue ...xviii
Part 1: DDT vs. TDD...1
■Chapter 1: Somebody Has It Backwards ...3
■Chapter 2: TDD Using Hello World..17
■Chapter 3: “Hello World!” Using DDT...43
Part 2: DDT in the Real World: Mapplet 2.0 Travel Web Site79
■Chapter 4: Introducing the Mapplet Project ..81
■Chapter 5: Detailed Design and Unit Testing ...109
■Chapter 6: Conceptual Design and Controller Testing137
■Chapter 7: Acceptance Testing: Expanding Use Case Scenarios163
■Chapter 8: Acceptance Testing: Business Requirements183
Part 3: Advanced DDT ...201
■Chapter 9: Unit Testing Antipatterns (The “Don’ts”) ...203
■Chapter 10: Design for Easier Testing ...227
■Chapter 11: Automated Integration Testing...253
■Chapter 12: Unit Testing Algorithms..277
■Appendix: Alice in Use-Case Land ...309
■Epilogue: ’Twas Brillig and the Slithy Tests… ..329
■Index..333

v

Contents

■Contents at a Glance...iv
■Foreword ..xiv
■About the Authors..xv
■About the Technical Reviewers ..xvi
■Acknowledgments ...xvii
■Prologue ...xviii

Part 1: DDT vs. TDD...1
■Chapter 1: Somebody Has It Backwards ...3

Problems DDT Sets Out to Solve... 4
Knowing When You’re Done Is Hard .. 4
Leaving Testing Until Later Costs More... 5
Testing Badly Designed Code Is Hard.. 5
It’s Easy to Forget Customer-Level Tests .. 5
Developers Become Complacent... 5
Tests Sometimes Lack Purpose .. 6

A Quick, Tools-Agnostic Overview of DDT .. 6
Structure of DDT .. 6
DDT in Action ... 9

How TDD and DDT Differ... 10
Example Project: Introducing the Mapplet 2.0.. 12
Summary .. 15

■ CONTENTS

vi

■Chapter 2: TDD Using Hello World..17
Top Ten Characteristics of TDD .. 18

10. Tests drive the design. .. 18
9. There is a Total Dearth of Documentation. .. 18
8. Everything is a unit test. .. 18
7. TDD tests are not quite unit tests (or are they?).. 19
6. Acceptance tests provide feedback against the requirements. .. 19
5. TDD lends confidence to make changes. .. 19
4. Design emerges incrementally. ... 20
3. Some up-front design is OK... 20
2. TDD produces a lot of tests. .. 20
1. TDD is Too Damn Difficult.. 20

Login Implemented Using TDD ... 21
Understand the Requirement... 21
Think About the Design ... 24
Write the First Test-First Test First.. 25
Write the Login Check Code to Make the Test Pass .. 29
Create a Mock Object .. 32
Refactor the Code to See the Design Emerge ... 34

Acceptance Testing with TDD... 40
Conclusion: TDD = Too Damn Difficult.. 41
Summary .. 42

■Chapter 3: “Hello World!” Using DDT...43
Top Ten Features of ICONIX/DDT .. 44

10. DDT Includes Business Requirement Tests ... 44
9. DDT Includes Scenario Tests ... 44
8. Tests Are Driven from Design.. 44
7. DDT Includes Controller Tests ... 45
6. DDT Tests Smarter, Not Harder ... 45
5. DDT Unit Tests Are “Classical” Unit Tests ... 45
4. DDT Test Cases Can Be Transformed into Test Code .. 45

 ■ CONTENTS

vii

3. DDT Test Cases Lead to Test Plans ... 45
2. DDT Tests Are Useful to Developers and QA Teams.. 45
1. DDT Can Eliminate Redundant Effort ... 46

Login Implemented Using DDT ... 46
Step 1: Create a Robustness Diagram... 48
Step 2: Create Controller Test Cases... 52
Step 3: Add Scenarios ... 55
Step 4: Transform Controller Test Cases into Classes... 57
Step 5: Generate Controller Test Code .. 60
Step 6: Draw a Sequence Diagram.. 63
Step 7: Create Unit Test Cases .. 66
Step 8: Fill in the Test Code... 72

Summary .. 75
Part 2: DDT in the Real World: Mapplet 2.0 Travel Web Site79
■Chapter 4: Introducing the Mapplet Project ..81

Top Ten ICONIX Process/DDT Best Practices.. 82
10. Create an Architecture.. 83
9. Agree on Requirements, and Test Against Them ... 84
8. Drive Your Design from the Problem Domain ... 86
7. Write Use Cases Against UI Storyboards .. 89
6. Write Scenario Tests to Verify That the Use Cases Work.. 91
5. Test Against Conceptual and Detailed Designs .. 95
4. Update the Model Regularly ... 95
3. Keep Test Scripts In-Sync with Requirements ... 102
2. Keep Automated Tests Up to Date .. 103
1. Compare the Release Candidate with Original Use Cases...................................... 103
Summary .. 107

■Chapter 5: Detailed Design and Unit Testing ...109
Top Ten Unit Testing “To Do”s ... 110

10. Start with a Sequence Diagram... 111
9. Identify Test Cases from Your Design.. 113

■ CONTENTS

viii

8. Write Scenarios for Each Test Case... 115
7. Test Smarter: Avoid Overlapping Tests ... 117
6. Transform Your Test Cases into UML Classes ... 118
5. Write Unit Tests and Accompanying Code... 123
4. Write White Box Unit Tests .. 126
3. Use a Mock Object Framework.. 131
2. Test Algorithmic Logic with Unit Tests .. 134
1. Write a Separate Suite of Integration Tests... 134

Summary .. 136
■Chapter 6: Conceptual Design and Controller Testing137

Top Ten Controller Testing “To-Do” List... 139
10. Start with a Robustness Diagram.. 139
9. Identify Test Cases from Your Controllers ... 143
8. Define One or More Scenarios per Test Case.. 146
7. Fill in Description, Input, and Acceptance Criteria .. 149
6. Generate Test Classes ... 150
5. Implement the Tests.. 155
4. Write Code That’s Easy to Test .. 156
3. Write “Gray Box” Controller Tests ... 158
2. String Controller Tests Together.. 159
1. Write a Separate Suite of Integration Tests... 161

Summary .. 162
■Chapter 7: Acceptance Testing: Expanding Use Case Scenarios163

Top Ten Scenario Testing “To-Do” List .. 164
Mapplet Use Cases ... 165

10. Start with a Narrative Use Case... 166
9. Transform to a Structured Scenario .. 170
8. Make Sure All Paths Have Steps ... 171
7. Add Pre-conditions and Post-conditions ... 172
6. Generate an Activity Diagram.. 172
5. Expand “Threads” Using “Create External Tests”... 174

 ■ CONTENTS

ix

4. Put the Test Case on a Test Case Diagram.. 175
3. Drill into the EA Testing View .. 176
2. Add Detail to the Test Scenarios ... 177
1. Generate a Test Plan Document .. 177

And the Moral of the Story Is 179
Summary .. 182

■Chapter 8: Acceptance Testing: Business Requirements183
Top Ten Requirements Testing “To-Do” List .. 184

10. Start with a Domain Model .. 185
9. Write Business Requirement Tests.. 187
8. Model and Organize Requirements ... 187
7. Create Test Cases from Requirements .. 192
6. Review Your Plan with the Customer .. 194
5. Write Manual Test Scripts ... 197
4. Write Automated Requirements Tests ... 198
3. Export the Test Cases.. 198
2. Make the Test Cases Visible.. 199
1. Involve Your Team! .. 199

Summary .. 200
Part 3:Advanced DDT ..201
■Chapter 9: Unit Testing Antipatterns (The “Don’ts”) ...203

The Temple of Doom (aka The Code).. 204
The Big Picture .. 205
The HotelPriceCalculator Class.. 206
Supporting Classes.. 208
Service Classes ... 209

The Antipatterns ... 211
10. The Complex Constructor .. 211
 9. The Stratospheric Class Hierarchy ... 213
 8. The Static Hair-Trigger ... 214
 7. Static Methods and Variables... 216

■ CONTENTS

x

 6. The Singleton Design Pattern ... 218
 5. The Tightly Bound Dependency .. 221
 4. Business Logic in the UI Code .. 223
 3. Privates on Parade.. 224
 2. Service Objects That Are Declared Final .. 225
 1. Half-Baked Features from the Good Deed Coder.. 225

Summary .. 226
■Chapter 10: Design for Easier Testing ...227

Top Ten “Design for Testing” To-Do List .. 228
The Temple of Doom—Thoroughly Expurgated.. 229

The Use Case—Figuring Out What We Want to Do ... 229
Identify the Controller Tests .. 231
Calculate Overall Price Test... 233
Retrieve Latest Price Test.. 234

Design for Easier Testing.. 235
10. Keep Initialization Code Out of the Constructor... 235
9. Use Inheritance Sparingly.. 236
8. Avoid Using Static Initializer Blocks .. 237
7. Use Object-Level Methods and Variables .. 238
6. Avoid the Singleton Design Pattern ... 238
5. Keep Your Classes Decoupled ... 240
4. Keep Business Logic Out of the UI Code.. 241
3. Use Black Box and Gray Box Testing... 246
2. Reserve the “Final” Modifier for Constants—Generally Avoid Marking
 Complex Types Such as Service Objects as Final ... 247
1. Stick to the Use Cases and the Design.. 248

Detailed Design for the Quote Hotel Price Use Case... 248
Controller Test: Calculate Overall Price ... 250
Controller Test: Retrieve Latest Price Test .. 250
The Rebooted Design and Code... 251

Summary .. 252

 ■ CONTENTS

xi

■Chapter 11: Automated Integration Testing...253
Top-Ten Integration Testing “To-Do” List... 254
10. Look for Test Patterns in Your Conceptual Design ... 254
9. Don’t Forget Security Tests .. 256

Security Testing: SQL Injection Attacks... 256
Security Testing: Set Up Secure Sessions... 257

8. Decide the “Level” of Integration Test to Write .. 258
How the Three Levels Differ .. 258
Knowing Which Level of Integration Test to Write... 258

7. Drive Unit/Controller-Level Tests from Conceptual Design 259
6. Drive Scenario Tests from Use Case Scenarios.. 262
5. Write End-to-End Scenario Tests.. 263

Emulating the Steps in a Scenario .. 263
Sharing a Test Database ... 264
Mapplet Example: The “Advanced Search” Use Case... 266
A Vanilla xUnit Scenario Test... 266

4. Use a “Business-Friendly” Testing Framework.. 267
3. Test GUI Code as Part of Your Scenario Tests .. 269
2. Don’t Underestimate the Difficulty of Integration Testing....................................... 270

Network Latency.. 272
Database Metadata Changes... 272
Randomly Mutating (aka “Agile”) Interfaces ... 273
Bugs in the Remote System .. 273
Cloudy Days... 273

1. Don’t Underestimate the Value of Integration Tests ... 274
Key Points When Writing Integration Tests... 274
Summary .. 276

■Chapter 12: Unit Testing Algorithms..277
Top Ten Algorithm Testing “To-Do”s.. 278

10. Start with a Controller from the Conceptual Design.. 279
9. Expand the Controllers into an Algorithm Design.. 281

■ CONTENTS

xii

8. Tie the Diagram Loosely to Your Domain Model.. 283
7. Split Up Decision Nodes Involving More Than One Check ... 284
6. Create a Test Case for Each Node ... 284
5. Define Test Scenarios for Each Test Case... 286
4. Create Input Data from a Variety of Sources ... 289
3. Assign the Logic Flow to Individual Methods and Classes .. 290
2. Write “White Box” Unit Tests... 295
1. Apply DDT to Other Design Diagrams .. 306

Summary .. 307
■Appendix: Alice in Use-Case Land ...309

Introduction .. 309
Part 1 .. 310

Alice Falls Asleep While Reading... 311
The Promise of Use Case Driven Development.. 311
An Analysis Model Links Use-Case Text with Objects ... 311
Simple and Straightforward .. 312
<<includes>> or <<extends>> ... 312
We’re Late! We Have to Start Coding! ... 312
Alice Wonders How to Get from Use Cases to Code .. 313
Abstract... Essential... 313
A Little Too Abstract? .. 313
Teleocentricity... .. 313
Are We Really Supposed to Specify All This for Every Use Case? ... 314

Part 2 .. 316
Alice Gets Thirsty... 316
Alice Feels Faint .. 317
Imagine... (with Apologies to John Lennon) .. 317
Pair Programming Means Never Writing Down Requirements.. 318
There’s No Time to Write Down Requirements.. 319
You Might As Well Say, “The Code Is the Design”... 319
Who Cares for Use Cases?... 320

 ■ CONTENTS

xiii

C3 Project Terminated ... 321
OnceAndOnlyOnce? ... 323
Alice Refuses to Start Coding Without Written Requirements ... 323
You Are Guilty of BDUF... ... 324
CMM’s Dead! Off with Her Head!... 325
Some Serious Refactoring of the Design... 325

Part 3 .. 326

Alice Wakes Up.. 327
Closing the Gap Between “What” and “How” ... 327
Static and Dynamic Models Are Linked Together.. 327
Behavior Allocation Happens on Sequence Diagrams... 327
And the Moral of That Is… .. 328

■Epilogue: ‘Twas Brillig and the Slithy Tests ..333
■Index..333

■ CONTENTS

xiv

Foreword

As program manager for ESRI’s ArcGIS mapping software product, Jim is responsible for a daily build of 20
million lines of code. He previously managed the transportation and logistics department for ESRI Professional
Services, where he brought many multi-million–dollar software projects in on-schedule and on-budget using the
design techniques described in this book.

Lots of people have many strong opinions on virtually all aspects of testing software. I’ve seen or heard of
varied methodologies, systems, procedures, processes, patterns, hopes, prayers, and simple dumb luck that
some code paths will never get executed. With all this help, we must have figured out how to ship outstanding
rock-solid bug-less software, right? Yet, with each new release of the next great, most stable revision of our
software products, test engineers still make that wincing face (you know the one), drawing back a little when
asked, “Do you have the appropriate tests across the entire software stack?”

The wincing exists because the truthful answer to that question is almost always: “I think so, but I don’t
really know all the areas I should have had tests for.” And the software shipped anyway, didn’t it—bummer.
This is job security for the technical support team, because the bugs shipped out will be coming right back to
your team for the next service pack or emergency hot fix. We can do much better, and this book will show you
how.

This book walks you through a proven software development process called ICONIX Process, and focuses
on the creation and maintenance of both unit and acceptance tests based on and driven by the software
design. This is design-driven testing (DDT). This is leveraging your design to pinpoint where critical tests need
to be based on the design and object behavior. This is not test-driven design (TDD), where unit tests are
written up front, before design is complete and coding starts. I don’t know about you, but I think it’s hard to
predict the future, and even harder to get a software engineer to code something that “fits” a set of tests.

While lots of folks have opinions about testing, one thing that I think we can all agree upon is that testing
is often very hard and complex. As a program manager for a large development team, I know how quickly
testing can get out of hand, or just stall out on a development project. Organizations have so much variance in
the investment in testing, and, unfortunately, in the return on that investment. It’s possible to do way too
much testing, thus wasting investment. But it’s more likely that you will do too little testing (thinking you did
more than enough, of course), in the wrong areas of the software, not investing enough. This can happen
because you just don’t know where the tests need to be to balance your investments, yielding the right testing
coverage.

This book shows how to achieve this balance and optimize the return on your testing investment by
designing and building a real web mapping application. Using ICONIX process and DDT makes very clear
precisely what tests are needed and where they need to be. Moreover, many of these tests will be automatically
generated for you by the tools used (in this case, Enterprise Architect from Sparx Systems), which, in addition
to being just super cool, has huge value for your project. So, if you need to build great software using an agile
process where your tests are practically generated for free, this book is for you.

Jim McKinney
ArcGIS Program Manager, Esri

 ■ CONTENTS

xv

About the Authors

■ Matt Stephens is a software consultant with financial organizations in Central
London, and founder of independent book publisher Fingerpress
(www.fingerpress.co.uk). He has written for a bunch of magazines and websites
including The Register and Application Development Trends. Find him online at
Software Reality (http://articles.softwarereality.com).

■ Doug Rosenberg founded ICONIX (www.iconixsw.com) in his living room in 1984
and, after several years of building CASE tools, began training companies in object-
oriented analysis and design around 1990. ICONIX specializes in training for UML
and SysML, and offers both on-site and open-enrollment courses. Doug developed
a Unified Booch/Rumbaugh/Jacobson approach to modeling in 1993, several years
before the advent of UML, and began writing books around 1995.

Design-Driven Testing is his sixth book on software engineering (and the fourth
with Matt Stephens). He’s also authored numerous multimedia tutorials, including
Enterprise Architect for Power Users, and several eBooks, including Embedded

Systems Development with SysML.
When he's not writing or teaching, he enjoys shooting panoramic, virtual reality (VR) photography,

which you can see on his travel website, VResorts.com.

■ CONTENTS

xvi

About the Technical Reviewers

■ Jeffrey P. Kantor is project manager of Large Synoptic Survey Telescope (LSST)
Data Management. In this capacity, Mr. Kantor is responsible for implementing
computing and communications systems to provide calibration, quality
assessment, processing, archiving, and end user and external system access of
astronomical image and engineering data produced by the LSST.

After four years in the U.S. Army as a Russian Linguist/Signals Intelligence
Specialist, starting in 1980, as an entry-level programmer, he has held positions at
all levels in IT organizations, in many industry segments, including defense and
aerospace, semiconductor manufacturing, geophysics, software engineering
consulting, home and building control, consumer durables manufacturing, retail,
and e-commerce.

Mr. Kantor has created, tailored, applied, and audited software processes for a wide variety of
organizations in industry, government, and academia. He has been responsible for some of these
organizations achieving ISO9000 Certification and SEI CMM Level 2 assessments. Mr. Kantor has also
consulted with and trained over 30 organizations in object-oriented analysis and design, Unified
Modeling Language (UML), use case–driven testing, and software project management.

Mr. Kantor enjoys spending time with his family, soccer (playing, refereeing, and coaching), and
mountain biking.

■ David Putnam has been working in software development for the last 25 years, and since the
beginning of this century, he has been one of the UK’s most ardent agile proponents.

From his early days producing database systems for the construction industry, he has enjoyed an
eclectic career, including positions in the fitness industry and a spell as a university lecturer. During this
time, he has published many articles on software development and is a familiar sight at agile software
development conferences. David now works as an independent agile software development consultant
and has provided invaluable advice to some of the UK’s best-known corporations.

 ■ CONTENTS

xvii

Acknowledgments

The authors would like to thank:
The mapplet team at ESRI, including Wolfgang Hall, Prakash Darbhamulla, Jim McKinney, and Witt

Mathot for their work on the book's example project.
The folks at Sparx Systems, including Geoff Sparks, Ben Constable, Tom O'Reilly, Aaron Bell, Vimal

Kumar, and Estelle Gleeson for the development of the ICONIX add-in and the Structured Scenario
Editor.

Alanah Stephens for being the best "Alice" ever, and Michelle Stephens for her patience during yet
another book project.

Jeff Kantor and Robyn Allsman from the Large Synoptic Survey Telescope project for their help with
the use case thread expander specification.

Mike Farnsworth and the folks at Virginia DMV who participated in the preliminary mapplet
modeling workshop. Barbara Rosi-Schwartz for her feedback on DDT, and Jerry Hamby for sharing his
Flex expertise, and particularly for his help with reverse engineering MXML.

And last but certainly not least our editors at Apress, Jonathan Gennick, Anita Castro, and Mary Ann
Fugate.

■ CONTENTS

xviii

Prologue

Beware the agile hype

T’was brillig when the YAGNI’d code
 did build itself ten times a day.
All flimsy were the index cards,
 designs refactored clear away.

Beware the agile hype, my son
 more code that smells, more bugs to catch.
Refactoring seem’d much more fun
 until thy skills were overmatch’d.

With vorpal unit tests in hand
 against the manxome bugs he fought.
Quite dazed was he by TDD,
 some sanity was what he sought.

But, in his timebox made of wood,
 determined by some planning game,
yon tests ran green and all was good
 until the deadline came.

It’s half past two, I guess we’re through
 it’s time to have a tasty snack.
What’s that you said, some tests ran red
 all fixed, with one quick hack!

And lo the thought came with a shock,
 design comes first, not tests, O joy!
We found upon this frabjous day
 a simpl’r process to employ.

T’was brillig when the YAGNI’d code
 did build itself ten times a day.
All flimsy were the index cards,
 designs refactored clear away…

P A R T 1

■ ■ ■

DDT vs. TDD

“Let the developers consider a conceptual design,” the King said, for
about the twentieth time that day.

“No, no!” said the Queen. “Tests first—design afterwards.”
“Stuff and nonsense!” said Alice loudly. “The idea of writing the tests

first!”

 2

“Hold your tongue!” said the Queen, turning purple. “How much
code have you written recently, anyway?” she sneered.

“I won’t,” said the plucky little Alice. “Tests shouldn’t drive design,
design should drive testing. Tests should verify that your code works as
it was designed, and that it meets the customer’s requirements, too,” she
added, surprised by her own insight. “And when you drive your tests
from a conceptual design, you can test smarter instead of harder.”

This is a book about testing; not just QA-style visual inspection, but also automated
testing—driving unit tests, controller tests, and scenario tests from your design and
the customer’s requirements. As such, there’s bound to be some crossover between
the techniques described in this book and what people set out to do with test-driven
development (TDD). In some ways the two processes work well together, and we
hope that test-driven software developers will gain from combining the best of both
worlds. That said, there are also some fundamental differences, both in the practices
and the ideas underpinning both disciplines.

Chapter 1 in this book provides a high-level overview of DDT. We also briefly
introduce the Mapplet project that we’ll be using later in the book to illustrate how to
get the best from design-driven testing.

Chapters 2 and 3 go on to compare and contrast DDT and TDD. In Chapter 2 we
run through what it’s like to approach a project using TDD. By the end of the chapter
we hope you’re convinced that there must surely be a better way. And there is! We
run through the same scenario again in Chapter 3, but this time using DDT. The
results are far more satisfying.

C H A P T E R 1

■ ■ ■

3

Somebody Has It Backwards

The first time we saw a description of Test-Driven Development (TDD), our immediate thought was:
“That’s just backwards!” Wanting to give the process the benefit of the doubt, Matt went ahead and put
TDD into practice on his own projects, attended seminars, kept up with the latest test-driven trends,
and so forth. But the nagging feeling was still there that it just didn’t feel right to drive the design from
the tests. There was also the feeling that TDD is highly labor-intensive, luring developers into an
expensive and ultimately futile chase for the holy grail of 100% test coverage. Not all code is created
equal, and some code benefits more from test coverage than other code.1 There just had to be a better
way to benefit from automated testing.

Design-Driven Testing (DDT) was the result: a fusion of up-front analysis and design with an
agile, test-driven mindset. In many ways it’s a reversal of the thinking behind TDD, which is why we
had some fun with the name. But still, somebody obviously has it backwards. We invite you to walk
through the next few chapters and decide for yourself who’s forwards and who’s backwards.

In this chapter we provide a high-level overview of DDT, and we compare the key differences
between DDT and TDD. As DDT also covers analysis and acceptance testing, sometimes we compare

1 Think algorithms vs. boilerplate code such as property getters and setters.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

4

DDT with practices that are typically layered on top of TDD (courtesy of XP or newer variants, such as
Acceptance TDD).

Then, in Chapters 2 and 3, we walk through a “Hello world!” example, first using TDD and then
using DDT.

The rest of the book puts DDT into action, with a full-on example based on a real project, a hotel
finder application based in a heterogeneous environment with a Flex front-end and Java back-end,
serving up maps from ArcGIS Server and querying an XML-based hotel database. It’s a non-trivial
project with a mixture of technologies and languages—increasingly common these days—and
provides many challenges that put DDT through its paces.

Problems DDT Sets Out to Solve
In some ways DDT is an answer to the problems that become apparent with other testing
methodologies, such as TDD; but it’s also very much an answer to the much bigger problems that occur
when

• no testing is done (or no automated tests are written)

• some testing is done (or some tests are written) but it’s all a bit aimless and ad hoc

• too much testing is done (or too many low-leverage tests are written)

That last one might seem a bit strange—surely there can be no such thing as too much testing? But
if the testing is counter-productive, or repetitive, then the extra time spent on testing could be time
wasted (law of diminishing returns and all that). There are only so many ways you can press a
doorbell, and how many of those will be done in real life? Is it really necessary to prove that the
doorbell still works when submerged in 1000 ft. of water? The idea behind DDT is that the tests you
write and perform are closely tied into the customer’s requirements, so you spend time testing only
what needs to be tested.

Let’s look at some of the problems that you should be able to address using DDT.

Knowing When You’re Done Is Hard
When writing tests, it’s sometimes unclear when you’re “done”… you could go on writing tests of all
kinds, forever, until your codebase is 100% covered with tests. But why stop there? There are still
unexplored permutations to be tested, additional tests to write… and so on, until the customer gives up
waiting for something to be delivered, and pulls the plug. With DDT, your tests are driven directly from
your use cases and conceptual design; it’s all quite systematic, so you’ll know precisely when you’re
done.

■ Note At a client Doug visited recently, the project team decided they were done with acceptance testing when
their timebox indicated they had better start coding. We suspect this is fairly common.

Code coverage has become synonymous with “good work.” Code metrics tools such as Clover
provide reports that over-eager managers can print out, roll up, and bash developers over the head
with if the developers are not writing enough unit tests. But if 100% code coverage is practically
unattainable, you could be forgiven for asking: why bother at all? Why set out knowing in advance that

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

5

the goal can never be achieved? By contrast, we wanted DDT to provide a clear, achievable goal.
“Completeness” in DDT isn’t about blanket code coverage, it’s about ensuring that key decision points
in the code—logical software functions—are adequately tested.

Leaving Testing Until Later Costs More
You still see software processes that put “testing” as a self-contained phase, all the way after
requirements, design, and coding phases. It’s well established that leaving bug-hunting and fixing
until late in a project increases the time and cost involved in eliminating those bugs. While it does
make sense intuitively that you can’t test something before it exists, DDT (like TDD and other agile
processes) gets into the nooks and crannies of development, and provides early feedback on the state
of your code and the design.

Testing Badly Designed Code Is Hard
It sounds obvious, but code that is badly designed tends to be rigid, difficult to adapt or re-use in some
other context, and full of side effects. By contrast, DDT inherently promotes good design and well-
written, easily testable code. This all makes it extremely difficult to write tests for. In the TDD world,
the code you create will be inherently testable, because you write the tests first. But you end up with an
awful lot of unit tests of questionable value, and it’s tempting to skip valuable parts of the analysis and
design thought process because “the code is the design.” With DDT, we wanted a testing process that
inherently promotes good design and well-written, easily testable code.

■ Note Every project that Matt has joined halfway through, without exception, has been written in such a way as
to make the code difficult (or virtually impossible) to test. Coders often try adding tests to their code and quickly
give up, having come to the conclusion that unit testing is too hard. It’s a widespread problem, so we devote
Chapter 9 to the problem of difficult-to-test code, and look at just why particular coding styles and design patterns
make unit testing difficult.

It’s Easy to Forget Customer-Level Tests
TDD is, by its nature, all about testing at the detailed design level. We hate to say it, but in its
separation from Extreme Programming, TDD lost a valuable companion: acceptance tests. Books on
TDD omit this vital aspect of automated testing entirely, and, instead, talk about picking a user story
(aka requirement) and immediately writing a unit test for it.

DDT promotes writing both acceptance tests and unit tests, but at its core are controller tests,
which are halfway between the two. Controller tests are “developer tests,” that look like unit tests, but
that operate at the conceptual design level (aka “logical software functions”). They provide a highly
beneficial glue between analysis (the problem space) and design (the solution space).

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

6

Developers Become Complacent
It’s not uncommon for developers to write a few tests, discover that they haven’t achieved any

tangible results, and go back to cranking out untested code. In our experience, the 100% code coverage
“holy grail,” in particular, can breed complacency among developers. If 100% is impossible or
impractical, is 90% okay? How about 80%? I didn’t write tests for these classes over here, but the
universe didn’t implode (yet)… so why bother at all? If the goal set out by your testing process is easily
and obviously achievable, you should find that the developers in your team go at it with a greater sense
of purpose. This brings us to the last issue that DDT tackles.

Tests Sometimes Lack Purpose
Aimless testing is sometimes worse than not testing at all, because it provides an illusion of safety.
This is true of both manual testing (where a tester follows a test script, or just clicks around the UI and
deems the product good to ship), and writing of automated tests (where developers write a bunch of
tests in an ad hoc fashion).

Aimless unit testing is also a problem because unit tests mean more code to maintain and can
make it difficult to modify existing code without breaking tests that make too many assumptions about
the code’s internals. Moreover, writing the tests themselves eats up valuable time.

Knowing why you’re testing, and knowing why you’re writing a particular unit test—being able to
state succinctly what the test is proving—ensures that each test must pull its own weight. Its existence,
and the time spent writing it, must be justified. The purpose of DDT tests is simple: to prove
systematically that the design fulfills the requirements and the code matches up with the design.

 A Quick, Tools-Agnostic Overview of DDT
In this section we provide a lightning tour of the DDT process, distilled down to the cookbook steps.
While DDT can be adapted to the OOAD process of your choice, it was designed originally to be used
with the ICONIX Process (an agile OOAD process that uses a core subset of UML).2 In this section, we
show each step in the ICONIX Process matched by a corresponding DDT step. The idea is that DDT
provides instant feedback, validating each step in the analysis/design process.

Structure of DDT
Figure 1–1 shows the four principal test artifacts: unit tests, controller tests, scenario tests, and
business requirement tests. As you can see, unit tests are fundamentally rooted in the
design/solution/implementation space. They’re written and “owned” by coders. Above these,
controller tests are sandwiched between the analysis and design spaces, and help to provide a bridge
between the two. Scenario tests belong in the analysis space, and are manual test specs containing
step-by-step instructions for the testers to follow, that expand out all sunny-day/rainy-day
permutations of a use case. Once you’re comfortable with the process and the organization is more

2 We provide enough information on the ICONIX Process in this book to allow you to get ahead with
DDT on your own projects; but if you also want to learn the ICONIX Process in depth, check out our
companion book, Use Case Driven Object Modeling with UML: Theory and Practice.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

7

amenable to the idea, we also highly recommend basing “end-to-end” integration tests on the
scenario test specs. Finally, business requirement tests are almost always manual test specs; they
facilitate the “human sanity check” before a new version of the product is signed off for release into
the wild.

Figure 1–1. The four principal flavors of tests in DDT

The tests vary in granularity (that is, the amount of underlying code that each test is validating),
and in the number of automated tests that are actually written. We show this in Figure 1–2.

Figure 1–2. Test granularity: the closer you get to the design/code, the more tests are written; but each test is

smaller in scope.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

8

Figure 1–2 also shows that—if your scenario test scripts are also implemented as automated
integration tests—each use case is covered by exactly one test class (it’s actually one test case per use
case scenario; but more about that later). Using the ICONIX Process, use cases are divided into
controllers, and (as you might expect) each controller test covers exactly one controller. The
controllers are then divided into actual code functions/methods, and the more important methods get
one or more unit test methods.3

You’ve probably seen the traditional “V” model of software development, with
analysis/design/development activities on the left, and testing activities on the right. With a little
wrangling, DDT actually fits this model pretty well, as we show in Figure 1–3.

Figure 1–3. V model of development adapted to DDT

3 So (you might well be wondering), how do I decide whether to cover a method with a unit test or a
controller test? Simple—implement the controller tests first; if there’s any “significant” (non-
boilerplate) code left uncovered, consider giving it a unit test. There is more about this decision point
in Chapters 5 and 6.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

9

Each step on the left is a step in the ICONIX Process, which DDT is designed to complement; each
step on the right is a part of DDT. As you create requirements, you create a requirements test spec to
provide feedback—so that, at a broad level, you’ll know when the project is done. The real core part of
DDT (at least for programmers) centers around controller testing, which provides feedback for the
conceptual design step and a systematic method of testing software behavior. The core part of DDT for
analysts and QA testers centers around scenario testing.

DDT in Action
With the V diagram in Figure 1–3 as a reference point, let’s walk through ICONIX/DDT one step at a
time. We’re deliberately not stipulating any tools here. However, we encourage you to have a peek at
Chapter 3 where we show a “Hello world!” example (actually a Login use case) of DDT in action, using
Enterprise Architect (EA). So, with that in mind, let’s step through the process.

1. ICONIX � Explore the business requirements (that is, functional and non-
functional requirements) in detail. Talk to the relevant people—customers,
analysts, end-users, and so forth. Draw UI storyboards (wireframes/mockups)
and produce a set of high-level requirements or user stories.

� DDT: Create test cases from the requirements. These should be acceptance
criteria that, at a broad level, you can “tick off” one by one to confirm that the
project is done.

2. ICONIX � Create a domain model, and write some use cases. Think of a use
case as a step-by-step description of user/system interaction: “The user
presses a button; the system does some stuff and then displays the results. The
user does something else… etc.” Divide each use case into its Basic Course
(“sunny day scenario”) and as many Alternate Courses (“rainy day
scenarios”) as you can think of.

� DDT: Expand the use case threads into scenario tests. These are test specs
that you hand to the testing team, and (if you’re heavily “into” the automated
testing thing) they can also be automated, end-to-end integration tests.4 Note
that the use case descriptions themselves are very useful as test specs, since
(written the ICONIX way) they read like step-by-step guides on using the
system and exploring the various avenues and success/failure modes.

3. ICONIX � For each use case, begin to explore the design at a preliminary
level. Using the ICONIX Process, this conceptual design is done using
robustness analysis. This is an effective technique that serves as a “reality
check” for your use case descriptions. It also helps you to identify the behavior
(verbs, actions, or “controllers”) in your design. Think of a controller as a
“logical software function”—it may turn into several “real” functions in the
code.

4 Integration tests have their own set of problems that, depending on factors such as the culture of your
organization and the ready availability of up-to-date, isolated test database schemas, aren’t always
easily surmounted. There is more about implementing scenario tests as automated integration tests in
Part 3.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

10

� DDT: Systematically create controller tests from the robustness diagrams,
as follows:

a. For each controller, create a test case. These test cases validate the critical
behavior of your design, as driven by the controllers identified in your use
cases during robustness analysis (hence the name “controller test”). Each
controller test is created as a method in your chosen unit testing framework
(JUnit, FlexUnit, NUnit etc). Because each test covers a “logical” software
function (a group of “real” functions with one collective output), you’ll end up
writing fewer controller tests than you would TDD-style unit tests.

b. For each controller test case, think about the expected acceptance criteria—
what constitutes a successful run of this part of the use case? (Refer back to the
use case alternate courses for a handy list.)

4. ICONIX � For each use case, drill down into the detailed design. It’s time to
“get real” and think in gritty detail about how this system is going to be
implemented. Create a sequence diagram for each use case.

� DDT: Systematically create unit tests from the design.

If you’re familiar with TDD, you’ll notice that this process differs significantly. There are actually many
ways in which the two processes are similar (both in mechanics and underlying goals). However, there are
also both practical and philosophical differences. We cover the main differences in the next section.

How TDD and DDT Differ
The techniques that we describe in this book are not, for the most part, incompatible with TDD—in fact,
we hope TDDers can take these principles and techniques and apply them successfully in their own
projects. But there are some fundamental differences between our guiding philosophy and those of the
original TDD gurus, as we show in Table 1–1. We explain our comments further in the “top 10” lists at
the start of Chapters 2 and 3.

Table 1–1. Differences Between TDD and ICONIX/DDT

TDD ICONIX/DDT

Tests are used to drive the design of the
application.

With DDT it’s the other way around: the tests are driven
from the design, and, therefore, the tests are there
primarily to validate the design. That said, there’s more
common ground between the two processes than you
might think. A lot of the “design churn” (aka refactoring)
to be found in TDD projects can be calmed down and
given some stability by first applying the up-front design
and testing techniques described in this book.

The code is the design and the tests are
the documentation.

The design is the design, the code is the code, and the
tests are the tests. With DDT, you’ll use modern
development tools to keep the documented design model
in sync with the code.

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

11

TDD ICONIX/DDT

Following TDD, you may end up with a
lot of tests (and we mean a lot of tests).

DDT takes a “test smarter, not harder” approach,
meaning tests are more focused on code “hot spots.”

TDD tests have their own purpose;
therefore, on a true test-first project the
tests will look subtly different from a
“classical” fine-grained unit test. A TDD
unit test might test more than a single
method at a time.

In DDT, a unit test is usually there to validate a single
method. DDT unit tests are closer to “real” unit tests. As
you write each test, you’ll look at the detailed design, pick
the next message being passed between objects, and
write a test case for it.

DDT also has controller tests, which are broader in
scope.5 So TDD tests are somewhere between unit tests
and controller tests in terms of scope.

TDD doesn’t have acceptance tests
unless you mix in part of another process.
The emphasis (e.g., with XP) tends to be
on automated acceptance tests: if your
“executable specification” (aka
acceptance tests) can’t be automated,
then the process falls down. As we
explore in Part 3, writing and
maintaining automated acceptance tests
can be very difficult.

DDT “acceptance tests” (which encompass both scenario
tests and business requirement tests) are “manual” test
specs for consumption by a human. Scenario tests can be
automated (and we recommend doing this if at all
possible), but the process doesn’t depend on it.

TDD is much finer-grained when it
comes to design.6 With the test-first
approach, you pick a story card from the
wall, discuss the success criteria on the
back of the card with the tester and/or
customer representative, write the first
(failing) test, write some code to make
the test pass, write the next test, and so
on, until the story card is implemented.
You then review the design and refactor
if needed, i.e., “after-the-event” design.

We actually view DDT as pretty fine-grained: you might
base your initial design effort on, say, a package of use
cases. From the resulting design model you identify your
tests and classes, and go ahead and code them up. Run the
tests as you write the code.

A green bar in TDD means “all the tests
I’ve written so far are not failing.”

A green bar in DDT means “all the critical design
junctures, logical software functions, and user/system
interactions I’ve implemented so far are passing as
designed.” We know which result gives us more
confidence in our code…

5 If some code is already covered by a controller test, you don’t need to write duplicate unit tests to
cover the same code, unless the code is algorithmic or mission-critical—in which case, it’s an area of
code that will benefit from additional tests. We cover design-driven algorithm testing in Chapter 12.
6 Kent Beck’s description of this was “a waterfall run through a blender.”

CHAPTER 1 ■ SOMEBODY HAS IT BACKWARDS

12

TDD ICONIX/DDT

After making a test pass, review the
design and refactor the code if you think
it’s needed.

With DDT, “design churn” is minimized because the
design is thought through with a broader set of
functionality in mind. We don’t pretend that there’ll be
no design changes when you start coding, or that the
requirements will never change, but the process helps
keep these changes to a minimum. The process also
allows for changes—see Chapter 4.

TDD: An essential part of the process is
to first write the test and then write the
code.

With DDT we don’t stipulate: if you feel more
comfortable writing the test before the accompanying
code, absolutely go ahead. You can be doing this and still
be “true” to DDT.

With TDD, if you feel more comfortable
doing more up-front design than your
peers consider to be cool… go ahead. You
can be doing this and still be “true” to
TDD. (That said, doing a lot of up-front
design and writing all those billions of
tests would represent a lot of duplicated
effort).

With DDT, an essential part of the process is to first
create a design, and then write the tests and the code.
However, you’ll end up writing fewer tests than in TDD,
because the tests you’ll most benefit from writing are
pinpointed during the analysis and design process.

So, with DDT you don’t drive the design from the unit tests. This is not to say that the design in a
DDT project isn’t affected by the tests. Inevitably you’ll end up basing the design around testability. As
we’ll explore in Chapter 3, code that hasn’t been written with testability in mind is an absolute pig to
test. Therefore, it’s important to build testability into your designs from as early a stage as possible.
It’s no coincidence that code that is easily tested also generally happens to be well-designed code. To
put it another way, the qualities of a code design that result in it being easy to unit-test are also the
same qualities that make the code clear, maintainable, flexible, malleable, well factored, and highly
modular. It’s also no coincidence that the ICONIX Process and DDT place their primary emphasis on
creating designs that have these exact qualities.

Example Project: Introducing the Mapplet 2.0
The main example that we’ll use throughout this book is known as Mapplet 2.0, a real-world hotel-
finder street map that is hosted on vresorts.com (a travel web site owned by one of the co-authors). We
invite you to compare the use cases in this book with the finished product on the web site.

Mapplet 2.0 is a next-generation version of the example generated for our earlier book, Agile
Development with ICONIX Process, which has been used successfully as a teaching example in open
enrollment training classes by ICONIX over the past few years. The original “Mapplet 1.0” was a thin-
client application written using HTML and JavaScript with server-side C#, whereas the groovy new
version has a Flex rich-client front-end with server-side components written in Java. In today’s world
of heterogeneous enterprise technologies, a mix of languages and technologies is a common situation,
so we won’t shy away from the prospect of testing an application that is collectively written in more
than one language. As a result, you’ll see some tests written in Flex and some in Java. We’ll

