Biometeorology 2

Roberto Gomes da Silva Alex Sandro Campos Maia

Principles of Animal Biometeorology

Principles of Animal Biometeorology

BIOMETEOROLOGY

Volume 2

Chief Editor

Glenn R. McGregor, University of Auckland, New Zealand

Editorial Board

Richard de Dear, Macquire University, Sydney, Australia Kristie L. Ebi, ESS, LLC, Alexandria, VA, USA Daniel Scott, University of Waterloo, Ontario, Canada Scott Sheridan, Kent State University, Ohio, USA Mark D. Schwartz, University of Wisconsin-Milwaukee, WI, USA

For further volumes: http://www.springer.com/series/8101 Roberto Gomes da Silva Alex Sandro Campos Maia

Principles of Animal Biometeorology

Roberto Gomes da Silva Department of Animal Sciences Universidade Federal Rural do Semi-Árido Mossoró, RN, Brazil Alex Sandro Campos Maia Department of Animal Science College of Agricultural and Veterinary Sciences (FCAV) Universidade Estadual Paulista Jaboticabal, SP, Brazil

ISBN 978-94-007-5732-5 ISBN 978-94-007-5733-2 (eBook) DOI 10.1007/978-94-007-5733-2 Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012951127

© Springer Science+Business Media Dordrecht 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Biometeorology is a relatively new scientific area, with three principal subdivisions (human, plant, and animal) being recognized since the International Society of Biometeorology (ISB) was established in 1956. However, the basis for recognition as an area worthy of investigation can be traced back for much longer periods of time. For animal biometeorology in particular, the lineage includes studies of animal calorimetry and bioenergetics as long ago as the eighteenth century (Lavoisier), with more intensive investigations in the early twentieth century by subsequent researchers, resulting in classic references by Samuel Brody (*Bioenergetics and Growth*, 1945) and Max Kleiber (*The Fire of Life*, 1961, revised 1975).

Later in the mid-twentieth century, the focus of animal biometeorology expanded from the basic studies of bioenergetics to the application of the results for improved animal performance, health, and well-being in production systems. Animal scientists, engineers, and veterinarians collaborated in this effort, with numerous research reports and several books published. Notable among the books are those by Esmay (Principles of Animal Environment, 1969), Moberg (Animal Stress, 1985), Sainsbury and Sainsbury (Livestock Health and Housing, 1979), Clark (Environmental Aspects of Housing for Animal Production, 1981), Yousef (Stress Physiology in Livestock, three volumes, 1985), and DeShazer (Livestock Energetics and Thermal Environmental Management, 2009). Additionally, starting in 1974, there have been a series of International Livestock Environment Symposia (organized and proceedings published by the American Society of Agricultural and Biological Engineers) which have provided a forum for discussion and integration of research information for improving animal management in challenging environments. The Congresses of the International Society of Biometeorology, held every 3 years, have furthered that effort.

The authors of the present book, *Principles of Animal Biometeorology*, have extensive research experiences in the field. The material included provides another step in integration of current knowledge about biometeorological principles in assessing the impact of environments on animals of various types. Emphasis is on the physical aspects of heat transfer and heat exchanges in thermal environments (temperature, humidity, wind, and radiation), but with a view toward

thermoregulatory responses of the animals. The book should serve as a useful resource for those interested in animal biometeorology and application of such information for understanding and improving animal environments.

G. LeRoy Hahn (Agricultural Engineer and Biometeorologist, retired from the U.S. Meat Animal Research Service, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska)

Contents

1	The	Enviro	onment	1
	1.1	Enviro	onmental Factors	1
		1.1.1	Domains of the Environment	1
		1.1.2	Weather and Climate	2
		1.1.3	Definition of Tropical Climate	3
	1.2	Radiat	tion Environment	4
		1.2.1	Short-Wave Solar Radiation	4
		1.2.2	Terrestrial Radiation	11
		1.2.3	Radiant Heat Load	15
	1.3	The A	tmosphere	20
		1.3.1	Structure	20
		1.3.2	Gas Components	21
		1.3.3	Physical Properties	25
		1.3.4	Atmospheric Humidity	28
		1.3.5	Wind	31
	1.4	Proble	ems	32
	Refe	rences		37
2	Raci	e Physi	ical Machanisms	30
4	2 1	Radiat		30
	2.1	2 1 1	Definitions and Properties	30
		2.1.1 2.1.2	Padiation Laws	12
		2.1.2	Padiation Geometry	42
	2.2	2.1.5 Condu		51
	2.2	2 2 1	Definitions	51
		2.2.1	Conduction in Multiple Levers	51
	22	L.L.L Convo	Conduction in Multiple Layers	54
	2.3		Definition	54
		2.5.1	Erro Convertion	54
		2.3.2	File Convection	55 54
		2.3.3	Nined Convection	- 30 - 50
		2.3.4		- 28

		2.3.5	Forced Convection in Tubes	58
	2.4	Mass 7	Transfer	59
		2.4.1	Definitions	59
		2.4.2	Evaporation from Wet Surfaces	61
	2.5	Proble	ems	63
	Refe	erences.		74
3	The	rmal Ba	alance and Thermoregulation	75
	3.1	Anima	als vs. Environment	75
		3.1.1	Definitions and Terminology	75
	3.2	Therm	noregulation	79
		3.2.1	Definitions and Concepts	79
		3.2.2	Object of Thermal Control	81
		3.2.3	Lower Critical Temperature	82
	3.3	Metab	olism and Heat Storage	83
		3.3.1	Thermogenesis	83
		3.3.2	Categories of Thermogenesis	91
		3.3.3	Endocrine Regulation of Metabolism	92
		3.3.4	Thermal Energy Storage	94
	3.4	Proble	ems	99
	Refe	erences.		101
4	Hea	t Excha	ange Between Animals and Environment:	
4	Hea Mar	t Excha nmals a	ange Between Animals and Environment: and Birds	107
4	Hea Mar 4.1	t Excha nmals a Body (ange Between Animals and Environment: and Birds	107 107
4	Hea Mar 4.1	t Excha nmals a Body 3 4.1.1	ange Between Animals and Environment:and BirdsSurfaceBody Surface and Heat Exchange	107 107 107
4	Hea Mar 4.1	t Excha nmals a Body 3 4.1.1 4.1.2	ange Between Animals and Environment: and Birds Surface Body Surface and Heat Exchange Skin and Hair Coat Pigmentation	107 107 107 114
4	Hea Mar 4.1	t Excha nmals a Body 3 4.1.1 4.1.2 4.1.3	ange Between Animals and Environment:and BirdsSurfaceBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body Surface	107 107 107 114 121
4	Hea Mai 4.1	t Excha nmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentation	107 107 107 114 121 129
4	Hea Man 4.1	t Excha nmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4 The R	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory Surfaces	107 107 107 114 121 129 135
4	Hea Mar 4.1	t Excha nmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory SurfacesAnatomical Aspects	107 107 114 121 129 135 135
4	Hea Mar 4.1 4.2	t Excha mmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory SurfacesAnatomical AspectsTidal Volume	107 107 107 114 121 129 135 135 135
4	Hea Man 4.1 4.2	t Excha nmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.2 4.2.3	ange Between Animals and Environment:and BirdsSurfaceSurfaceBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory SurfacesAnatomical AspectsTidal VolumeRespiratory Convection	107 107 114 121 129 135 135 135
4	Hea Mar 4.1 4.2	t Excha mmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory SurfacesAnatomical AspectsTidal VolumeRespiratory Evaporation	107 107 114 121 129 135 135 135 137 139
4	Hea Man 4.1 4.2	t Excha nmals a Body 3 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble	ange Between Animals and Environment:and BirdsSurfaceSurface and Heat ExchangeBody Surface and Heat ExchangeSkin and Hair Coat PigmentationThermal Exchange at the Body SurfaceRadiation and Hair Coat Pigmentationespiratory SurfacesAnatomical AspectsTidal VolumeRespiratory Evaporationems	107 107 114 121 129 135 135 135 135 137 139 143
4	Hea Man 4.1 4.2 4.3 Refe	t Excha mmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences	ange Between Animals and Environment: and Birds Surface Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Evaporation	107 107 114 121 135 135 135 135 137 139 143 153
4	Hea Man 4.1 4.2 4.2 4.3 Refe Hea	t Excha nmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences a	ange Between Animals and Environment: and Birds Surface Surface Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Evaporation ems	107 107 114 121 129 135 135 135 137 139 143 153
4 5	Hea Man 4.1 4.2 4.2 4.3 Refe Hea Aqu	t Excha nmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences t Excha tatic Ma	ange Between Animals and Environment: and Birds Surface Surface and Heat Exchange Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Evaporation erms	107 107 114 121 129 135 135 135 137 139 143 153
4	Hea Man 4.1 4.2 4.2 4.3 Refe Hea Aqu 5.1	t Excha mmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences t Excha tatic Ma Cetace	ange Between Animals and Environment: and Birds Surface Surface and Heat Exchange Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Evaporation ems ange Between Animals and Environment: ammals eans	107 107 114 121 129 135 135 135 137 139 143 153
4	Hea Man 4.1 4.2 4.2 4.3 Refe Hea Aqu 5.1	t Excha mmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences t Excha matic Ma Cetace 5.1.1	ange Between Animals and Environment: and Birds Surface Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Evaporation ems Introduction	107 107 114 121 129 135 135 135 137 139 143 153 161 161 161
4	Hea Man 4.1 4.2 4.2 4.3 Refe Hea Aqu 5.1	t Excha mmals a Body 5 4.1.1 4.1.2 4.1.3 4.1.4 The R 4.2.1 4.2.2 4.2.3 4.2.4 Proble erences a t Excha static Ma Cetace 5.1.1 5.1.2	ange Between Animals and Environment: and Birds Surface Body Surface and Heat Exchange Body Surface and Heat Exchange Skin and Hair Coat Pigmentation Thermal Exchange at the Body Surface Radiation and Hair Coat Pigmentation espiratory Surfaces Anatomical Aspects Tidal Volume Respiratory Convection ems ange Between Animals and Environment: anmals eans Introduction Heat Transfer Mechanisms	107 107 114 121 129 135 135 135 137 139 143 153 161 161 161 161

	5.2	Seals and Sea Lions	168
		5.2.1 Introduction	168
		5.2.2 Heat Gains and Losses	169
		5.2.3 Evaporation 1	172
	5.3	Problems	173
	Refe	rences	179
6	Sha	e and Shelter	181
	6.1	Shade and Radiation	181
		6.1.1 Importance of Shade	181
		6.1.2 Factors Affecting Shade Efficiency 1	183
		6.1.3 Sun Elevation and Shade	185
	6.2	Shelters	186
		6.2.1 Factors to Be Considered	186
		6.2.2 Shade Prediction of a Shelter	191
	6.3	Tree Shades	193
		6.3.1 Vegetation and Thermal Comfort	193
		6.3.2 Tree Shade Prediction	194
		6.3.3 Qualitative Aspects of the Shade	199
	6.4	Problems	201
	Refe	rences	204
7	The	mal Stress Indexes	207
	7.1	Thermal Stress Indexes	207
		7.1.1 Index Concepts	207
		7.1.2 Indexes for Animals	210
	7.2	Development of Indexes	218
		7.2.1 Why New Indexes?	218
		7.2.2 Nature of the Indexes	219
		7.2.3 Methods of Index Calculation	220
	7.3	Problems	222
	Refe	rences	227
8	Spee	ial Methods	231
	8.1	Metabolic Rate Evaluation	231
	8.2	Evaluation of Latent Heat Loss	233
		8.2.1 Respiratory Surfaces	233
		8.2.2 Cutaneous Surfaces	237
	8.3	Enteric Methane	239
	8.4	Evaluation of Hair Coat Traits	239
		8.4.1 Coat Thickness	239
		8.4.2 Hair Sampling	240
		8.4.3 Hair Coat Numeric Density	241

8.4.4	Hair Length	241
8.4.5	Hair Diameter	241
8.4.6	Thermal Conductivity of the Coat	242
References.		244
Appendix		247
Index		259

List of Symbols

Greek Alphabet

α		Absorptance of surface for radiation
$\alpha_{\rm s}$		Absorptance of surface for solar radiation
β	degrees	Solar elevation
δ	degrees	Solar declination
3		Emissivity of surface
Eac		Apparent emissivity of clear sky
Φ	$\mathrm{W}~\mathrm{m}^{-2}$	Energy flux density
$\Phi_{\rm cap}$	$L s^{-1}$	Air flux through a capsule
γ	C^{-1}	Psychrometric constant
Γ	$W m^{-2}$	Storage of thermal energy
η	degrees	Hour angle of sun
λ	$J g^{-1}$	Latent heat of vaporisation of water
λ	μm	Wavelength of electromagnetic radiation
μ	$g m^{-1} s^{-1}$	Dynamic viscosity of air
v	$m^2 s^{-1}$	Kinematic viscosity of air
θ	degrees	Solar zenith angle
ρ	$\mathrm{g}~\mathrm{m}^{-3}$	Density of air
ρ		Reflectance of surface
$ ho_{ m g}$		Reflectance of ground surface
σ	$W m^{-2} K^{-4}$	Stefan-Boltzmann constant
		$= 5.67 \times 10^{-8} \mathrm{W} \mathrm{m}^{-2} \mathrm{K}^{-4}$
τ		Transmittance of the air or a surface
Ψ	$\mathrm{g}~\mathrm{m}^{-3}$	Absolute humidity of air
ω	degrees	Solar azimuth angle
	degrees h ⁻¹	Angular speed of Earth

Latin Alphabet

Α	m^2	Surface area
С	$W m^{-2}$	Convective heat flux density
Cs	$W m^{-2}$	Convective heat flux density at body surface
C _R	$W m^{-2}$	Convective heat flux density at respiratory surfaces
c_0	${ m m~s}^{-1}$	Light speed = 2.99792458×10^8
с		Cloud-type coefficient
Cp	$J g^{-1} K^{-1}$	Specific heat of air at constant pressure
C _v	$J g^{-1} K^{-1}$	Specific heat of air at constant volume
C _{pt}	$J g^{-1} K^{-1}$	Specific heat of body tissues
C _{pv}	$J g^{-1} K^{-1}$	Specific heat of water vapour
d	m	Characteristic dimension of surface
d		Ordinal number of the year day (1-365)
D	$m^{2} s^{-1}$	Thermal diffusivity coefficient
Da	$m^{2} s^{-1}$	Thermal diffusivity coefficient of air
$D_{\rm v}$	$m^{2} s^{-1}$	Thermal diffusivity coefficient of water vapour in air
е		Exponential number $= 2.7182818284$
Е	$\mathrm{W}~\mathrm{m}^{-2}$	Evaporative heat flux density
E _R	$W m^{-2}$	Evaporative heat flux density at respiratory surfaces
Es	$W m^{-2}$	Evaporative heat flux density at body surface
F _c		Shape factor of surface for radiation
$F_{\rm r}$	breaths min ⁻¹	Respiratory rate
G	$W m^{-2}$	Irradiance of surface
G_r		Grashof number
g	${\rm m~s}^{-2}$	Gravitational constant
Η	kJ kg $^{-1}$	Enthalpy of air
h		Hour
h	Js	Planck's constant = 6.626076×10^{-34}
h _c	$W m^{-2} K^{-1}$	Convection coefficient
I _c	$\mathrm{W}^{-1}~\mathrm{m}^2~\mathrm{^\circ C}$	Thermal insulation of hair coat
It	$\mathrm{W}^{-1}~\mathrm{m}^2~\mathrm{^\circ C}$	Thermal insulation of tissues
J	$W m^{-2}$	Radiosity of surface
k	$W m^{-1} K^{-1}$	Thermal conductivity
k	$\mathrm{J}~\mathrm{K}^{-1}$	Boltzmann constant = 1.380658×10^{-23}
Κ	$W m^{-2} K^{-1}$	Thermal conductance of body
L	$W m^{-2}$	Long-wave irradiance of surface
LCT	°C	Lower critical temperature
LD	$\mathrm{W}~\mathrm{m}^{-2}$	Long-wave irradiance, downwards
L_{U}	$\mathrm{W}~\mathrm{m}^{-2}$	Long-wave irradiance, upwards
$L_{\rm t}$	degrees	Latitude

L_{g}	degrees	Longitude
Μ	$\mathrm{W}~\mathrm{m}^{-2}$	Metabolic rate
М	$g \text{ mol}^{-1}$	Molecular mass
$M_{\rm w}$	$g \text{ mol}^{-1}$	Molecular mass of water = $18,016 \text{ g mol}^{-1}$
т		Air mass number
ṁ	kg s ⁻¹	Mass flux
N _u	nondimensional	Nusselt number
n		Proportion of sky cloudiness
P_r	nondimensional	Prandtl number
P _a	kPa	Atmospheric pressure
$P_{\rm s}(T)$	kPa	Saturation vapour pressure at temperature T
$P_{\rm v}$	kPa	Partial air vapour pressure
R	$\mathrm{W}~\mathrm{m}^{-2}$	Thermal flux by radiation
		Emissive power of a surface
		Thermal energy exchange by radiation
R_e	nondimensional	Reynolds number
R	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$	Universal gas constant = $8.3143 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$
$R_{\rm a}$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$	Gas constant of air =287.04 J mol ^{-1} K ^{-1}
r	m	Geometric radius
r		Correlation coefficient
r	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance
r _t	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance of tissues
$r_{\rm H}$	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance for convection
$r_{\rm K}$	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance for conduction
$r_{\rm R}$	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance for radiation
$r_{\rm V}$	$\mathrm{s} \mathrm{m}^{-1}$	Thermal resistance for evaporation
S	$W m^{-2}$	Short-wave irradiance of surface
S_c	nondimensional	Schmidt number
S_h	nondimensional	Sherwood number
t	S	Time
t		Atmospheric turbidity coefficient
Т	°C, K	Temperature
T _a	°C, K	Air temperature, dry bulb temperature
$T_{\rm b}$	°C, K	Mean body temperature
$T_{\rm c}$	°C, K	Body core temperature
T_{dp}	°C, K	Dew point temperature
T_{exp}	°C	Temperature of expired air
T_{g}	°C, K	Black globe temperature
T _o	°C, K	Operative temperature
T_{oe}	°C, K	Equivalent operative temperature
$T_{\rm r}$	°C	Rectal temperature

$T_{\rm rm}$	°C, K	Mean radiant temperature	
$T_{\rm rm}^{*}$	°C, K	Effective mean radiant temperature	
T _s	°C, K	Surface temperature	
$T_{\rm w}$	°C, K	Wet bulb temperature	
U	$m s^{-1}$	Wind speed	
UCT	°C	Upper critical temperature	
U _R	%	Air relative humidity	
V	m ³	Volume	
V_{T}	m ³ breath ⁻¹	Tidal volume	
W	kg	Body weight	
Ζ	m	Altitude	

Tables

Name Symbol Definition c.g.s. Quantity Concentration of substance mol Mole Electric current А Ampère Volt v Electric potential difference Linear dimension Metre m $kg m^2 s^{-2}$ Energy Joule J kg m s⁻² Force Ν Newton Oscillations s⁻¹ Frequency Hertz Hz Mass Kilogram kg Gram g $J s^{-1}$ Power Watt W $\rm kg \ m^{-1} \ s^{-2}$ Pressure Pascal Pa Temperature Kelvin Κ °C Celsius Time Second s ${\rm m}~{\rm s}^{-1}$ Velocity 10^{-3} m^3 Volume Litre L

Table A1 Système International (SI) units

Multiplier	Prefix	Symbol	
$10^{12} = 1,000,000,000,000$	Tera	Т	
$10^9 = 1,000,000,000$	Giga	G	
$10^6 = 1,000,000$	Mega	М	
$10^3 = 1,000$	Kilo	k	
$10^2 = 100$	Hecto	h	
$10^1 = 10$	Deca	da	
$10^{-1} = 0.1$	Deci	d	
$10^{-2} = 0.01$	Centi	с	
$10^{-3} = 0.001$	Milli	m	
$10^{-6} = 0.000001$	Micro	μ	
$10^{-9} = 0.000000001$	Nano	n	
$10^{-12} = 0.000000000001$	Pico	р	

Table A2Multiples andsubmultiples of SI units

Quantity	Unit	Equivalence
Linear dimension	Inch (", in)	0.0254 m
	Foot $= 12$ in. (ft)	0.3048 m
	Yard (yd)	0.9144 m
	Mile (mi)	1,609.34 m
	Mile, nautical (mi)	1,852 m
Area	Square inches (sq.in)	0.000645 m^2
	Square foot (sq.ft)	0.092903 m ²
	Acre	4,047 m ²
	Hectare	$10,000 \text{ m}^2$
Mass	Pound (lb)	0.453592 kg
Volume	Litre (L)	$1,000 \text{ cm}^3$
	Gallon, British (ga)	4.546 L
	Gallon, American (ga)	3.785 L
Temperature	Celsius (°C)	K – 273.15
	Kelvin (K)	°C + 273.15
	Fahrenheit (F)	$(9/5)^{\circ}C + 32$
	Rankin (R)	F + 460
Pressure	Kilopascal (kPa)	1.000 Pa
	Millibar (mb, mbar)	0.1 kPa
	Millimetres of mercury (mmHg)	0.1333224 kPa
Thermal energy	British thermal unit (BTU)	1,055.1 J
	Calorie (cal)	4.186938 J
	Watt (W)	$3.412806 \text{ BTU } \text{h}^{-1}$
	Watt (W)	0.238838 cal s ⁻¹
	$cal (cm^2 min)^{-1}$	$697.823071 \text{ W m}^{-2}$
	BTU (h ft^2) ⁻¹	$3.154723 \text{ W m}^{-2}$
	$W m^{-2}$	0.316985 BTU (h ft ²) ⁻¹
	Mcal day $^{-1}$	48.459931 W

Table A3 Equivalence of some units

List of Figures

Fig. 1.1	Relationships among the four domains of the physical	
	environment and the sciences which are associated to them	2
Fig. 1.2	Annual variation of the solar radiation at sea level in the	
	Southern Hemisphere, considering four different latitude	
	degrees and a standard clean atmosphere	7
Fig. 1.3	Black globe used to evaluate radiant heat load. Over the globe,	
	there is the display of the digital thermometer that was	
	introduced for the determination of the globe temperature, $T_{\rm g}$	16
Fig. 1.4	Atmospheric CO ₂ concentration in Hawaii (Mount Mauna Loa,	
	9°32' north, 155°35' west, 3,397-m altitude) and in Antarctica	
	(89°59' south, 24°48' west, 2,810-m altitude) (Data from Keeling	
	and Whorf 2003; Steele et al. 2002)	22
Fig. 1.5	Concentrations of sulphates (SO_4^{2-}) , nitrates (NO_3^{-}) and	
	ammonium ions (NH_4^-) in the rainwater of six regions,	
	values in μ Eq-gL ⁻¹ (Data from Bridgman 1997)	25
Fig. 1.6	Variation of the saturation vapour pressure of the air according	
	to the temperature	29
Fig. 2.1	Variation of the emissive power at the skin surface of an animal	
	for a cutaneous temperature of 35°C	44
Fig. 2.2	The area of a horizontal surface illuminated by a radiation	
	beam increases in proportion to its zenith angle to the	
	surface, θ	44
Fig. 2.3	Geometry of the shadow from a sphere exposed to radiation	46
Fig. 2.4	Radiation geometry of a horizontal cylinder of radius r and	
	length z, placed at a distance d from a horizontal surface.	
	There are a solar elevation angle β and an azimuth angle ω	48
Fig. 2.5	Radiation geometry of a horizontal ellipsoid with greatest	
	radius R and smallest radius r , exposed to a radiation source	
	at an elevation angle β	49

			•
xv	1	1	1
	-	-	

Fig. 2.6	Heat flux by conduction, K , through three layers of different thickne made from different material. Values T_1 to T_4 are temperatures of th surfaces limiting the layers, Δx_A to Δx_C are the respective layer thicknesses and k_A and k_C are the conductivity coefficients of the layers	ss he
Fig. 3.1	Ambient temperature zones related to variations in metabolic rate and body temperature. <i>LCT</i> lower critical temperature, <i>UCT</i> upper critical temperature. See text for more explanation	80
Fig. 3.2	Oxygen consumption by cattle of three groups: Brahman (B) , Brahman x Hereford-Shorthorn crosses (BHS) and Shorthorn (S) , according to the air temperature (Adapted from Finch 1985)	87
Fig. 3.3	Variation of correlation coefficients of thyroid hormones (T3 and T4) blood serum levels with ambient temperature measured several days before blood sampling. Data recorded along 12 months in Corriedale sheep under temperatures from 19 to 45°C (Adapted from Naccimento et al. 1006)	07
	(Adapted from Nascimento et al. 1996)	95
Fig. 4.1 Fig. 4.2	Schematic representation of a melanocyte Intense skin burning by solar radiation in the white spots of Holstein cows in an equatorial region (Ceará, Brazil) (Photos by R.	117
Fig. 4.3	G. Silva 2010) Electrical analogue for sensible and latent heat transfer through the hair coat of animals. $T_{\rm b}$ = deep body temperature, $T_{\rm c}$ = skin	120
Fig. 4.4	temperature (Modified from Silva 2000)	124
Fig. 4.5	speed (Modified from Cena and Monteith 1975b) Cylindrical model used to calculate the forced convection in four-legged mammals. As for the case of wind blowing parallel to the body axis (a), the characteristic dimension d will be the body length. In the case the wind blows perpendicularly to the body axis (b), the d value will be the average body diameter. In either case, the characteristic dimension of each paw and that of the head will be the average body diameter. (m)	125
Fig. 4.6	Cylindrical model used to calculate free convection in four-legged mammals. The characteristic dimension (d) of the trunk and the head will be the respective average diameter, while that of each	127
Fig. 4.7	paw will be its length. Measurements in metres (m) Spectral reflectance of the hair coat of cattle for wavelengths from 300 to 850 nm (0.3–0.85 μ m), according to the colour and a 90°	127
Fig. 4.8	incidence angle (Built with data from Silva et al. 2003) Schematic cut of the tracheal tube of ruminants (cattle, sheep and goats). D_a and D_b are the greatest diameters, d_a and d_b the	130
E' 40	smallest diameters and c is the length (From Silva 2008)	136
F1g. 4.9	A simplified diagram of the air sacs in birds. The <i>arrows</i> point to the air flow direction	140

Fig. 4.10	Variation of the resistance to water vapour loss in the respiratory surfaces of Holstein cows, as a function of the respiratory rate	143
Fig. 5.1	Electrical-equivalent model of heat transfer from the deep body of an aquatic mammal to the ambient water. Body temperature (T_B) is much higher, and skin temperature (T_S) is close to than that of the water (T_W) . Thermal resistance of the blubber (r_T) is very high, and heat loss by conduction (K) and convection (C) is substantially reduced; r_W is the thermal resistance of the boundary layer of water at the skin surface	164
Fig. 5.2	Schematic transverse cut of a cetacean's body. The core has a temperature T_r and is surrounded by the insulating blubber layer with thermal conductivity k_T . Temperature of water is T_w and that of the skin surface is T	165
Fig. 5.3	Ellipsoidal model for dolphins and porpoises, where <i>L</i> is the body length and <i>D</i> is the maximum diameter in metres.	165
Fig. 5.4	Electrical-equivalent model for the heat fluxes between environment and the body of seals and sea lions on land. Temperatures: T_r = deep body, T_s = skin surface, T_c = hair coat surface, T_{exp} = expired air, T_a = atmosphere, T_{mr} = mean radiant and T_{gr} = ground surface. Vapour pressures: P_v = partial, atmospheric; $P_s(T_{exp})$ = saturated, expired air and $P_s(T_s)$ = saturated, skin surface. Thermal fluxes: \mathbf{K}_T = conduction, tissues; \mathbf{K}_C = conduction, hair coat; \mathbf{R} = radiation; \mathbf{C}_S = convection, body surface; \mathbf{E}_S = evaporation, body surface; \mathbf{C}_R = convection, respiratory and \mathbf{E}_R = evaporation, respiratory. The values r_B , r_T , r_C , r_H , r_V , r_{Cr} and r_{Vr} are thermal resistances	170
Fig. 6.1	Crossbred Holstein cows seek after shade during the hottest hours of the day in the equatorial region of Ceará, Brazil (Photo by $\mathbf{P} \in \mathbf{S}$)	183
Fig. 6.2 Fig. 6.3	Angles of the sun: zenith (θ), elevation (β) and azimuth (ω) Schematic design of the shade projected by a shelter without walls. $a = \text{roof width}, b = \text{roof length}, z = \text{height and } \beta = \text{angle of de elevation of the sun}$	185 186 191
Fig. 6.4	Shade position of a shelter with a roof 8 m length, 3.5 m wide and 3 m high, in a location at $21^{\circ}35'$ south latitude and $48^{\circ}54'$ west	
Fig. 6.5	longitude in December 22 at 15:00 h Radiant heat load measured at the sun and under the shade of four tree types: $AI =$ mango tree (<i>Mangifera indica</i>), high, wide crown and dense shade; $A2 =$ mango tree, low-sized, dense shade; A3 = Casuarina sp., <i>Aleurite mollucana</i> and <i>Caesalpinia</i> <i>peltophoroides</i> , all of them with high, wide, sparse crown and sparse shade; and $A4 = Pinus$ sp., high, narrow crown and long, low-density shade (Graph based on the data from Waldige 1904)	192
	1774/	194

Fig. 6.6 Fig. 6.7	The dense shade projected by a mango tree, <i>Mangifera indica</i> The wide, sparse shade of a <i>Caesalpinia peltophoroides</i> . Note the	195
U	black globe above ground in the centre of the shade	195
Fig. 6.8 Fig. 6.9	The long, narrow, sparse shade of a <i>Pinus</i> sp Schematic design of the shade projected by a tree with lentil- shaped crown. Symbols: R = greater radius, r = smaller radius, c = shade length, s = distance of shade from the trunk, z = total tree height, y = trunk height and β = angle of sun elevation above horizon	196 197
Fig. 6.10	Schematic design of the shade projected by a tree with inverse conic crown. Symbols: $r =$ radius of the crown $c =$ shade length, $s =$ distance of shade from the trunk, $z =$ total tree height, $y =$ trunk height and $\beta =$ angle of sun elevation above horizon.	198
Fig. 6.11	Schematic design of the shade projected by a tree with cylindrical crown. Symbols: $r =$ radius of the crown, $y =$ trunk height, $z =$ total tree height, $c =$ shade length, $s =$ distance of shade from the trunk and $\beta =$ angle of sun elevation above horizon	200
Fig. 7.1	Bioclimatic zoning of the states of São Paulo (<i>right up</i>) and Paraná (<i>left down</i>), Brazil, for breeding of Polwarth (<i>A</i>), Corriedale (<i>B</i>) and Suffolk (<i>C</i>) sheep. The <i>D</i> zone is an intermediary region where either Corriedale or Suffolk breeds can be bred. Points on the map are locations with meteorological stations that were used in the study (Modified from Barbosa et al. 1995)	215
Fig. 8.1	Schematic representation of the facial mask method used for indirect calorimetry in ruminants. (<i>A</i>) Air input and output, (<i>B</i>) air flux metre, (<i>C</i>) O_2/CO_2 analyzer, (<i>D</i>) air mixer, (<i>E</i>) saliva collector, (<i>F</i>) temperature sensor, (<i>G</i>) data centre, (<i>H</i>) facial mask, (<i>I</i>) spirometer, (<i>J</i>) computer, (<i>K</i>) air dryer, (<i>L</i>) H ₂ O analyzer, (<i>M</i>) methane analyzer, (R1, R2, R3) sluices (Maia et al. 2011).	233
Fig. 8.2	Facial mask used to evaluate the metabolic heat production of cattle (Maia et al. 2011)	234
Fig. 8.3	Facial mask used to evaluate the metabolic heat production of a sheep	234
Fig. 8.4	Facial mask used to evaluate the metabolic heat production of chickens (Nascimento et al. 2011)	231
Fig. 8.5	Fraction of the difference between the absolute humidity of the air leaving the mask and that of the air exhaled by the animal (β), as a function of the relation of the tidal volume to the volume of dead	233
Fig. 8.6	space within the mask Ventilated capsule used by Maia et al. (2005b). $A =$ capsule air input, $B =$ atmospheric air input, $C =$ hot-wire anemometer, D = air output and pump, E and $H =$ infrared thermo anemometer, $F =$ H ₂ O/CO ₂ analyzer, $G =$ gas compressor, I_1 and $I_2 =$ sluices	236 238
	-1	-55

Fig. 8.7	Digital calliper or pachymeter can be used to evaluate animals'	
	coat layer. Coat thickness is measured by using projection 8, while	
	the jaws (1) are used to evaluate both the length and the thickness	
	of the individual hairs. The result is given on display (6), which can	
	be zeroed or changed by using buttons 11, 12, or 13. The other	
	numbered parts are not used.	240
Fig. 8.8	Hair geometry: θ_{f} = angle of the hair in relation to the normal	
-	to the skin; ϕ' = angle between the hair projection on the sin and	
	the hair dominant direction (Adapted from Davis and	
	Birkebak 1974)	242

List of Tables

Table 1.1	Spectral distribution of solar radiation at sea level	5
Table 1.2	Coefficients of short-wave solar radiation transmitted through some types of clouds	11
Table 1.3	Reflectance values for short-wave solar radiation and	11
	emissivities for long-wave radiation of some surface	12
Table 1.4	Average composition of the atmosphere, in terms of dry air	21
Table 2.1	Approximate division of the known electromagnetic	40
Table 2.2	Coefficients of thermal conductivity (k) for some materials	52
Table 3.1	Values of the lower (LCT) and upper (UCT) critical	
	temperatures for some animals (°C)	83
Table 3.2	Thermal energy produced and O_2 consumed during metabolic	0.7
Table 2.2	processes	85
1 able 5.5	CO_2 production methane production and nitrogen excretion in	
	the urine	85
Table 3.4	Equations for the estimation of resting metabolism as a function of body weight $W_{i}(kg)$	00
Table 3.5	Body surface area as function of the body weight $W(kg)$	89
Table 3.6	Effect of environmental temperature on the thyroid hormone (T_3)	0,
	and T ₄) content of milk and blood plasma	94
Table 3.7	Thyroid hormone levels in sheep according to several authors	
	(values in ng mL ^{-1})	95
Table 4.1	Average number of hair follicles per unit surface area in cattle at	
	different ages, adjusted for body weight	110
Table 4.2	Seasonal variation of the hair coat characteristics of 381	
	Holstein and 345 Jersey cows in the state of Sao Paulo,	111
Table 1 ?	Brazil	111
1 auto 4.5	Average sweating rates recorded for rour annual species	114

Table 4.4	Heat exchange by black and white Bedouin goats in the conditions of the Negev desert	116
Table 4.5	Thermal resistance (s m^{-1}) of peripheral tissues in some animals, considering cutaneous vasoconstriction and	110
	vasodilatation	122
Table 4.6	Thermal conductivity (k) of some animal tissues	122
Table 4.7	Thermal insulation (I) and resistance $(r_{\rm rr})$ values for the body	122
1 0010 4.7	coat of some animals ner unit of thickness (cm)	123
Table 4.8	Thermal insulation $(W^{-1} m^2 °C)$ of the hair coat of some	125
1 able 4.0	animals according to the wind speed	125
Table 4.0	Padiative properties of the skip of some animals for	125
1 abic 4.9	wavelengths from 0.3 to 0.85 µm (Silva et al. 2003)	121
Table 4 10	Average dimensions of the tracheal tube of cattle, sheep	151
1 able 4.10	and goats	126
Table 4.11	Volumes of the respiratory system in relation to the body	150
1 able 4.11	volumes of the respiratory system in relation to the body weight in hirds and mommals $(10^{-5} \text{ m}^3 \text{ km}^{-1})$	120
	weight in birds and manimals (10 m kg)	139
Table 5.1	Thermal conductivity $(k_{\rm T})$ for the bubble in cetaceans, as given	
	in the literature	165
Tabla 6 1	Area of shade per animal as recorded in some studies	
Table 0.1	with softle	101
Table 6.2	Padient hast load (DIII) many within shalters with different	164
Table 0.2	Radiant heat load (RHL) measured within sheners with different	100
T.1.1. ()	$\mathbf{F}_{\mathbf{a}} = \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{bmatrix}$	189
Table 6.3	Emissivity (ε) and solar radiation absorptance (α_s) for some	100
T 11 C 4	surfaces	190
Table 6.4	Radiant heat load (<i>RHL</i>) measured 1 m above the ground covered	100
	by five different forage types during 1 year (Reis 1984)	196
Table 7.1	Correlation coefficients of six indexes with responses of	
	Holstein and Jersey cows to the conditions of an equatorial	
	semiarid environment	213
T.1.1.0.1		
Table 8.1	Heat produced by metabolic reactions (resting metabolism)	000
	according to the type of substrate	233

Chapter 1 The Environment

Abstract In this chapter, the following are presented: environmental factors and definition of tropical climate, definitions and discussion about radiation environment (solar constant, solar radiation variation with latitude and season), equations for determination of sun angles (zenith, elevation, declination and hour angles of sun), aspects of the short-wave radiation at the ground level, atmospheric transmittance, diffuse and reflected radiation, influence of clouds, reflectance of ground surfaces and estimation of total short-wave radiation. The determination of downward and upward long-wave radiation is discussed, along with the respective formulas. The concepts of radiant heat load and the mean radiant temperature are discussed, and the respective methods of determination are presented. The theory of black globe is presented, and its practical use is discussed. The structure of the atmospheric layers, together with the gas components of the atmosphere, is described. The importance of CO_2 , ozone and methane is discussed, together with that of aerosol pollutants; the evolution of atmospheric CO₂ is also discussed. The equations to determine the physical properties of the air are presented: atmospheric pressure, specific heat, density, thermal conductivity, viscosity, latent heat of vaporisation, psychrometric constant and diffusivity of vapour; the methods of air humidity specification are presented: saturation and partial vapour pressure, relative humidity, absolute humidity and dew point temperature.

Keywords Atmospheric layers • Atmospheric properties • Carbon dioxide • Long wave • Ozone • Radiant heat load • Short wave • Solar radiation • Tropical climate

1.1 Environmental Factors

1.1.1 Domains of the Environment

Physical environment is constituted by four domains or spheres which are not superimposed one over another but exchange energy among them: *atmosphere*,

Fig. 1.1 Relationships among the four domains of the physical environment and the sciences which are associated to them

lithosphere, hydrosphere and biosphere. The first three include the air, the land and the waters, respectively, while the last is the universe of all live beings of the Earth. Between those four domains, there are close relationships and mutual interactions (illustrated in Fig. 1.1), which are of uttermost importance for sustaining life on the Earth.

The term environment includes all sources of energy, especially the radiant energy used for the plant photosynthesis that is stored as nutrients (proteins, carbohydrates, lipids). Such a material is the prime source of energy for other terrestrial and aquatic forms of life. All the live organisms in the biosphere are constituted by the water from hydrosphere; by the nitrogen, oxygen and other gases from the atmosphere; and by the minerals from the lithosphere.

Environmental factors as temperature and photoperiod determine growth rates of plants and affect reproduction of both animals and plants; besides, they control food availability and searching for animals. Gravity and light stimulate animals and plants and constitute references for them in terms of space and time, involving important processes as the sense of equilibrium and the biological clocks. Climatic and geological factors, among others, affect the spreading and viability of pathogenic agents and parasites which attack the organisms.

1.1.2 Weather and Climate

Among the environmental factors, variation of the atmospheric conditions is one of the most important effects upon the biosphere. In order to understand that variation, we must refer to two different terms: *weather* and *climate*.

Weather is the instantaneous state of the atmosphere and its study is the object of meteorology. The term "instantaneous" means here different periods of time, but in general, it is a 24-h period. Then, meteorological reports refer to the weather giving, as, for example, maximum and minimum air temperatures for a given location, or mentioning the occurrence of rain or winds in that period.

On the other hand, climate is the average weather conditions prevailing in a given location; it is established in the long range, after 10–30 years of continuous meteorological observations. Climatology is the science of the climate and has similar content to that of meteorology; however, they differ one from another with respect to the methodology. Climatologists use mainly statistical and cartographic techniques, while meteorologists use the laws of physics and mathematical techniques. Another difference is that the main concern of meteorology is the development and dynamics of the atmospheric phenomena, while that of climatology is the consequence of those phenomena.

Biometeorology is just a specialised field of meteorology that refers to the relationships between atmosphere and biosphere, which are aimed also by ecology and bioclimatology.

1.1.3 Definition of Tropical Climate

The word "tropical" refers to that zone of the Earth lying between the tropics of Cancer and Capricorn, which are, respectively, the $23^{\circ}27'$ north and south parallels. It is a belt that includes all the regions where the sun can be in some time at zenith. According to Ayoade (1983), the following definitions of a tropical region are valid:

- (a) A region without winter or cold season
- (b) A region where the annual average temperature is equal to or less than the average daily variation
- (c) A region where the average temperature at sea level never is less than 18°C

It is generally considered that, despite the so-called tropical zone remains between the two 23°27' parallels, these limits are not adequate because they are very rigid ones. In fact, some regions that are clearly nontropical can be found close to the equatorial line, such as parts of the Andes mountains in South America, the region of Mount Kilimanjaro in Kenya and some regions in Mexico, Central America and New Guinea (Nieuwolt 1978).

The use of temperature limits to demonstrate absence of winter in a tropical region seems also to be a misunderstanding; for example, considering an average temperature of 18°C for the coldest month can leave to the exclusion of the tablelands and highlands in tropical regions, where air temperature often falls beneath such a limit. Until some years ago, climates were described by meteorological standards, and several climatic classifications were used, as that of Köppen. However, such classifications were purely descriptive, leaving often too erroneous conceptions of the climatic variations in terms of biological significance, because of the used methodology – which was unable to explain the processes involved in the climatic variations.

In fact, interactions of the atmosphere with the other physical domains are dynamic and not static, involving continuous changes in the conditions of the ground surface, water distribution and alterations of the biosphere – especially the vegetation.

Therefore, climatic zoning and mapping could sometimes leave to a wrong idea about a given situation, because changing from a climate type to another is gradual. On the other hand, the atmospheric characteristics of a given region can be well understood only when they are considered within the environment as a whole.

Modern climatology concerns with long- or medium-term alterations of the climatic conditions, involving a number of factors – for example, solar radiation, environmental pollution and forest depletion. One of its basic instruments is the remote sensing by means of specialised satellites.

Then, in the present study, we do not consider any climatic classification, using rather a more practical division into *tropical*, *temperate* and *cold* climates. The term tropical is used to indicate a region located within the two tropics. The word "subtropical" has been extensively used to name a region with climatic conditions intermediary between tropical and temperate; it must be avoided, as showed by Nieuwolt (1978).

1.2 Radiation Environment

1.2.1 Short-Wave Solar Radiation

1.2.1.1 Solar Constant

All the energy at the surface of the Earth comes from the sun to be used for the biological and physical processes. Analyses of the solar spectrum show that the sun behaves almost as a perfect radiator, whose surface has an apparent temperature of $T_{\rm S} = 5,755$ K.

Considering the Stefan-Boltzmann law, the radiation flux reaching the Earth outside atmosphere can be given as

$$\mathbf{S}_0 = \sigma T_s^4 r_s^2 r_t^{-2} \quad \text{W m}^{-2} \tag{1.1}$$

where $r_{\rm s} \simeq 0.7 \times 10^6$ km is the radius of the sun, $r_{\rm t} = 149 \times 10^6$ km the mean radius of Earth's orbit and σ is the Stefan-Boltzmann constant. Then,

$$\mathbf{S}_0 = 5.67 \times 10^{-8} (5,755)^4 (0.7 \times 10^6)^2 (149 \times 10^6)^{-2}$$

= 1,372.7 W m⁻²

which is the *solar constant*. However, it is not really a constant, since the flux of solar energy reaching the Earth varies according to the level of sun activity. The above given S_0 figure is close to the average of observations (ranging from 1,369 to