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Preface

The healthy plant canopy that we recognise is the result of integrated metabolic
functions administered by a number of factors, including hormones, of which six
(Auxins, Gibberellins, Cytokinins, Abscissic acid, Ethylene and Brassinosteroids)
are well recognised for their regulatory functions. However, the others (Salicylic
acid, Polyamines and Jasmonates) can not be excluded from the list of hormones
because of their well-recognised involvement in plant metabolism and growth.

This book is providing recent information related with Salicylic acid (SA), that
was first noticed to be a major component in the extract from Salix (willow) bark
and was used as an anti-inflammatory drug. It belongs to the phenolic group and is
ubiquitous in plants. SA is involved in signal transduction, pondering over the
plant resistance to stress and generates significant impact on photosynthesis,
transpiration, uptake and transport of ions and plant growth and development.
However, the observations related with this presumed plant hormone are very
much scattered. It was, therefore, decided to compile all in the form of a book,
based on 16 chapters written by various experts, working in this field. A total of 47
experts have explained their results based on the practical work carried over by
them and of others on various selected aspects of plants under stress. After going
through these chapters it may be concluded that this hormone has a wide range of
actions mediated through genes and/or the cell membranes and can be grouped as a
stress hormone. It is the second revised edition of the book.

With great pleasure, we extend our sincere thanks to all the contributors for
their timely preparation of excellent and up-to-date contributions and also for their
consistent support and cooperation. The first two editors (Hayat and Ahmad) are
thankful to Aligarh Muslim University, Aligarh, India that gave us the employ-
ment and the seat to work. Whereas, Hayat and Alyemeni are also thankful to King
Saud University, Riyadh, Saudi Arabia for their present assignment. Thanks are
also due to Springer, The Netherlands for expeditious acceptance of our proposal
and completion of the review process. Subsequent cooperation and understanding
of their staff, especially, Malanie van Overbeek, publishing assistant, is also
gratefully acknowledged.
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We express our sincere thanks to the members of our family for all the support
they provided and the neglect, what so ever, they suffered during the preparation of
this book.

Finally we are thankful to the Almighty God.

Shamsul Hayat
Aqil Ahmad

Mohammed Nasser Alyemeni
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Chapter 1
Salicylic Acid: An Update on Biosynthesis
and Action in Plant Response to Water
Deficit and Performance Under Drought

Hanna Bandurska

Abstract Salicylic acid (SA) and its derivatives are the most widely known drugs
in the world used to reduce pain and fever, helping to treat many inflammatory
diseases, in the prevention of coronary heart disease and heart attacks, and in
tumor suppression. This substance is also characterized by a high metabolic and
physiological activity, which enables it to perform regulatory functions in plant
development and reaction to biotic and abiotic stress factors. Under non-stress
conditions, SA is present in plant tissues in quantities of several mg to several ng
in one g of fresh mass. Its level substantially increases in plants exposed to water
deficit. The accumulation of SA may result from its de novo synthesis through
activation of enzymes involved in the synthesis of SA from phenylalanine, i.e.
phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H). SA
accumulated in plants growing under the conditions of water shortage may be
involved in the regulation of mechanisms responsible for resistance to drought
through the control of water balance and activation of antioxidant system. Large
body of evidences revealed that exogenous application of SA was effective in
modeling plant responses to water deficit. Plant pre-treatment with SA resulted in
higher tissue water content, increased activity of antioxidant enzymes, decreased
level of lipid peroxidation and membrane injury and it also protected nitrate
reductase activity against inhibition under water deficit conditions. These changes
enable plants to survive under drought and play an essential role in countering the
adverse effects of stress on growth and yield.

Keywords Drought � Salicylic acid � Water deficit � Stress resistance

H. Bandurska (&)
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1 Introduction

Salicylic acid (SA) or ortho-hydroxybenzoic acid (Fig. 1), belongs to a varied
group of phenolic compounds well known in the plant kingdom.

SA is present in plants as a free phenolic acid and as a conjugate form, which
may be generated by glucosylation, methylation or hydroxylation of the aromatic
ring (Raskin 1992; Lee et al. 1995). The best known natural SA derivative is
salicin (ß-glucoside salicylic alcohol), occurring in white willow (Salix alba) and
other willow species including S. purpurea, S. daphnoides and S. fragilis. The
highest salicin content in that plant is observed during spring or summer and the
lowest in winter (Foster and Tyler 1999). The highest content of free SA was
monitored in bark of S. laponum (3 mg�g-1fr. mass) and in the branches of S.
purpurea and S. plantifolia (about 2.1 mg�g-1fr. mass) (Peterek et al. 2007). The
name salicylic acid is derived from the Latin word for willow tree (Salix), from
whose bark Johan B}uchner isolated in 1828 a small amount of salicin (Raskin
1992). Later, in 1838 the Italian scientist Rafaele Piria obtained SA from flower
buds of Meadowsweet (Spiraea ulmaria known as Filipendula ulmaria). At the
end of the nineteenth century, in 1899 the Bayer Company formulated a new drug,
acetylsalicylic acid, and called it at first acetyl-spiric-acid (from Spiraea) and then
aspirin (Ansari and Misra 2007). Recently, Blazics et al. (2010) showed that
Filipendula ulmaria is a rich source of salicylic acid, which is present in its herb
and flowers at an amount of about 1.4 mg�g-1 dry mass. A large amount of
salicylates also occurs in tissues of wintergreen (Gaultheria procumbens), known
as checkerberry or teaberry. The salicylate predominantly present in that plant is a
derivatized form of methyl salicylate called gaultherin (Rybnicky et al. 2003). SA
acid and its derivatives are the most widely known drugs in the world used to
reduce pain, fever, helping to treat many inflammatory diseases and in the pre-
vention of coronary heart disease and heart attacks. Lately, large body of evi-
dences suggests that salicylates also affect tumor suppression (Brummelkamp et al.
2003; Ansari and Misra 2007; Elwood et al. 2009). These therapeutic substances
for humans also play an important role in the plant kingdom. SA is characterized
by a high metabolic and physiological activity, which performs regulatory func-
tions in plant cells. For over twenty years, this compound has been under inves-
tigation for its role in the response of plants to various stress factors (Horváth et al.
2007; San-Vincente and Plasencia 2011). Under optimal conditions SA content in
leaves of Arabidopsis, tobacco, corn, and rape is lower than 0.1 lg�g-1 fresh mass.

Fig. 1 Structure of salicylic
acid
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Higher SA levels were detected in leaves of tomato (0.27 lg�g-1 fr. mass), bean
(0.86 1 lg�g-1 fr. mass), barley (2.13 lg�g-1 fr. mass) and the highest in rice,
which varied from 5 to 30 lg�g-1 fr. mass, depending on the cultivar (Raskin et al.
1990; Yang et al. 2004). The increased level of endogenous SA after pathogen
infection, and its participation in plant responses to biotic stresses, has been
confirmed in numerous studies and presented in several papers (Durner et al. 1997;
Pieterse and Loon 1999; Metraux 2001; Shah 2003; Vlot et al. 2009). SA has also
been recognized as a regulatory molecule, mediating plant responses to abiotic
stress factors. The present work focuses on the results of studies examined the role
of SA in the regulation of plant responses to water deficit.

2 Biosynthesis of Salicylic Acid and Accumulation Under
Water Deficit Conditions

SA is synthesized in plants through two (Fig. 2) distinct enzymatic routes, which
require chorismate as a primary metabolite (Wildermuth 2006; Chen et al. 2009).
One is chloroplast-localized SA synthesis from chorismate via isochorismate in a
two-step reaction catalyzed by isochorismate synthase (ICS) and isochorismate
pyruvate lyase (IPL) (Wildermuth et al. 2001). It was shown that SA synthesized
through the isochorismate route has an important role in plant defense against
pathogen infection as well UV- or ozone-treated Arabidopsis thaliana L., Nico-
tiana benthamiana and tomato (Ogawa et al. 2005; An and Mou 2011). An
alternative SA biosynthetic pathway is the phenylalanine route localized in the
cytoplasm. Chorismate-derived phenylalanine (Phe) is converted to trans-cinnamic
acid (t-CA) by phenylalanine ammonia lyase (PAL) and later t-CA is oxidized to
benzoic acid (BA). The hydroxylation of the aromatic ring of BA catalyzed by
benzoic-acid-2-hydroxylase (BA2H) leads to SA formation (Leon et al. 1993; Lee
et al. 1995). This pathway was confirmed to operate in ozone-exposed tobacco
leaves, heat-treated pea plants, and salt-stressed rice seedlings (Ogawa et al. 2005;
Sawada et al. 2006; Pan et al. 2006). According to Chong et al. (2001) conversion
of benzoic acid to SA requires the presence of hydrogen peroxide (H2O2), which
stimulates the activity of BA2H. A number of studies have shown that water deficit
induces an increase in the activity of PAL in leaves of wheat and white clover
seedlings, and in fruits of pepper (Sung 2005; Tian and Lei 2007; Lee et al. 2007).
Recently we examined the effect of water deficit on SA accumulation and the
activity of two enzymes involved in the synthesis of SA from phenylalanine, i.e.
PAL and BA2H. Moderate water deficit increased the activity of both enzymes and
triggered an increase of SA level in leaves and roots of barley seedlings (Band-
urska and Cieślak 2012). So, these studies indicate that the cinnamic acid ?
benzoic acid ? SA route is activated in plants exposed to water deficit.

Taking into account the presence in plant tissue of conjugated forms of SA and
its precursors another possibility is that the release of free SA from conjugates
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takes place under water deficit conditions. This route may proceed via decar-
boxylation of conjugated forms of t-CA to conjugated forms of BA followed by its
hydroxylation to salicyl-glucose ester and salicyl-CoA and then release of free SA,
as was found in tobacco plants infected with mosaic virus (Lee et al. 1995; Chong
et al. 2001).

3 Effect of Salicylic Acid on Plant Resistance to Water
Deficit

Three experimental approaches are commonly used in studies focus on the role of
SA in plant response to stress factors. One is to examine the stress resistance of
plants treated with various concentrations of SA. Another approach is to study the
effect of certain stress factors on the level of SA in plant tissues and its relationship
with other biochemical and physiological parameters responsible for resistance.
The third approach consists in testing the resistance of transgenic plants, which
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COOH
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COOH

COOH

BA2H

L-phenylalanine

trans-cinnamic acid

Salicylic acidBenzoic acid
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Fig. 2 Schematic diagram of
SA biosynthetic pathways.
Abbreviations: PAL
phenylalanine ammonia
lyase, ICS isochorismate
synthase, IPL isochorismate
pyruvate lyase, BA2H
benzoic-acid-2-hydroxylase
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have increased or decreased levels of SA, to a particular stress factors. Yang et al.
(2004) revealed that SA-deficient transgenic rice exhibited increased susceptibility
to oxidative stress and suggested that SA may play an important role in plant
resistance to oxidative stress caused by biotic and abiotic stress agents. In the
available literature there are no data with regard to transgenic plants having
modified capacity for SA synthesis in terms of the role of this regulator in resis-
tance to water deficit. However, we have shown that SA may play a role in the
mechanism of cross-resistance in plants subjected to the combined action of UV-B
and water deficit. UV-B applied before water deficit induced an increase of
endogenous SA level in the leaves of barley seedlings and alleviated the damaging
effect of water deficit on cell membranes and leaf hydration. This was evidenced
by the lack of membrane damage as well as the lack of a decrease in leaf water
content of plants pre-treated with UV-B before water deficit imposition, in spite of
occurrence of such damage after the sole action of water deficit (Bandurska and
Cieślak 2012).

In the studies related to the involvement of SA in plant responses to water
deficit most of the investigations are concentrated on the impact of exogenous
application of SA on plant resistance to stress. However, some research also
focuses on the interplay between changes in the level of SA in water deficit treated
plant and its resistance to water deficit.

3.1 Effect of Water Deficit on SA Level in Plant Tissues
and Stress Resistance

The endogenous SA content increased in the leaves of drought-stressed Mediter-
ranean plant, Phillyrea angustifolia. However, it was revealed that SA level
showed a strong negative correlation with the level of leaf hydration (relative
water content, RWC) and a positive correlation with a-tocopherol level during
drought, which may indicate the possible involvement of SA in the regulation of
water balance as well as activation of antioxidative mechanisms (Munné-Bosch
and Peňuelas 2003). Water deficit induces leaf senescence, which is sometimes
regarded as a negative consequence of stress. However, senescence of mature
leaves permit nutrient remobilization to the youngest leaves, allowing plant sur-
vival during prolonged periods of drought (Munné-Bosch and Alegre 2004). It has
been reported that drought stress induced SA accumulation in leaves of field-
grown common sage plant (Salvia officinalis) that may regulate leaf senescence
and plant survival under water deficit conditions (Abreu and Munné-Bosch 2008).
Our results provide the first confirmation that water deficit effects a significant
increase of SA content in barley seedlings. We have shown that polyethylene
glycol-induced (PEG 6000) water deficit causes a significant increase of SA
content in barley roots after 6 and 24 h of stress, where as in leaves SA level did
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not change at this time (Bandurska and Stroiński 2005). The results of our recent
study revealed that water deficit of the same level but acting longer affected the
increase of SA level both in leaves and roots of barley seedlings. However, an
increase of SA content was first observed in roots (after 3 days) than in leaves
(after 6 days), which indicates the involvement of SA in signal transduction
between roots and leaves (Bandurska and Cieślak 2012). A significant increase of
SA under the conditions of PEG-induced water deficit was also shown in leaves of
soybean. The examined soybean plants had a higher SA level and were more
resistant to water deficit at the reproductive than the vegetative stage (Hamayun
et al. 2010).

3.2 Effects of Exogenous Application of SA on Plant
Resistance to Water Deficit

Exogenous application of SA was found to be effective in modeling of plant
metabolic and physiological processes that may enhance resistance to water def-
icit. SA application at various concentrations through roots, seed soaking and
foliar spraying in a concentration-dependent manner alleviated the negative effect
of water deficit on tissue water status, stomatal conductance, chlorophyll content,
membrane properties and plants physiological activities (Horváth et al. 2007;
Hayat et al. 2010). The application of SA in muskmelon, either through seed
soaking or foliar application, provided protection against drought. Lower con-
centrations within the range of 0.1–0.5 mM were more effective in reducing the
negative effect of drought than higher concentration (1 mM). The mode of
application did not make any significant difference (Korkmaz et al. 2007). In
cucumber, the application of SA by seed soaking or foliar spray ameliorated injury
caused by water deficit. SA was more effective when applied by soaking the seeds
and the best results were obtained using 0.5 mM SA solution (Baninasab 2010).
However, application of SA (0.7 mM) in rice was more effective in ensuring better
resistance to water deficit when applied by foliar spray than seed treatment (Farooq
et al. 2009). Much higher SA concentrations used to the foliage were effective in
protecting amaranth, tomato (3 mM) and Satureja hortensis (1.0–3.0 mM) plants
against water stress (Umebese et al. 2009; Yazdanpanah et al. 2011). In wheat, a
beneficial effect on improving resistance to water deficit was shown after leaf
spraying with relatively high SA concentrations, i.e. 3.0 and 50 mM (Singh and
Usha 2003; Aldesuquy et al. 2012). Foliar spraying with much lower SA con-
centration (1 lM) alleviated the damaging effect of long term drought stress in
Ctenathe setosa and maize providing increased resistance to stress (Kadioglu et al.
2011; Saruhan et al. 2012). Increased resistance to drought in bean was obtained
similarly as in cucumber by soaking seeds in 0.5 mM SA concentration before
sowing (Sadeghipour and Aghaei 2012). Seedlings of four chickpea genotypes
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became more resistant to drought when their seeds were soaked in 1.0–1.5 mM SA
solution (Patel et al. 2011). Seed soaking in much lower SA concentrations was
effective in amelioration the negative impact of drought on soybean (0.6 mM) and
wheat (0.01–0.05 mM) (Sakhabutdinova et al. 2003; Khan et al. 2012). Bean and
tomato seedlings grown from seeds imbibed in 0.1–0.5 mM solutions of SA or the
plants which were soil drenched with 0.5 mM solution of SA did not exhibit signs
of wilting (Senaratana et al. 2000). There is some evidence that application of SA
through roots by mixing with the nutrient solution improved drought resistance.
Increased resistance to water deficit was achieved in tomato at 0.01 mM SA
concentration and lower, in wheat 0.3–0.7 mM, barley 0.3–012 lM, potato
0.1 mM and in banana 1.0–3.0 mM (Bandurska and Stroiński 2005; Szepsi et al.
2005; Waseem et al. 2006; Deneshmand et al. 2009; Bidabadi et al. 2012).

3.3 Mode of Action of SA in Increasing Resistance to Water
Deficit

SA applied exogenously with various methods and concentrations (0.1–10 mM)
activates protective mechanisms enhancing resistance to water deficit. It was found
that SA improves leaf water status under water deficit conditions (Raskin 1992;
Senaratana et al. 2000; Szepsi et al. 2005; Hussain et al. 2009; Bidabadi 2012;
Sadeghipour and Aghaei 2012). Some authors reported that foliar application of
SA plays a positive regulatory role in stomatal closure and proposed that SA might
support the ABA dependent mechanism of stomatal closure. SA application
induces production of reactive oxygen species (ROS) via peroxidase-catalyzed
reaction, which may lead to the elevation of cytosolic Ca2+ and NO production
causing stomatal closure (Manthe et al. 1992; Mori et al. 2001; Acharya and
Assman 2009). On the other hand, it was shown that exogenous application of SA
by seed soaking diminished the reduction of stomatal conductance induced by
water deficit (Sadeghipour and Aghaei 2012). Other researchers have revealed that
the decrease of stomatal conductance under drought was lower in SA-treated
(applied to roots/leaves) than untreated plants (Waseem et al. 2006; Saruhan et al.
2012). The above results are consistent with the findings of Rai et al. (1986), who
found that SA application reversed the stomatal closure induced by ABA. How-
ever, it appears that the influence of SA on stomatal conductivity may depend
among other things on its concentration, the mode of application, duration of
treatment, species and physiological state of the plant.

The results of available studies indicate that better leaf hydration under water
deficit conditions as a result of SA pre-treatment is not necessarily the effect of
stomatal closure. Indeed, in many cases, application of SA did not lead to
reduction of stomatal conductance, under water deficit despite a marked influence
on improving leaf water status (Singh and Usha 2003; Sadeghipour and Aghaei

1 Salicylic Acid: An Update on Biosynthesis and Action in Plant 7



2012; Saruhan et al. 2012). Plant resistance to water deficit may be the result of
two strategies responsible for surviving the stress: strategy of avoiding dehydration
and strategy of tolerance dehydration (Levitt 1980). In the strategy of avoiding
dehydration an important role is played by osmotic adjustment involving the
accumulation of osmolytes, which lower cell water potential to prevent dehydra-
tion (Farooq et al. 2010). The protective action of SA during water deficit in many
plants was demonstrated by the accumulation of different osmolytes such as
sugars, sugar alcohol and proline, responsible for osmotic adjustment (Szepsi et al.
2005; Umebese et al. 2009; Farooq et al. 2010, Bidabadi et al. 2012). The
improvement of leaf water status under water deficit through preventing dehy-
dration of leaves as a result of osmotic adjustment as well the restriction of
reduction stomatal conductance by the application of SA plays a positive role in
maintaining photosynthetic activity and reducing damage. Closure of the stomatal
aperture prevents water loss, but it also limits the uptake of carbon dioxide and
influences on the decrease of photosynthetic rate, which exerts a harmful effect on
the growth and productivity of plants (Pinheiro and Chaves 2011). Moreover, the
limitation of CO2 assimilation may affect the accumulation of ROS and H2O2

because the reductive power (NADPH) developed in the light phase of photo-
synthesis is not utilized in the phase, independent of light (Jaspers and Kangasjärvi
2010; Miller et al. 2010; Gill and Tuteja 2010). Plant pre-treatment with 0.5 mM
SA, one day before water deficit imposition increased sensitivity to drought
because it caused a decrease of stomatal conductance and net rate of photosyn-
thesis and increased damage of cell membranes (Németh et al. 2002). Moreover,
Borsani et al. (2001) found that SA application enhanced the generation of ROS in
leaves of Arabidopsis thaliana and increased development of stress symptoms
under water deficit conditions. However, SA reduced the damage of cell mem-
branes in cucumber, rice, wheat, barley, Satureja hortensis, banana and maize,
exposed to water deficit (Bandurska and Stroiński 2005; Baninasab 2010; Farooq
et al. 2010; Bidabadi et al. 2012; Saruhan et al. 2012; Yazdanpanah et al. 2011).
SA ameliorates the water deficit induced injuries by increasing proline content
which protects cell membranes against the harmful effects of ROS (Bandurska and
Stroinski 2005; Baninasab 2010). The alleviating effect of SA on cell membrane
functioning under water deficit conditions can also be associated with the acti-
vation of the synthesis of soluble phenolics and anthocyanins, which protect leaf
tissue from oxidative damage (Farooq et al. 2010). The application of exogenous
SA may also alleviate the damaging effect of water deficit by up-regulation the
activity of antioxidant system. The increased activity of antioxidant enzymes with
simultaneous reduction in H2O2 production and lipid peroxidation level was noted
under water deficit conditions in plants pre-treated with SA, at various concen-
trations through root, seed soaking or foliar spray (Horváth et al. 2007; Korkmaz
et al. 2007; Daneshmand et al. 2009, Farooq et al. 2010; Kadioglu et al. 2011;
Bidabadi et al. 2012; Saruhan et al. 2012).
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3.4 Role of SA in Improving Plant (Crop) Performance
and Yields Under Drought Conditions

SA-induced activation of the mechanisms responsible for reducing the damage
caused by water deficit and maintenance of normal metabolism plays an essential
role in countering the damaging effects of stress on growth and yield (Fig. 3). In
muskmelon, the moderating influence of SA on cell membrane permeability under
water deficit conditions resulted in the reduction of adverse effect of water stress
on leaf chlorophyll level, stomatal conductivity and photosynthetic productivity
(Korkmaz et al. 2007). The ability of SA to negate adverse effects of water deficit
on cell metabolism had a significant implication in improving growth of wheat
under drought conditions. High chlorophyll content and photosynthetic rate cou-
pled with higher activity of Rubisco were responsible for SA-induced improve-
ment of dry matter accumulation and yield under drought (Singh and Usha 2003).
Azooz and Youssel (2010) revealed that SA-induced resistance to drought in
‘Hassawi’ wheat resulted from its stimulatory effect on the synthesis of soluble
carbohydrates and proteins, which are involved in osmotic adjustment, which
causes the reduction of adverse effect of water deficit on plants. As a result, there
was observed a marked improvement of water status, enhancement of the bio-
synthesis of photosynthetically active pigments as well as photosynthetic rate and
finally stimulation of growth. In other studies conducted on wheat the protective
and growth promoting effects of SA treatment were due to its influence on pre-
venting the decrease in IAA and cytokinin content induced by water deficit
(Sakhabutdinova et al. 2003). SA treatment elicited drought resistance in wheat
through a mechanism of osmotic adjustment and reduction of membrane injury,

Fig. 3 Schematic model presents the role of SA in the enhancement of plant resistance to water
deficit
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which improved the yield under stress conditions (Khan et al. 2012). Application
of SA enhanced the productivity and yield components of sensitive and tolerant
wheat cultivars, grown under water deficit conditions. The effect resulted from the
influence of SA on the accumulation of proline, which could act as an osmolyte as
well as ROS scavenger (Aldesuquy et al. 2012). SA pre-treatment showed a sig-
nificant increase on yield and yield components in common bean under water
deficit conditions. This impact was associated with the improvement of leaf water
status by the activation of osmotic adjustment mechanism, increase of stomatal
conductance, and a stimulatory effect on photosynthetic pigment biosynthesis as
well as net photosynthetic rate (Sadeghipour et al. 2012). In Amaranthus and
tomato SA-induced resistance to drought that was caused by increased proline
production, which increases the capacity to absorb water from soil and reduces
tissue dehydration, enhances nitrate reductase activity and promotes growth of
plants under water deficit conditions (Umebese et al. 2009). Exogenous application
of SA improved growth and biological yield of sunflower grown under water
deficit conditions because of the maintenance of assimilatory surface due to high
RWC, which sustained leaf photosynthetic activity (Hussain et al. 2009).

4 Conclusions

From the results presented here it is clear that SA may play a beneficial role in
plant response to water deficit stress. Some authors link SA accumulation under
water deficit conditions and after pre-treatment with UV-B radiation with ame-
lioration of the damaging effect of water deficit on tissue water status and cell
metabolism. Moreover, a body of evidences have revealed that exogenously
applied SA effectively protects plants against water deficit induced oxidative
stress, membrane injuries, tissue dehydration and metabolic disturbances, which
improves plant growth and yield under drought. It seems that SA could be used as
a potential growth regulator for improving crop yield under limited soil water
availability. The best results were obtained by using a concentration range from
0.5 to 1.0 mM SA and the most convenient method of treatment seems to be pre-
sowing seed soaking in the solution of SA. However, further studies are required to
fix the most effective SA concentration, the site of application and time of treat-
ment for each crop. In addition, to better understand the specific role of SA in the
regulation of plant metabolism under water deficit conditions there are necessary
research with mutants producing high levels of SA or mutants with repression of
the SA biosynthetic pathway.
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Chapter 2
Salicylic Acid: Physiological Roles
in Plants

Mohammad Yusuf, Shamsul Hayat, Mohammed Nasser Alyemeni,
Qazi Fariduddin and Aqil Ahmad

Abstract Since ancient times, salicylic acid has been in use by humans because of
its therapeutic properties. Salicylic acid, chemically known as 2-hydroxy benzoic
acid is one of a diverse group of phenolic compounds, consisting of an aromatic
ring bearing a hydroxyl group or its functional derivative, which is synthesized by
plants. Salicylic acid biosynthetic pathway in plants has two distinct pathways, the
isochorismate (IC) pathway and the phenylalanine ammonia-lyase (PAL) pathway.
Moreover, salicylic acid plays exclusive role in plant growth, thermogenesis,
flower induction and uptake of ions. It affects ethylene biosynthesis, stomatal
movement and also reverses the effects of ABA on leaf abscission. In addition to
this, it also enhances the level of photosynthetic pigments, photosynthetic rate and
modifies the activity of some of the important enzymes as well. This chapter
provides the reader with a comprehensive coverage to above aspects more
exclusively with future prospects.

Keywords Growth � Photosynthesis � Salicylic acid � Senescence � Yield

1 Introduction

Since ancient times, plants and their extracts have been used for their therapeutic
properties. World Health Organization estimated that approximately 75–80 % of
the world’s population uses plant medicines either in part or entirely. Ancient
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