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Foreword

When the second volume of the Theory of the Top was published in 1898,
the mathematical foundation of the work was complete. Sommerfeld’s
text had already reached the size of a treatise of 512 pages—far more
than Klein had initially expected. Applications were reserved for a
concluding third volume, as both Klein and Sommerfeld had originally
planned. Their expectations, however, were defied by the contingencies
of life. Five years lapsed before Sommerfeld finished the third volume,
and seven more years would pass before the appearance of the fourth
and final volume.

A year after the publication of the second volume, Klein expressed
in a letter to Sommerfeld a “quiet concern” about the pace of progress
with “our top” [Klein 1899], which largely became Sommerfeld’s top
as the projected content expanded far beyond the bounds of Klein’s
original lectures. But Sommerfeld’s pending move from Clausthal to
Aachen, where he was called as professor of mechanics, left little room
for additional work. Furthermore, Klein had involved Sommerfeld by
this time with the editing of the physics volumes of the Enzyklopddie der
mathematischen Wissenschaften, a long-term effort that would occupy
Sommerfeld for almost three decades. Progress with Volume III of the
Theory of the Top was confined to the gathering of pertinent material
and correspondence with colleagues who were involved with practical
applications. The initial momentum was waning. Occasional meetings
with Klein and the publisher, however, roused Sommerfeld’s sense of
duty. “The top makes progress,” he assured Klein early in 1902, “even
though with interruptions” [Sommerfeld 1902a]. In June of 1902, he
promised more progress for the holidays after the summer semester
[Sommerfeld 1902b].



viii Foreword

The third volume was intended to confront theory with practice,
to account for deviations (perturbations or “disturbing influences,” as
they were called in the subtitle of this volume) from the abstract the-
ory of Volumes I and II. As professor of mechanics at the Technische
Hochschule in Aachen, the gap between theory and practice was an ob-
vious concern for Sommerfeld. While gathering relevant material for the
theory of the top, he published, for example, an article on the theory of
railway brakes [Sommerfeld 1902c|. It is not accidental, therefore, that
he dedicated the first chapter of Volume III to the influence of friction
on the motion of the top. He was at pains, however, to preserve the
actual technical applications for later, since he first wished to discuss
more general issues, such as the numerical evaluation of integrals, that
were involved in the problems under consideration. The second chapter
of Volume III was devoted to astronomical and geophysical applica-
tions. The two chapters turned out to be enough for one volume, so
that “the technical and physical applications,” as Sommerfeld wrote in
the preface to Volume III, “remain for the fourth (final) volume.”

In the summer of 1902, the astrophysicist Karl Schwarzschild joined
the project as an advisor for the astronomical applications—presumably
at the request of Klein in order to advance the pace of progress.
Schwarzschild had been called to Gottingen in 1901 as the new di-
rector of the astronomical observatory. In July 1902, Sommerfeld sent
him a preliminary manuscript for review. “The manuscript must, in
order to be consistent, be written by me. If you feel like rewriting one
part or another, I would be more than happy, but the final authority
for the manuscript before publication must be left to me” [Sommerfeld
1902d]. Thus Sommerfeld prevented any aspirations of co-authorship
in this effort. The part of the chapter that dealt with astronomical ap-
plications took shape during the following months. Schwarzschild did
not resent that Sommerfeld had not offered him joint authorship. In
August 1902, Sommerfeld sent him a new draft and asked for a “most
severe critique,” because he felt “not at all at home” in this matter. “The
more you add, eliminate, change, the better” [Sommerfeld 1902¢|. In
September 1902, Sommerfeld traveled to Gottingen in order to discuss
some details of this chapter with Schwarzschild. By January 1903, “the
fruit of our former deliberations” was in print, as Sommerfeld informed
Schwarzschild, requesting some final corrections of one or another nu-
merical value [Sommerfeld 1903|. In the beginning, they had addressed
each other in a rather formal manner as “Lieber Herr College™; now
they changed to the more customary “Lieber Schwarzschild” and “Lieber

viii



Foreword ix

Sommerfeld”. In the coming years they would correspond about many
other scientific issues and become friends [Sommerfeld 1916].

As a consultant for the geophysical applications, Klein and Sommer-
feld turned to Emil Wiechert. Wiechert, like Sommerfeld, had begun his
career in Konigsberg. In 1897, Wiechert was called to G&ttingen as pro-
fessor of geophysics. “Klein told me that you will soon turn up |kreiseln|
again in Gottingen for discussions about the top,” Schwarzschild al-
luded to the collaboration between Sommerfeld and Wiechert in the
spring of 1903, when the astronomical work was finished and the geo-
physical part of Volume III was in the making [Schwarzschild 1903].
Like Schwarzschild, Wiechert was an outstanding expert. His Gottin-
gen institute became the nursery of a world-famous school of geophysics
[Mulligan 2001|. Wiechert’s expert knowledge entered the book not only
in the form of consulting, but also as a part of the content. In 1897 he
had published a shell model for the composition of the Earth. Accord-
ing to this model, the Earth’s interior consists of an iron core that is
surrounded by a crust of much smaller density. When Sommerfeld dis-
cussed the fourteen-month periodicity in the motion of the Earth’s axis
(the “Chandler wobble” discovered by the American astronomer Seth
Carlo Chandler in 1891) as a peculiar top-phenomenon, he referred to
Wiechert’s shell model as the most recent explanation (cf. Vol. III, Ch.
VIII, §7).

Thus the Gottingen advisors contributed to making the theory of the
top relevant for contemporary astronomical and geophysical debates—a
virtue that made this volume, as Sommerfeld wrote hopefully in his pref-
ace, “useful not only for the mathematician and physicist who studies
mechanics for its own sake.” It is ironic that the subjects which were
at this time closer to Sommerfeld’s work as professor of mechanics in
Aachen, such as gyroscopes for torpedo guidance and ship stabilization,
had to wait for Volume IV, which appeared only in 1910, when Som-
merfeld had become professor of theoretical physics in Munich and no
longer counted these subjects in his major area of interest.

Michael Eckert
Deutsches Museum, Munich
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Advertisement for Volume III of the Theory of the Top.

After a long interval caused by my passage to a new teaching po-
sition, a third volume now follows the second (1898) volume of the
Theory of the Top. This third volume is not, as it was intended to be,
the conclusion of the work; it happened, namely, that the subject mat-
ter expanded enormously as soon as the general mathematical schema
was applied, in accordance with the original plan of the work, to par-
ticular experimental conditions or to the many problems of the various
special sciences with an interest in the theory of the top. As a result,
this volume presents only applications of the theory to astronomy and
geophysics; the technical and physical applications remain for a fourth
(final) volume.

While the beginning of the present volume depends upon the content
of the preceding chapters and treats, in an appendix to Chapter VI, of
the top on the horizontal plane (through approximate calculations with
rigorous error estimation),” the content of Chapter VII extends essen-
tially beyond the circle of problems that are usually addressed in the
analytic mechanics of ideal mechanisms. The general empirical facts
concerning the effects of friction are presented, and, in association, fric-
tion at the support point of the top and its effect of uprighting the
axis of the top are discussed in detail. Since, on the one hand, the
experimental foundations of the theory of friction are not very certain,
and, on the other hand, the mathematical difficulties of a rigorous de-
velopment of the theory would be very great, the treatment is carried
out in part graphically, with auxiliary assumptions, omissions, and ap-
proximation methods, as has been repeatedly recommended at earlier
stages of the theory of the top. The precision of these methods suf-
fices completely, in so far as one keeps in mind the appropriate goal: to
create a clear qualitative image of actually observed phenomena, and
to supply a quantitatively accurate description within the error bounds
of the observations. In addition to friction at the support point, air
resistance and elasticity of the top material and the support are con-
sidered as further causes of disfigurement for the ideal motion of the
top. These investigations are partly important for later applications,

*The appendix to Chapter VI appears in our translation of Vol. II. — Trans.
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and are partly intended to serve as examples of the mechanics of actual
phenomena, or, as it is occasionally expressed here, terrestrial mechan-
ics (in contrast to celestial mechanics, in which the influences treated
here do not come into consideration, or to pure analytic mechanics, in
which such influences are usually neglected in favor of an elegant math-
ematical development). In an appendix to this chapter, the treatment
of the top on the horizontal plane is supplemented by the consideration
of friction, with the enlistment of experimental data.
Chapter VIII treats in a first part of astronomical applications of
the theory of the top, and in a second part of geophysical applications.
In the classical problems of the precession and the forced nutation
caused by the motion of the Moon, new results can hardly be produced.
The subject has been treated so exhaustively that the present exposi-
tion is aimed merely at providing the nonspecialist an intuitive proce-
dure to replace the sometimes obscure manner of presentation of the
astronomers. The means for this is afforded by a method of Gauls for
perturbation calculations, which is extended here in various directions.
Some of the problems investigated in the geophysical part, in con-
trast, are of the most recent date. We consider, in particular, the free
nutation of the axis of the Earth, whose period was established by Chan-
dler, and, furthermore, the phenomena of pole oscillations in general.
In the presentation of the objective state of affairs and in the explana-
tion of the same, the treatment given here may offer decided advances.
Because of the fundamental importance of the problem, the auxiliary
theorems from hydrodynamics and elasticity that are required for the
explanation of the fourteen-month Chandler period are taken up and
proven in the simplest manner. In addition, the theory of meteorologi-
cal transport is developed for the explanation of the yearly period of the
pole oscillations, where once again the previously emphasized impulse
theory and the free and intuitive conception of the dynamic differential
equations prove particularly fruitful. The conclusion of the geophysical
part is formed by a discussion of the famous Foucault top experiment
for the proof of the rotation of the Earth. Here we eliminate the unnec-
essary mathematical difficulties that occupy a large space in the older
presentations of the Foucault experiment, and emphasize instead the
perturbing influences and the estimation of their order of magnitude.
At the wish of my highly esteemed teacher F. Klein, I must point
out, finally, that in the writing of this volume I have exceeded the con-
tent of the original university lecture given by Mr. Klein to a still greater
degree than in the previous volumes. The mechanical analysis of the
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perturbations in Chapter VII was only postulated in general outline in
that lecture; the integration and approximation methods that are re-
quired here (and also in the appendix to Chapter VI), as well as the
final results, are due to me alone. For what concerns the astronomi-
cal applications, Mr. Klein recognized the advantage of the Gaulsian
procedure, according to which he treated, in particular, the precession
problem in his lecture; I myself, in contrast, have added the application
of the same procedure to the problem of the nutation, as well as all
numerical matters. The problem of the pole oscillations was not at all
considered in Mr. Klein’s lecture, so that the possible advances offered
here (Chap. VIII, §6-8) are to be considered as my own. The founda-
tion lines for the conception of the Foucault experiment were already
drawn by Mr. Klein.

Moreover, I would like to emphasize that the constant interest that
Mr. Klein has taken in the continuation of the work, as well as the
encouragement that he has provided to me by many discussions and
corrections, have essentially lightened my labor. Further, I must thank
Mr. Schwarzschildand Mr. Wiech ert for many valuable veri-
fications and emendations in the astronomical and geophysical subjects.

May the present volume be of use not only to mathematicians and
physicists who study mechanics for its own sake and will advance to a
deeper and more lively understanding of the science by the availability
of the thoroughly developed examples here, but rather may the rep-
resentatives of astronomy, geophysics, and engineering also draw with
pleasure upon this and the following volume as often as they come, in
their particular fields, into contact with the theory of the top!

A achen, July 1903. A. Sommerfeld.
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Chapter VII.

Theory and reality. The influence of friction, air
resistance, and elasticity of the material and the support
on the motion of the top.

§1. The contrast between rational and physical or celestial
and terrestrial mechanics.

Abstract mechanics, which seeks to derive all phenomena of motion
by mathematical deduction from a few fundamental principles, is tradi-
tionally designated as rational (= deductive) mechanics. The treatment
of mechanical problems that accounts for reality in a more extensive
manner by the use of empirical facts and experiments proceeds along-
side, somewhat bashfully, as physical (= inductive) mechanics. In view
of the vast differences between the results of the abstract theory and the
facts of reality, however, one may raise the question whether, for the
majority of applications, physical mechanics is actually rational, and
the so-called rational mechanics is, in truth, most highly unphysical
and irrational.

The differences between theory and reality that continually confront
us are due, as everyone knows, to the occurrence of energy-absorbing
or energy-dissipating forces. The abstract theory prefers to suppose
that these forces have only a secondary significance, and may thus be
treated as phenomena of the second order that can indeed blur but not
completely disfigure the overall picture. A somewhat crassly chosen
example may show us the extent to which this supposition is valid.

The German Model 88 infantry rifle??® imparts to the bullet an ini-

tial velocity of approximately 620 %. (The observation of this velocity
is made about 25 m beyond the muzzle.) If we ignore air resistance

and air friction, the energy-dissipating effects that come into play here,
then the flight trajectory is the well-known parabola, and the greatest

F. Klein and A. Sommerfeld, The Theory of the Top Volume III: Perturbations. Astronomical 532
and Geophysical Applications, DOI 10.1007/978-0-8176-4828-2_1,
© Springer Science+Business Media New York 2012



§1. Rational and physical or celestial and terrestrial mechanics. 533

firing range is attained for an initial angle (elevation angle) of 45° with
respect to the horizontal. If v is the common value of the initial hori-
zontal and vertical velocity, H is the greatest elevation of the shot, and
W is the range of the shot, then

620 m

V2 sec’

and one calculates, according to the elementary laws of projectile mo-
tion,

v

2 2
H:v—:ca.lokm, W:&:ca.40km.
29 g

If, however, one opens the infantry firing regulations, which in
this domain summarize a rich set of observational data, one finds on
page 17 that the greatest observed firing range is approximately 4
km, and that it corresponds to an initial angle of 32°. The great-
est elevation of the shot will be about 12 km for this trajectory,
and lies not at the midpoint, as in the abstract projectile motion,
but rather at a distance of 2,2 km
from the muzzle.

The adjacent figure speaks
even more clearly than the given
numbers. It shows that the trajec-
tory calculated under the neglect Fig. 7L

of air resistance (“calc.”) gives not even a remote approximation to the
observed trajectory (“obs.”).

It must be admitted that no one would think of neglecting air resis-
tance in ballistic problems. It can also be conceded that the influence
of air resistance will not be as significant for smaller velocities as for
the tremendous velocities of modern firearms. It is known theoretically,
and confirmed by observation, that air resistance must increase rapidly
with increasing velocity, particularly in the neighborhood of the speed
of sound. Nevertheless, our example may be an appropriate warning
against the overestimation of the results of rational mechanics, and the
underestimation of so-called “secondary circumstances” such as friction,
which can easily, on occasion, become the primary consideration.

The aversion of mathematical writers to friction problems is al-
ready present in the great founder of analytic mechanics, Lagrange.

533



534 VII. The influence of friction, air resistance, elasticity, etc.

Nowhere in his work does he mention the friction of one rigid body upon
another. This unworthy example is also followed by Kirch h o ffin his
Lectures on Mechanics. Yet friction, after gravity, is the most important
force in our existence. It is usually regarded as something detrimental
and undesirable. In fact, the energy losses and thus the operational
cost of all our machines, vehicles, etc., depend for the most part on
some kind of friction. It would be unjust, however, to fail to recognize
the beneficial side of friction. It is only friction that enables us to move
forward at will on the Earth, be it through the force of our limbs or with
the help of a conveyance. One may recall, for example, that a streetcar
is unable to move if the beneficial effect of friction between the wheels
and the rail is weakened by the formation of ice. It is friction, further,
that enables me to hold the pen between my fingers, if only—according
to the law of friction to be stated below—I press with sufficient force
against the holder. Friction prevents the books that lie on my writing
table (certainly not exactly horizontal) from sliding to the Earth as a
result of gravity; it prevents the mountain that lies before my window
from entering the valley and burying the city.

Why is it, we ask ourselves, that in spite of its decisive importance
for all earthly phenomena, friction finds such slight regard in theoretical
mechanics? One reason is of historical nature.

The oldest field of application of theoretical mechanics, and the
oldest branch of mathematical science in general, is astronomy. The
founders and primary developers of mechanics—G alilei, Newton,
Lagrange, Laplace—had essentially astronomical questions in
mind in their investigations. Thus it occurred that theoretical mechan-
ics took on a garb that was essentially tailored to astronomical purposes.
Now the heavenly bodies move in empty space without perceptible fric-
tion, and can, for most purposes, be regarded as single mass particles.
Thus in celestial mechanics—but also only here—frictional phenomena
withdraw. The problem of central interest is the problem of n mass
particles that move freely in space while acting upon one another with
conservative forces, a problem that constitutes the principal subject of
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§1. Rational and physical or celestial and terrestrial mechanics. 535

lectures and textbooks on theoretical mechanics, a problem which, how-
ever, is never realized in earthly occurrence.

The state of affairs is described more clearly if one speaks, rather
than of rational and physical mechanics, of celestial and terrestrial me-
chanics. The form of theoretical mechanics that has been handed down
to us has its origin and its appropriate domain of application in celestial
mechanics. In order to be applied to the often obscure and complicated
phenomena on Earth, it must be essentially supplemented by experi-
mental material.

Another reason for the slight regard that theoreticians give to fric-
tion problems is the limited validity of the physical foundations of the
theory of friction. We are aware from the outset that the usual laws on
the sliding friction of solid bodies upon one another, on air resistance,
on the internal friction of fluids or solid bodies, etc., are only rough
approximations, and that the physical details of these processes are ex-
tremely complicated, and perhaps not at all able to be encompassed in
formulas of general validity. A natural consideration of air resistance,
for example, begins from the entrained motion of the surrounding air.
The energy loss that the air resistance produces would be calculated,
on the one hand, from the internal friction of the air, and, on the other
hand, from the transfer of kinetic energy to the more remote layers of
air. In very rapid motions, which are accompanied by a perceptible
compression and rarefaction of the air, the energy transfer occurs at
the speed of sound; thus in addition to the inertia of the air, elasticity
and thermodynamics must also be taken into account. A glimpse into
the multiplicity of the phenomena that are present here is granted to us
by the beautiful and well-known instantaneous photograph of the air-
waves generated by a bullet. Compared to this image, a formula that
expresses the air resistance in terms of any power of the velocity must
look very poor. It is just as hopeless, in view of the complicated play of
waves in the vicinity of a steamship, to capture the ship’s resistance in
a simple formula. In any case, only extensive experiments carried out
with the greatest means will provide any information here. Theory and
calculation can, in this domain, sooner serve as guides to the judicious
construction of experiments than for the prediction of the phenomena.
In many cases, the theory has been able to provide rules (so-called simi-
larity laws) for applying results from model experiments on a diminished
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536 VII. The influence of friction, air resistance, elasticity, etc.

scale to the larger scales of actual problems. The achievements of the
theory are very valuable in such cases, but are still much more limited
than, for example, in problems of celestial mechanics.

The magnitude of the resistance in the preceding examples will also
depend on the particular form of the bullet or the ship. It can very
well be that a small change of form can effect a large change in the
law of resistance. It is similar for sliding friction. Apparently minor
circumstances are much more influential than one would expect and
wish. A surface altered by abrasion behaves differently from a freshly
worked surface. Small pieces of abraded material or specks of dust be-
tween the sliding surfaces can influence the magnitude of the friction
considerably; moisture condensed from the surrounding air can act as
a lubricant, and the law of friction can be changed not only quantita-
tively, but also in a fundamental qualitative manner. We see here the
operation of a principle that is most highly inconvenient and disturbing
for the natural scientist: small causes, large effects. A warning against
the uncritical use of numerical results for friction must be made on these
grounds. Numerical values that are found for certain experimental con-
ditions need not hold for others. To give these values to two or three
decimal places, as is often done in technical handbooks and in many
textbooks on experimental physics, has, in any case, no value.

One thus understands that the laboratory physicist who is in the
pleasant position to choose his problems freely, and in part according
to the aesthetic point of view, will prefer to pass over friction problems,
since he can promise himself no pure and general laws from his studies.
The technical worker stands in a different relation to the laws of friction,
which for him are matters of vital importance. Thus the more recent
contributions to knowledge of the laws of friction arise essentially from
the technical side, as we will discuss in the following section.

It further follows from this state of affairs, however, that the mathe-
matical treatment of friction problems must be carried out from a point
of view different from that of the problems of rational mechanics. The
mathematician seeks, according to his education and custom, to solve
the problems before him with complete rigor, so that a calculation to
arbitrarily many decimal places is theoretically possible. Considering
the great accuracy of astronomical observations, this method is in fact
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§2. Report on the laws of friction. 537

appropriate for problems of celestial mechanics; for all problems, how-
ever, in which frictional influences are essential—that is, all problems
of terrestrial mechanics—such a precise calculation would be unattrac-
tively incompatible with the precision of the physical foundation. Here
it is indicated to seek not a quantitative calculation, but rather a qual-
itative understanding of the phenomena, and, when one does proceed
quantitatively, to calculate from the beginning not with an arbitrary
but with a bounded precision. The differential equations in the the-
ory of the top that include friction terms, for example, become quite
complicated, and, as one usually says, “may not be integrated.” To the
contrary, we emphasize the basic principle that one should not integrate
such equations; one should interpret them and construct their solutions,
as we will seek to do in the following.

The preceding discussion gives the motivation and the sense of our
detailed treatment of friction problems for the top. Although we go
beyond what has previously been done, we fall short of the desired
goal; the lack of an adequate experimental foundation must restrict us
to a schematic treatment of the problem.

§2. Report on the laws of friction.

Our knowledge of the laws of friction was founded, as is well known,
by Coulomb.2?! We enter into these laws in some detail, since the
relevant questions are generally unfamiliar in theoretical circles.*)

Coulomb found that a force appears at the boundary of two rigid
bodies that slide upon one another, a force that opposes the motion of
each body with respect to the other, and that is proportional to the
total normal force with which the two bodies are pressed together. The
factor of proportionality is called the coefficient of friction (or, more
precisely, the coefficient of kinetic friction). This coefficient is to be
regarded as a material constant, or, more correctly, as a characteristic

*) For further orientation, we refer to the very comprehensive treatment of friction
problems in the textbook by J. P erry, Applied Mechanics, New York 1898, which
we have used repeatedly for this and the previous sections.?’? An informative report
on the entire literature of friction is due to F. M a si: Le nuove vedute nelle ricerche
theoriche ed experimentali sull’ attrito. Bologna, Zanichelli 1897.203
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538 VII. The influence of friction, air resistance, elasticity, etc.

constant for the material and the surface condition of the two bodies.
The friction force and the coefficient of friction should thus be inde-
pendent of the sliding velocity and the size of the contact area, or, for
equal total normal force, independent of the magnitude of the specific
normal force, the normal force per unit area of the contact surface. The
formula for the Coulomb friction law is, if one denotes the coefficient
of friction by u, the total normal force by N, and the magnitude of the
frictional resistance by W,

W = uN.

We first wish to restrict this statement to dry friction; it is invalid
for friction in the presence of a lubricant. Further, we must recall
the well-known difference between kinetic (dynamic) friction and static
friction. We explain static friction in the following manner.

If the applied force that acts to produce the motion of a test body
with respect to its support, or the relative motion of the two, is not
sufficient to overcome the friction, we will ascribe to the friction only
the magnitude of the applied force that holds the body in equilibrium.
This remains valid until the applied force exceeds a limiting value at
which motion occurs, a value that is again proportional to the normal
force N. The factor of proportionality may be denoted by g, and is
called the coefficient of static friction. The law of static friction can
thus be expressed by the equation

W < poNN.

The coefficient of static friction is generally substantially larger than
that of kinetic friction. This circumstance, as well as the law of fric-
tion in general, is illustrated in a beautiful experiment given by G.
Herrman n,*) an experiment that anyone can repeat without any
difficulty.

A stick is placed horizontally on the two index fingers. The fingers
are then brought together. At which finger does the stick begin to slide?
At the finger that stands farther from the center of gravity of the stick;
for the normal forces N7 and N» that the stick applies to the two fingers
are, according to the law of the lever, proportional for each finger to

*) Der Reibungswinkel, Festschrift zum Jubilium der Univ. Wiirzburg, 1882.2%4
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the distance from the center of gravity to the other finger. The normal
force is therefore smaller for the finger at the greater distance. Accord-
ing to the law of friction, the frictional force that opposes the sliding
here is also smaller than for the other finger; the sliding must therefore
begin here.

The stick now slides on this finger, and not only until the distance
of this finger from the center of gravity is equal to that of the other,
but rather somewhat farther, because o > p. When the distances of
the fingers from the center of gravity are in the proportion u : g, a
change in the motion occurs; the stick now rests on the finger on which
it previously slid, and begins to slide on the other. For the normal
forces N on the two fingers are inversely proportional to the distances
to the center of gravity, and are therefore, at this instant, in the ratio
o ¢ . The kinetic friction at one finger will then equal the static
friction at the other, and would, if the sliding continued in the previous
sense, become even greater, which is obviously absurd. The sequence
of events is continuously repeated, so that the distance from the center
of gravity to the finger on which the stick slides diminishes each time

th
to the (i) part of the distance from the center of gravity to the
Ho

other finger. As a result, the distances from the center of gravity to the
two fingers will be diminished alternately, and, when the fingers have
come together, the stick will be supported at its center of gravity, and
therefore freely oscillate!

In addition to the intuitive illustration of the friction law, the exper-
iment also permits of a measurement of the ratio pg: p. It is enough,
for this purpose, to mark a few reversal points of the motion of the
stick, and to measure their distances from the center of gravity. The
ratio of the distances between two successive reversal points provides
the desired ratio of the coefficients of friction. The totality of the re-
versal points forms, on both sides of the stick, the successive points of
a geometric series. If the stick is not too short, the measurement can
be relatively precise.

The difference in the values of pg and p suggests the hypothesis of
a continuous passage between the value pg corresponding to the sliding
velocity zero and the value u corresponding to perceptibly larger sliding
velocities. This conjecture has been confirmed by the experiments of
Jenkin and Ewin g.*) For materials with significantly different

*) London Philos. Transactions, Vol. 167 (1877), p. 509.29
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coeflicients of friction pp and p, the continuous passage can in fact be
detected.

If we therefore wish to claim, with Coulomb, the independence of the
coefficient of friction on the velocity, we must first exclude the domain
of very small velocities. How well is this independence now confirmed
for greater velocities?

The older experiments of General M or in, which were performed
in the years 1831-1833 in Metz and encompassed a velocity range up to

4 %, appear to confirm the independence. To this day, Morin’s exper-

imental results form the permanent supply of numerical specifications
for coefficients of friction in technical handbooks and textbooks on ex-
perimental physics. A high degree of reliability, however, can hardly
be ascribed to them, since, according to what was said in the previ-
ous section, such numerical results depend strongly on the secondary
circumstances of the experiments.?"

The behavior of the coefficient of friction for higher velocities re-
mains, in any case, an open question that first became relevant in the
development of railroads. Between the brake pad and the collar of the
wheel we have true sliding friction without lubrication, while the friction
between the wheel and the rail is generally, at least by intention, rolling
friction, and becomes sliding friction only in the exceptional case that
the wheels skid on the rails. Concerning the friction between the brake
pad and the wheel, the experiments of Douglas Galton,*) which were
carried out in full scale on various English rail lines with the support
of the Westinghouse firm, stand out above all others. Galton’s exper-
imental van contained an entire series of tachometers and dynamome-
ters. The tachometers provided the rotational velocity of the wheels and
the progressional velocity of the van. The sliding velocity between the
wheel and the brake pad is equal to the first of these velocities, and the
possible sliding velocity between the wheel and the rail is equal to the
difference of the two. The dynamometers measured 1) the braking force
with which the brake pad was pressed to the wheel, and therefore the
force that acts as the normal force N for the friction between the brake
and the wheel; 2) the frictional resistance W between the brake and

*) Institution of Mechanical Engineers Proceedings 1878, 1879; see, in particular,
1879, p. 172 or Engineering 1879, p. 371 or Reports of the British Association
(Dublin) 1878.
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the wheel; 3) the resistance against the forward motion of the car per
axle, which comprises air resistance, rolling friction on the rail, etc.,
which, however, if sliding on the rails occurs, represents in essence the
frictional resistance W’ of this sliding. All these tachometers and dy-
namometers registered automatically, and thus provided the temporal
changes of the relevant velocities and forces. The very interesting di-
agrams that were obtained for these quantities can only be indicated
here. We must restrict ourselves to the conclusions to be extracted from
them regarding the variability of the friction coefficients. The coefficient
of friction between the brake pad and the wheel results from division
of the measured forces W and NN, while the coefficient of friction be-
tween the wheel and the rail follows from the likewise measured friction
W' and the portion of the van weight G that falls on the individual
wheel.207

The corresponding friction coefficients for different experiments with
the same velocities naturally show no complete agreement among them-
selves; their magnitudes depend on the weather and the related damp-
ness condition of the sliding surfaces, as well as on the cleanliness
of the surfaces and the braking duration, which obviously causes an
increase in temperature and thus a change in the surface condition.
It occurred, for example, that after the braking force had acted for
20 seconds, the friction coefficient was reduced to half of its origi-
nal value. Nevertheless, the mean of the friction coefficients obtained
from many (up to 100) experiments show a clear regularity; namely, a
continuous decrease of the friction coefficient with increasing velocity.
Fig. 72 gives the coefficient of
friction between the brake pad and o,f
the wheel (brake pad of cast iron, )
wheel rim of steel). The solid line is
the mean value of the observations,
and the dotted lines are the largest 01
and smallest values for each veloc- 0 —
ity. The entire strip between these oM B B
boundary lines is to be imagined

0,31

0,24,

Fig. 72.

as filled with observation points that thicken along the mean line. One
first recognizes the difference between the static coefficient of friction
and that of the considered motion. But the figure further shows that the

541



542 VII. The influence of friction, air resistance, elasticity, etc.

coefficient of friction for the velocity 60 km/hr (= 16,7 m/sec = mean
express train velocity) amounts to less than half of the static coeffi-
cient of friction (0,33), and that the coefficient of friction for 90 km /hr
(= 25 m/sec = highest current permissible speed in Germany) amounts
to no more than a third of the static coefficient of friction. This nat-
urally leaves the dependence between p and v uncertain, and thus ex-
pressible through one formula or another. We thus disregard the state-
ment of such a formula as well as the numerical values, since the figure
depicts all that is to be concluded from the degree of precision of the
observations, and since any formula used to represent the observations
would be highly arbitrary. — Concerning the coefficient of sliding fric-
tion between the rail and the wheel, Galton’s experiments give a less
certain conclusion; as much as can be discerned from them without
doubt is that this coefficient also decreases continually with increasing
velocity from its greatest value for small velocity.

Older French and more recent experiments conducted in Germany”)
yielded essentially the same results.

But it is to be considered that Galton’s experiments refer to a very
extended velocity range. For a moderately changing velocity, the varia-
tion of the friction coefficient is also only small; according to the curve
one has, for example, the Galton mean value of approximately p = 0,27
to 0,23 for v = 2 to 6 m/sec. These differences are, with respect to
the general uncertainty of friction values, undoubtedly to be neglected.
Coulomb’s assumption of a velocity-independent coefficient of friction is
thus affirmed, in the first approximation, for a moderate velocity range.
For our application to the top, in which velocities of the order of express
train velocities certainly do not come into consideration, we may thus
set, with Coulomb, the coefficient of friction equal to a constant.

The lack of dependence of the coefficient of friction on the size of
the contact area that is stated in the Coulomb law may also be tested
experimentally. According to the Coulomb law, a prism of base area 10
cm? and height 4 cm that moves on a fixed plane must be subjected to
the same frictional force as a prism of base area 20 cm? and height 2
cm, since, assuming the same material, the total normal force against
the support, namely the weight of the prism, is the same in each case,

*) Cf. Organ der Fortschr. des Eisenbahnwesens 1889, p. 114. The brake pad
consisted here of cast steel. The experiments were conducted not on the track, but
rather in a workshop.2%®
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while the normal forces per unit area in the two cases have the ratio
2:1. It appears that this result is well confirmed in experiments,*) in
so far as a perceptible deformation of the support is not caused by a
very large specific pressure. —

It is also well known that the process of rolling two surfaces upon one
another, which (apparently) occurs without sliding, is also associated in
a small degree with energy dissipation. The law of rolling friction that
is usually adopted for the calculation of this energy loss was likewise
constructed by Coulomb. Here it is useful to speak not of a frictional
single-force, as for sliding, but rather of a frictional moment that is to be
overcome at each instant by the turning-moment that is employed for
the rolling. If the total normal force at the contact between the support
and the “roller” is again denoted by N and the frictional moment is
denoted by M, then one sets

M =vN.

The quantity v is called the coefficient of rolling friction; as the equa-
tion shows, it is not a pure number like the coefficient of sliding friction,
but rather has the dimension of length. This coefficient is also to be
regarded as a material or surface constant. If one wishes to replace M
by a frictional single-force W on the outer surface, then one must set
the latter equal to M /r, where r is the radius of the roller, or, for a non-
circular perimeter of the roller, is equal to the radius of curvature at the
considered place on the circumference; this single-force W is therefore
directly proportional to the normal force and inversely proportional to
the radius.

A beautiful work of O. Reynold s**) gives some information on
the mechanism of rolling friction. Reynolds shows that rolling is always
accompanied by a certain sliding due to elastic deformation.

If one assumes, for simplicity, that the support is essentially softer
than the roller (support of rubber, roller of iron), then one can disre-
gard the deformation of the roller, and consider only that of the sup-
port. The latter will consist of a trough-shaped depression, so that the
support is stretched in the middle of the depression, and is raised and

*) Perry 1. c. p. 67.
**) On rolling Friction, London Philos. Transactions Vol. 166, Part I (1876) and
Ges. Werke Bd. I, p. 110.
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compressed on the sides. The contact no longer occurs at a geometric
point, but along the surface of the trough, whose midpoint we denote
as the mean contact point P. In the adjacent figure, a number of points
are marked on the roller
and the support. The
points on the roller are
5 8 equidistant. The points
on the support were
equidistant  before the
deformation; the changed

Fig. 75. distances thus show the
sense of the distortion that has occurred. The points marked by the
same numbers are the mean contact points that successively coincide
with one another in the rolling process, which is made possible by the
elongation of the support at the mean contact position due to the rolling
process. In an instantaneous state, however, these points do not coin-
cide. Point 4 of the instantaneous state must, for example, slide along
the small section of the rolling circumference between the two points 4
in the figure before it has become the mean contact point. The same
holds for each point of the contact surface. In this process, therefore, a
certain sliding friction in fact occurs.

The total energy loss of the rolling friction will be made up in part
by the energy loss associated with the sliding friction, and in part by
the work required in the elastic deformation, in so far, namely, as the
latter occurs irreversibly.

Reynolds was able to demonstrate experimentally that the represen-
tation in Fig. 73 is correct. Under the conditions assumed above, the
circumference of the roller develops not on the natural upper surface of
the support, but rather on the extended surface at P. If the path that
the roller has covered after one rotation is measured on the support
that has returned to its natural length, then this path must be some-
what shorter than the circumference of the wheel. Reynolds has, in
fact, demonstrated this experimentally for the case in which the roller
is harder than the support. The opposite must occur, and according
to Reynolds does occur, if the support is considerably harder than the
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roller. If both are of the same material, then the path measured on
the support is again somewhat smaller than the circumference of the
roller, as would be shown by a more detailed entrance into the preceding
deliberation.

The Reynolds investigation is not carried out to a precise measure-
ment of the magnitude of the frictional resistance and a verification of
the Coulomb assumption. It is not very probable that this simple as-
sumption corresponds precisely to reality, considering the complicated
nature of the process. —

In addition to sliding and rolling friction, one speaks in the third
place of boring friction, particularly when one body rotates on another
about the normal to the contact point. Since the contact is assumed
in this case to be pointlike, and since the contact point is assumed to
be a point on the rotation axis, sliding of the two bodies on one an-
other does not, theoretically, take place. This circumstance has given
occasion for the introduction of the special term “boring friction.” How-
ever, the process is reduced immediately to sliding friction if only one
assumes a somewhat extended contact between the bodies. One can
then speak of a mean radius a of the contact surface, and may reduce
the forces distributed on rings about the rotation axis to sliding fric-
tion at this mean distance a. These forces may obviously be composed
into a turning-moment about the normal to the contact surface, whose
magnitude is calculated from the law of sliding friction as

M =u'N, y' = pa.

The factor of proportionality i/ can be denoted as the coefficient of bor-
ing friction; it has the dimension of length and depends, in addition to
the material and the nature of the surface, on the extent of the contact
surface. It should naturally not be claimed from the equation ' = pa
that the coefficient of boring friction would be predetermined from that
of sliding friction if one could measure the size of the contact surface.
Rather, this equation provides only an indication of the meaning of the
coefficient g/, and an approximate magnitude of the ratio of boring to
sliding friction that will be of use to us in the next section.

We have explicitly restricted ourselves in this report to dry friction,
even though friction under the application of a lubricant is of predomi-
nant interest in practice. The current understanding is that lubrication
friction is subject to a completely different law; it depends, namely, on
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