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Foreword

The climate is changing owing to human activities. The predominant effect is
from the changing atmospheric composition mainly from burning of fossil fuels
that produces both visible pollution that blocks the sun and carbon dioxide. The
particulates have a short lifetime as they are washed out of the atmosphere by
rainfall, but carbon dioxide has a very long lifetime: typically over a 100 years
and so it builds up and accumulates. Indeed carbon dioxide amounts have increased
by over 40% since pre-industrial times and over half of this increase has occurred
since 1970. Carbon dioxide is a greenhouse gas and produces a blanketing effect
that results in a warming planet.

As well as increasing temperatures, a warming world is expected to alter
precipitation in several ways. A warmer atmosphere can hold more water vapor, and
will as long as there is a water supply nearby, as there always is over the oceans. The
result is that more atmospheric moisture is pulled into storms resulting in heavier
rains – or snows. But where it is not raining, the warmer atmosphere sucks moisture
out of the soils and vegetation, promoting drought. Indeed, it is expected that a
warming world alters the occurrence and magnitude of extremes such as droughts,
heavy rainfalls and floods, as well as the geographic distribution of rain and snow.
The winter snow season is likely to get shorter at each end and more precipitation
events are apt to be rain. But snow events in winter can also be larger, as long
as temperatures remain below about freezing. All of these changes are related to
an acceleration of the hydrologic cycle and atmospheric circulation changes, and
they include the direct impact of warmer conditions on atmospheric water vapor
amounts, rainfall intensity, and snow-to-rain occurrence. However, extremes are
inherently rare and difficult to observe reliably. But they are exceedingly important
because of their nature and the tremendous damage that can ensue as conditions
exceed those previously experienced. Key scientific issues relate to determining the
statistics of extremes and how they are changing, and whether those changes are
indeed caused by the human-induced changes in climate. These are very much the
topic of this book.

A key issue then is what will happen in the future? For this we use climate models
along with statistical approaches. But there are questions of how well models are
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vi Foreword

able to handle extremes and how we can improve their capabilities. New improved
and updated data sets at high frequency (e.g., hourly) are needed to properly
characterize many of these facets of our climate and to allow for assessment against
comparable model data sets. Then analyses are required that quantify which changes
are consistent with our expectations and how we can best contribute to improving
their prediction in a future climate. Confronting models with observationally-based
products can lead to new metrics of performance and highlight shortcomings and
developmental needs that may focus field programs, process studies, numerical
experimentation, and model development. New applications should be developed
for improved tracking and warning systems, and assessing changes in risk of
drought, floods, river flow, storms, coastal sea level surges, and ocean waves. This
book provides a welcome entrée into all of these areas.

Addressing the topic of changes in hydrologic extremes has been and continues
to be one of the priorities of the World Climate Research Programme and especially
the Global Energy and Water cycle Experiment (GEWEX). Indeed the workshop
that is the focus of the material in this book grew directly from these interests.

National Center for Atmospheric Research Kevin E. Trenberth



Preface

The observed increase in weather and hydroclimatological extremes, particularly
in the past decade, has brought much needed attention to the subject. In 2011,
Texas experienced the driest year on record resulting in economic losses exceeding
$7 billion. The Texas drought was by far the costliest drought on record with an
approximately 90% increase from the previous global record set in 2006. In the past
few years, major drought events have been recorded in Ethiopia, Australia, United
States, Eurasia, Middle East, and southern Europe. At the other end of extreme, in
2010, Pakistan experienced the worst flooding in 80 years resulting in over 2,000
casualties, four million people displaced, and 20 million people affected directly
or indirectly. The number of people suffering from this extreme event exceeds the
combined total of the Indian Ocean tsunami (2004), Kashmir earthquake (2005), and
Haiti earthquake (2010). Similar to droughts, every continent, in the past few years,
has experienced major floods. For example, Australia, United States, Thailand, and
China have set local records in flooding and the resulting economic losses. New
records in terms of number of tornadoes in the United States in 2004 (1817) and
2011 (1691) and heat waves in 2003 (Europe) and 2010 (Russia) suggest that
we should get used to climate extremes of all kinds and get more serious about
developing better mitigation and adaptation strategies.

A question that has unfortunately become political and controversial is whether
the observed changes are due to anthropogenic causes or whether our observations
are just within the expected climate variability. Perhaps more important is the
question of how climate extremes might change in the future. The first step to
address these questions is detecting extremes and their variability. Predicting how
weather and climate extremes might change in the future requires an understanding
of their changes and behavior in the past. In fact, mitigating climate extremes
requires a comprehensive and reliable study of statistics of extremes.

The main motivation for this book stems from the demand for more extensive and
reliable methods for analyzing climate extremes in a nonstationary world. Given the
limitations in the spatial and temporal resolutions of global climate data records,
substantial progress in understanding extremes will largely rely on improvements in
stochastic methods suitable for analyzing extremes. This book provides a collection

vii



viii Preface

of the state-of-the-art methodologies and approaches suggested for detecting ex-
tremes, trend analysis, accounting for nonstationarities, and uncertainties associated
with extreme value analysis in a changing climate. This volume is designed so that
it can be used as the primary reference on the available methodologies for studying
climate extremes.

The first chapter introduces several statistical indices designed for detecting
and diagnosing changes in climate extremes. Most statistical methods currently
being used in engineering design are based on the stationary assumption (i.e.,
an unchanging climate in a statistical sense). Chapter 2 describes how extremal
distributions can be retained under the nonstationary assumption. Chapter 3 extends
the discussion by introducing a Bayesian framework for nonstationary analysis of
extremes and their associated uncertainties. The chapter also provides a discussion
of the so-called regional parameter concept using Bayesian hierarchical modeling.
Chapter 4 is devoted to return-periods and return-levels estimation under climate
change. The chapter examines two different definitions of return-period under the
nonstationary assumption. Chapter 5 illustrates the application of Copula functions
to multivariate extreme value analysis. Chapter 6 presents several parametric and
nonparametric methods for tail dependence analysis. Chapter 7 discusses the the-
oretical framework, observational evidence, and related developments in stochastic
modeling of weather and climate extremes. Chapter 8 surveys methods of projecting
changes in extreme weather and climate statistics. Chapter 9 examines the simulated
and observed short-term climate variability and weather extremes that have occurred
over the last three decades with a focus on the winter hemispheres. Chapter
10 explores uncertainties in observed changes in climate extremes. Chapter 11
assesses uncertainties in the projection of future changes in precipitation extremes.
Chapter 12 presents various data sets that are suitable for examining changes in
extremes in the observed record. Finally, Chap. 13 is devoted to the concept of
nonstationarity in extremes and engineering design.
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Chapter 1
Statistical Indices for the Diagnosing
and Detecting Changes in Extremes

Xuebin Zhang and Francis W. Zwiers

Abstract This chapter introduces statistical indices that have been used to quantify
the past changes in weather and climate extremes. These indices can also be
used to assess changes in future extremes as projected by climate models. We
also present examples in which the influence of anthropogenic climate change has
been identified on extreme daily temperature, extreme daily precipitation, and the
probability of occurrence for a specific extreme event.

1.1 Introduction

Weather and climate extremes have always played an important role in shaping
the natural environment and pose significant challenges to society. For example,
extremely cold winter temperatures strongly regulate over-winter survival of the
spruce beetle in the Yukon and the mountain pine beetle in British Columbia,
Canada. The insect freezes and dies below a threshold temperature of about�40ıC,
therefore, the occurrence of such very cold temperature events in winter affects the
abundance of the beetle population in the following spring. Another example is the
availability of water: too much or too little water can both pose strong challenges to
society. As climate changes, weather and climate extremes will also change. Given
their importance and the prospect of changes in the future, it is very important to
understand how and why weather and climate extremes have changed in the past,

X. Zhang (�)
Climate Research Division, Environment Canada, Toronto, Canada
e-mail: Xuebin.Zhang@ec.gc.ca

F.W. Zwiers
PCIC, University of Victoria, Victoria, Canada
e-mail: fwzwiers@uvic.ca

A. AghaKouchak et al. (eds.), Extremes in a Changing Climate, Water Science
and Technology Library 65, DOI 10.1007/978-94-007-4479-0 1,
© Her Majesty the Queen in Right of Canada 2013
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2 X. Zhang and F.W. Zwiers

and how they will change in the future. One approach towards such an understanding
would be to develop metrics with which weather and climate extremes can be
characterized, quantified and monitored. However, there are no universally accepted
metrics for such a purpose.

The word “extreme” can refer to many different things in the climate litera-
ture, and consequently, there is no unique climatological definition for extreme
(Stephenson 2008). This occurs in part because the word “extreme” can be used to
describe either a characteristic of a climate variable or that of an impact. In the case
of a climate variable, such as surface air temperature or precipitation, an extreme
can be reasonably well defined referring to values in the tails of the variable’s
distribution that would be expected to occur infrequently. In the case of an impact,
an extreme may be less well defined since there may not be a unique way to quantify
the impact. The linkage between an extreme event in the sense of a climate variable
and an extreme event in the sense of the impact of a climate or weather event is not
straightforward. A rare weather or climate event may not necessarily cause damages.
For example, a strong wind associated with a tropical cyclone over the ocean may
not result in any damage if there are no ships nearby. Similarly, not all damages are
caused by rare weather and climate events. For instance, while the 2011 Thailand
flood caused more than eight billion US dollars in insured damages, the amount of
rain that fell in the region was not very unusual (van Oldenborgh et al. 2012).

In this chapter, we define some indices that can be derived from daily weather
data. These indices allow the characterization of historical and future changes in
extremes of weather variables. We will also provide some examples in which
anthropogenic influence on weather and climate extremes can be detected and
attributed. Our discussion will focus on weather and climate variables rather than
impacts resulting from weather or climate events.

1.2 Indices of Extremes for Weather and Climate Variables

The Intergovernmental Panel on Climate Change in its 4th Assessment (Hegerl et al.
2007) defines an extreme climatic event as one that is rare at a particular place
and time. The IPCC Special Report on Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation refines this definition, stating that
“an extreme (weather of climate) event is generally defined as the occurrence of a
value of a weather or climate variable above (or below) a threshold value near the
upper (or lower) ends of the range of observed values of the variable” (Seneviratne
et al. 2012). The idea of defining extremes as events in the tail(s) of a probability
distribution is illustrated in Fig. 1.1. Figure 1.1 also shows, schematically, how warm
or cold extremes are affected by changes in the mean or standard deviation of daily
temperature and how extreme precipitation is affected by an increase in precipitation
intensity. Exactly what constitutes an extreme event will depend on the context of
usage.



1 Statistical Indices for the Diagnosing and Detecting Changes in Extremes 3

When designing infrastructure, the engineering community accounts for climate
extremes that occur only infrequently and are generally not expected to recur
each year. Examples include the estimates of long period return values of annual
maximum amount of rainfall within 5, 20 min, or within 1, 2, 6, 12, and 24 h
to derive design rainfalls for sewage systems, or of annual maximum wind gust
speed or annual maximum (accumulated) snow depth to derive codes for building
design. In this case, the concept of extremes corresponds well to that used in
statistical science, and thus powerful statistical tools based on extreme value theory
are available to aid in the analysis of historical and future extremes (e.g. Coles 2001;
Katz et al. 2002). Such tools were developed to infer extreme values that might
occur beyond the range of the observed sample, such as the problem of estimating
the 100 year return value on the basis of a 30-year sample. Increasingly, these tools
are being used in the evaluation of extreme events simulated in climate models (e.g.
Kharin et al. 2007; Wehner et al. 2010), in the characterization of the influence
of large scale atmospheric circulation variations on extreme rainfall (Zhang et al.
2010), and in the detection of anthropogenic influence on temperature extremes
(Zwiers et al. 2011).

To address the needs of various aspects of climate research on extremes
as illustrated above, and to facilitate the monitoring of extremes, the Joint
CCl1/CLIVAR2/JCOMM3 Expert Team on Climate Change Detection and Indices
(ETCCDI) defined a set of descriptive indices of extremes (Frich et al. 2002;
Alexander et al. 2006; Klein Tank et al. 2009; Zhang et al. 2011). The indices were
based on the European Climate Assessment indices (Klein Tank and Können 2003).
They were chosen to sample a wide variety of climates and included indicators
such as the total number of days annually with frost and the maximum number
of consecutive dry days in a year (see Table 1.1). They can be derived from daily
values of maximum and minimum temperatures, and daily precipitation amounts,
and are designed to be easily updatable as more data become available, so as to
facilitate monitoring. When developing those indices, it was realized they need to
be as comparable as possible across different regions. Some of these indices have
been used for the detection and attribution of changes in extremes.

The ETCCDI indices generally fall into three different types. One type of index
measures the monthly and/or annual maxima or minima of daily temperature or
annual maximum daily precipitation amounts. These types of extreme indices,
like annual maximum 12 or 24 h precipitation amounts mentioned earlier, have
been widely used in engineering applications to infer design values for engineered
structures. Another type of index involves the calculation of the number of days

1The World Meteorological Organization (WMO) Commission for Climatology (CCl).
2The World Climate Research Program (WCRP) Climate Variability and Predictability Project
(CLIVAR).
3The WMO and the UNESCO’s Intergovernmental Oceanographic Commission (IOC) Joint
Technical Commission for Oceanography and Marine Meteorology (JCOMM).
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Fig. 1.1 (continued)



1 Statistical Indices for the Diagnosing and Detecting Changes in Extremes 5

in a year exceeding specific thresholds that are relative to a fixed base period
climatology. An example of this type of index is the number of days with daily
minimum temperature below the long-term 10th percentile in the 1961–1990 base
period for the respective calendar days. As the 10th percentile differs from one
calendar day to another, extremes defined this way are a relative characteristic.
Therefore, a minimum temperature of �10ıC in Toronto in winter would not be
considered as an extreme, but the same event would be very extreme in other
seasons. Applying such a definition to data makes it possible to compare the indices
from different places with different climates as the same part of the probability
distribution of daily temperature is sampled at each location. A third type of
index involves the calculation of the number of days in a year exceeding specific
thresholds that are fixed across the space. The thresholds are typically impacts
related. An example is the number of frost days per year (i.e., minimum temperature
below 0ıC). The phenomena may in itself not be an extreme in either the absolute
or relative sense. The number of frost days and the number of growing season days
are such examples. While such indices may not be applicable everywhere on the
earth, and the phenomena may not occur in some places on the earth (e.g. a frost
day would never occur in the tropics except perhaps in high mountains), they have
a long history in many applications such as agriculture in many places.

1.3 Detection and Attribution of Changes
in Climate Extremes

The identification of past changes in climate extremes is important. Understanding
the possible causes of those changes is even more important. For example, under-
standing whether external forcing of the climate system, such as that due to human
induced greenhouse gas emissions, had caused an observed change in extremes
would affect confidence in the projection of future changes that are obtained from
climate models that are driven with future emissions scenarios. One would have a

J
Fig. 1.1 Schematic representations of the probability density function of daily temperature, which
tends to be approximately Gaussian (exceptions can be caused by soil freezing, energy balance
constraints, and other factors such as snow or soil moisture feedbacks, e.g. Fischer and Schär 2009;
Hirschi et al. 2011), and daily precipitation, which has a skewed distribution. The probability of
occurrence, or frequency, of extremes is denoted by the shaded areas. In the case of temperature,
changes in the frequencies of extremes are affected by changes in the mean, in the variance, and in
both the mean and the variance. In a skewed distribution such as that of precipitation, a change in
the mean of the distribution generally affects its variability or spread, and thus an increase in mean
precipitation would also likely imply an increase in heavy precipitation extremes, and vice-versa.
In addition, the shape of the right hand tail could also change, affecting extremes. Furthermore,
climate change may alter the frequency of precipitation and the duration of dry spells between
precipitation events. Figure 1.1a, b, c modified from Folland et al. (2001) and Fig. 1.1d modified
from Peterson et al. (2008)
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Table 1.1 The extreme temperature and precipitation indices recommended by the ETCCDI
(some user defined indices are not shown). Precise definitions are given at http://cccma.seos.uvic.
ca/ETCCDI/list 27 indices.html

ID Indicator name Indicator definitions Units

TXx Max Tmax Monthly maximum value of
daily max temperature

ıC

TNx Max Tmin Monthly maximum value of
daily min temperature

ıC

TXn Min Tmax Monthly minimum value of
daily max temperature

ıC

TNn Min Tmin Monthly minimum value of
daily min temperature

ıC

TN10p Cool nights Percentage of time when daily
min temperature <10th
percentile

%

TX10p Cool days Percentage of time when daily
max temperature <10th
percentile

%

TN90p Warm nights Percentage of time when daily
min temperature >90th
percentile

%

TX90p Warm days Percentage of time when daily
max temperature >90th
percentile

%

DTR Diurnal temperature range Monthly mean difference
between daily max and min
temperature

ıC

GSL Growing season length Annual (1st Jan to 31st Dec in
NH, 1st July to 30th June in
SH) count between first
span of at least 6 days with
TG> 5ıC and first span
after July 1 (January 1 in
SH) of 6 days with
TG< 5ıC

days

FD0 Frost days Annual count when daily
minimum temperature
<0ıC

days

SU25 Summer days Annual count when daily max
temperature >25ıC

days

TR20 Tropical nights Annual count when daily min
temperature >20ıC

days

WSDI Warm spell duration indicator Annual count when at least 6
consecutive days of max
temperature >90th
percentile

days

CSDI Cold spell duration indicator Annual count when at least 6
consecutive days of min
temperature <10th
percentile

days

(continued)

http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html
http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html
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Table 1.1 (continued)

ID Indicator name Indicator definitions Units

CSDI Cold spell duration indicator Annual count when at least 6
consecutive days of min
temperature <10th
percentile

days

RX1day Max 1-day precipitation amount Monthly maximum 1-day
precipitation

mm

RX5day Max 5-day precipitation amount Monthly maximum consecutive
5-day precipitation

mm

SDII Simple daily intensity index The ratio of annual total
precipitation to the number
of wet days (� 1 mm)

mm/day

R10 Number of heavy precipitation days Annual count when
precipitation �10 mm

days

R20 Number of very heavy precipitation days Annual count when
precipitation �20 mm

days

CDD Consecutive dry days Maximum number of
consecutive days when
precipitation <1 mm

days

CWD Consecutive wet days Maximum number of
consecutive days when
precipitation �1 mm

days

R95p Very wet days Annual total precipitation from
days >95th percentile

mm

R99p Extremely wet days Annual total precipitation from
days >99th percentile

mm

PRCPTOT Annual total wet-day precipitation Annual total precipitation from
days �1 mm

mm

good reason to expect a change in extremes to continue in the future if the underlying
cause of the change is well understood and is expected to continue into the future.
In the climate literature, the identification of the changes and attribution to possible
causes is usually termed detection and attribution. The good practice guidance paper
on detection and attribution that was developed for the use by lead authors for
the Intergovernmental Panel on Climate Change assessments (Hegerl et al. 2010)
provides detailed definitions and outlines standard procedures for detection and
attribution.

Detection is defined as the process of demonstrating that the climate or a
system affected by climate has changed in some defined statistical sense without
providing a reason for that change. An identified change is detected in observations
if its likelihood of occurrence by chance due to variability generated by the
climate system itself alone is determined to be small, for example, less than 10%.
Attribution is defined as the process of evaluating the relative contributions of
multiple causal factors to a change or event with an assignment of statistical
confidence. Identification of a statistically significant trend in a time series of
climate observations is a simple example of detection. Attribution is usually more
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complicated and can be conducted in several ways, though confidence in attribution
will be differ from one approach to anther.

The observed climate variations, such as those that are seen by monitoring
indices of extremes, generally reflect both natural variations internal to the climate
system and the responses to external forcing such as changes in solar radiation
and human induced changes in greenhouse gases. As the observed climate is only
one realization of the climate system, it is difficult to separate internal variation
from the response to external forcing using observations alone (Hegerl and Zwiers
2011). However, a climate model can be used to generate many realizations of the
climate under the same forcing, enabling the estimation of both the response to
external forcing, or signals, and the spatial and temporal structure of natural internal
variation of the climate as represented by the climate model. As a result, a typical
detection and attribution analysis involves the comparison of signals simulated by
multiple climate models with the observations. A standard statistical approach to
the detection and attribution problem is the optimal fingerprinting method (e.g.,
Allen and Stott 2003). This method is essentially a generalized regression, in which
observed climate variations are regressed onto model simulated signals with the
residual compared with model simulated variability.

Detection and attribution methods were first developed to consider changes
in the mean of the distribution of climate variability, and because extremes are
events that occur in the tails of such distribution, the detection and attribution
of changes in extremes creates new challenges. Approaches that have been used
either transfer the data into a form that allows the standard optimal fingerprinting
method to be used, or explicitly considers the distributional properties of the
extremes being analyzed. In the following, we illustrate, through examples, some
detection/attribution approaches that have been employed in the context of extremes.

1.3.1 Changes in Extreme Temperatures

Zwiers et al. (2011) evaluated whether there has been an anthropogenic influence
on long return period daily temperature extremes. In this study, they used observed
1961–2000 annual extreme temperatures, including annual maximum values of
daily maximum (TXx) and daily minimum (TNx) temperatures, and annual min-
imum values of daily maximum (TXn) and daily minimum (TNn) temperatures,
to characterize past changes in extreme temperatures. Recognizing that the real
response to external forcing may have a different magnitude but similar spatial-
temporal patterns to that simulated by climate models and that the distribution
of annual maxima or minima temperatures is reasonably well approximated by
the Generalized Extreme Value (GEV) distribution, they fit non-stationary GEV
distributions (see Chap. 2 for details) for extreme temperatures with location
parameters that vary in time according to climate model simulated responses. They
found that the climate model simulated pattern of warming response to historical

http://dx.doi.org/10.1007/978-94-007-4479-0_2
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anthropogenic forcing in cold extremes fits observations best when its amplitude
is scaled up by a factor greater than one, and that in warm extremes the fit to
observations is best when the amplitude is scaled down. They quantified that
globally, waiting times for extreme annual minimum daily minimum and daily
maximum temperature events that were expected to recur once every 20 years in
the 1960s are now estimated to exceed 35 and 30 years, respectively. In contrast,
waiting times for circa 1960s 20-years extremes of annual maximum daily minimum
and daily maximum temperatures are estimated to have decreased to fewer than
10 and 15 years, respectively. Figure 1.2 displays estimated return periods and their
5 and 95% uncertainty limits for circa 1960s 20-year return values of annual extreme
daily temperatures in the 1990s climate for many sub-continental regions and the
global land area in total.

Morak et al. (2012) analyzed global and regional long-term trends in the
frequency of hot and cold temperature extremes defined as the number of days
exceeding the 90th percentile or not reaching the 10th percentile of daily minimum
(TN90, TN10, see Table 1.1 for definitions) and daily maximum (TX90 and TX10)
temperatures. They compared the observed trends with those simulated by a climate
model using the optimal fingerprinting method. The signals (or fingerprints) were
obtained from an ensemble of historical forcing simulations conducted with a
climate model developed at the UK Met Service Hadley Centre (HadGEM1). Both
observations and the means of ensemble simulations under combined natural and
anthropogenic forcings show an increase in the frequency of warm extreme and a
decrease in cold extremes in both boreal warm and cold seasons, though there are
regional differences. They also found that anthropogenic influence is detectable in
the frequency of warm and cold temperatures.

1.3.2 Anthropogenic Influence on Annual Maximum
1- or 5-Day Precipitation

Detection and attribution of possible anthropogenic influence on extreme precipita-
tion has proven to be a substantially bigger challenge. Observed daily precipitation
is highly variable from place to place, and exhibits spatial scales of variations that
are smaller than climate models can represent. This means that large numbers of
densely spaced precipitation observing stations are required to be able to isolate
the component of observed precipitation that is directly comparable to simulations.
Unfortunately, there are few regions globally with a sufficiently dense observing
network to enable this kind of comparison. Min et al. (2011) therefore tried to
circumnavigate this scale issue by transforming the observed and simulated annual
maximum 1- or 5-day precipitation amounts into probability based indices (PI)
before applying the standard optimal detection method. To do this they used
separate transformations based on the GEV distribution for observations and model
output, thereby bringing both onto a dimensionless scale on the unit interval.
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Fig. 1.2 (continued)
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Figure 1.3 shows trends of extreme precipitation indices for annual maximum
1-day precipitation amounts during 1951–1999 from observations, and from model
simulations under anthropogenic forcing or under combined effect of anthropogenic
and natural forcings. They found evidence of human influence in observed changes
in precipitation extremes during the latter half of the twentieth century .It was found
that a best fit with observations required that the magnitude of the climate model
simulated responses to external forcing be increased by a large factor, which limits
confidence in the attribution of observed changes.

1.3.3 Event Attribution

When a rare and catastrophic meteorological extreme event occurs, a question that
is often posed is whether such an event is due to anthropogenic influence. Because it
is very difficult to rule out the occurrence of low probability events in an unchanged
climate, and because the occurrence of such events usually involves multiple factors,
it is very difficult to attribute an individual event to specific causes (Hegerl et al.
2007). However, in this case, it may nevertheless be possible to estimate the
influence of external forcing on the likelihood of occurrence of such an event. Such
estimates of how the likelihood of events has changed are especially useful from risk
management point of view. The infamous 2003 European heat wave caused huge
impacts in Europe, with an estimated 40,000 heat related deaths Garcı́a-Herrera
et al. 2010). To address the question whether anthropogenic contributed to the
severity/occurrence of the 2004 European heat wave, Stott et al. (2004) used an event
attribution method. With this method, they first detected anthropogenic influence on
mean summer temperature in southern Europe; they then estimated the effect of
anthropogenic forcing on the likelihood of a warm summer, and finally inferred an
anthropogenic influence on the likelihood of the 2003 European heat wave. Note
that the attribution result for one event may not necessarily extend to another event.
Using another method, Dole et al. (2011) suggest that the 2010 Russian heatwave
could have occurred without anthropogenic influence. This finding is not necessarily
inconsistent with the possibility that human influence may have increased the odds
of this occurrence of the event.

J
Fig. 1.2 Estimated return periods (years) and their 5 and 95% uncertainty limits for 1960s
20-years return values of annual extreme daily temperatures in the 1990s climate (see text for more
details). ANT refers to model simulated responses with only anthropogenic forcing and ALL is both
natural and anthropogenic forcing. Error bars are for annual minimum daily minimum temperature
(red: TNn), annual minimum daily maximum temperature (green: TXn), annual maximum daily
minimum temperature (blue: TNx), and annual maximum daily maximum temperature (pink:
TXx), respectively. Grey areas have insufficient data
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Fig. 1.3 Geographical distribution of trends of extreme precipitation indices (PI) for annual
maximum daily precipitation amounts (RX1D) during 1951–99. Observations (OBS); model
simulations with anthropogenic (ANT) forcing; model simulations with anthropogenic plus natural
(ALL) forcing. For models, ensemble means of trends from individual simulations are displayed.
Units: per cent probability per year (From Min et al. (2011; see paper for details))

1.4 Summary

In this chapter, we introduced some concepts for definition of statistical indices
with which past changes in weather and climate extremes may be quantified. These
indices can also be used to monitor ongoing changes in extremes, and they can
be used to assess changes in future extremes as projected by climate models. We
also present a few examples in which influence of anthropogenic climate changes
on extremes has been identified. It should be noted that there appears to be no
unique method to define what constitutes a weather or a climate extreme. While
it is vastly important to understand how and why weather and climate extremes may
have changed in the past and how they will behave in the future, there are significant
challenges towards a full understanding.
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Chapter 2
Statistical Methods for Nonstationary Extremes

Richard W. Katz

Abstract There is a long tradition of the use of methods based on the statistical
theory of extreme values in hydrology, particular for engineering design (e.g., for
the proverbial “100-yr flood”). For the most part, these methods are based on the
assumption of stationarity (i.e., an unchanging climate in a statistical sense). The
focus of this chapter is on how the familiar distributions that arise in extreme
value theory, namely the generalized extreme value (GEV) and generalized Pareto
(GP) distributions, can be retained under nonstationarity. But now the extremal
distribution is allowed to gradually shift by introducing time as a covariate; that
is, expressing one or more of the parameters of the distribution as a function of
time. At least for the parameter estimation technique of maximum likelihood, it is
straightforward to fit such statistical models. Some detailed examples are provided
of how the proposed methods can be applied to the detection and statistical modeling
of trends in hydrologic extremes, such as for stream flow and precipitation.

2.1 Introduction

There is a long tradition of the use of methods based on the statistical theory
of extreme values in hydrology, particular for engineering design (e.g., for the
proverbial “100-yr flood”). For the most part, these methods are based on the as-
sumption of stationarity (i.e., an unchanging climate in a statistical sense). In recent
years, the specter of global climate change has been raised in conjunction with the
enhanced greenhouse effect. Physical considerations suggest an intensification of
the hydrologic cycle, with increases in the frequency and intensity of extreme high
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