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Foreword

Multivariate splines are multivariate piecewise polynomial functions de-
fined over a triangulation (in R2) or tetrahedral partition (in R3) or a sim-
plicial partition (in Rd,d ≥ 3) with a certain smoothness. These functions
are very flexible and can be used to approximate any known or unknown
complicated functions. Usually one can divide any domain of interest into
triangle/tetrahedron/simplex pieces according to a given function to be
approximated and then using piecewise polynomials to approximate the
given function. They are also computer compatible in the sense of compu-
tation, as only additions and multiplications are needed to evaluate these
functions on a computer. Thus, they are a most efficient and effective tool
for numerically approximating known or unknown functions. In addition,
multivariate spline functions are very important tools in the area of applied
mathematics as they are widely used in approximation theory, computer
aided geometric design, scattered data fitting/interpolation, numerical so-
lution of partial differential equations such as flow simulation and image
processing including image denoising.

These functions have been studied in the last fifty years. In particular,
univariate splines have been studied thoroughly. One understands uni-
variate splines very well in theory and computation. One typical mono-
graph on univariate spline functions is the well-known book written by
Carl de Boor. It is called ”A Practical Guide to Splines” published first
in 1978 by Springer Verlag. Another popular book is Larry Schumaker’s
monograph ”Spline Functions: Basics and Applications” which is now in
second edition published by Cambridge University Press in 2008. The-
ory and computation of bivariate splines are also understood very well.
For approximation properties of bivariate splines, there is a monograph
"Spline Functions on Triangulation" authored by Ming-Jun Lai and Larry
Schumaker, published by Cambridge University Press in 2007. For us-
ing bivariate splines for scattered data fitting/interpolation and numeri-
cal solution of partial differential equations, one can find the paper by G.
Awanou, Ming-Jun Lai and P. Wenston in 2006 useful. In their paper, they
explained how to compute bivariate splines without constructing explicit
basis functions and use them for data fitting and numerical solutions of
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PDEs including 2D Navier-Stokes equations and many flow simulations
and image denoising simulations. These numerical results can be found at
www.math.uga.edu/˜mjlai.

Approximation properties of spline functions defined on spherical tri-
angulations can also be found in the monograph by M.-J. Lai and L. L.
Schumaker mentioned above. A numerical implementation of spherical
spline functions to reconstruct geopotential around the Earth can be found
in the paper by V. Baramidze, M.-J. Lai, C. K. Shum, and P. Wenston in
2009. In addition, some basic properties of trivariate spline functions can
also be found in the monograph by Lai and Schumaker. For example, Lai
and Schumaker describe in their monograph how to construct C1 and C2

macro-element functions over the Alfeld split of tetrahedral partitions and
the Worsey-Farin split of tetrahedral partitions. However, how to construct
locally supported basis functions such as macro-elements for smoothness
r > 2 was not discussed in the monograph. In addition, how to find inter-
polating spline functions using trivariate spline functions of lower degree
without using any variational formulation is not known.

In his thesis, these two questions are carefully examined and fully an-
swered. That is, Michael Matt considers trivariate macro-elements and
trivariate local Lagrange interpolation methods. The macro-elements of
arbitrary smoothness, based on the Alfeld and the Worsey-Farin split of
tetrahedra, are described very carefully and are illustrated with many ex-
amples. Michael Matt has spent a great deal of time and patience to write
down in detail how to determine for Cr macro-elements for r = 3,4,5,6
and etc.. One has to point out that macro-elements are locally supported
functions and they form a superspline subspace which has much smaller
dimension than the whole spline space defined on the same tetrahedral
partition. As this superspline subspace possesses the same full approxi-
mation power as the whole spline space, they are extremely important as
these are enough to use for approximate known and unknown functions
with a much smaller dimension. Thus, they are most efficient. The re-
sults in this thesis are an important extension of the literature on trivariate
macro-elements known so far. Michael Matt also describes two methods
for local Lagrange interpolation with trivariate splines. Both methods, for
once continuously differentiable cubic splines based on a type-4 partition
and for splines of degree nine on arbitrary tetrahedral partitions, are exam-
ined very detailed. Especially the method based on arbitrary tetrahedral
partitions is a crucial contribution to this area of researchsince it is the first
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method for trivariate Lagrange interpolation for two times continuously
differentiable splines.

To summarize, the results in this dissertation extend the construction
theory of trivariate splines of Cr macro-elements for any r ≥ 1. The con-
struction schemes for finding interpolatory splines over arbitrary tetrahe-
dral partition presented in this thesis are highly recommended for any ap-
plication practitioner.

Prof. Dr. Ming-Jun Lai
Department of Mathematics

University of Georgia
Athens, GA, U.S.A.
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Abstract

In this work, we construct two trivariate local Lagrange interpolation
methods which yield optimal approximation order and Cr macro-elements
based on the Alfeld and the Worsey-Farin split of a tetrahedral partition.
The first interpolation method is based on cubic C1 splines over type-4
cube partitions, for which numerical tests are given. The other one is the
first trivariate Lagrange interpolation method using C2 splines. It is based
on arbitrary tetrahedral partitions using splines of degree nine. In order to
obtain this method, several new results on C2 splines over partial Worsey-
Farin splits are required. We construct trivariate macro-elements based on
the Alfeld, where each tetrahedron is divided into four subtetrahedra, and
the Worsey-Farin split, where each tetrahedron is divided into twelve sub-
tetrahedra, of a tetrahedral partition. In order to obtain the macro-elements
based on the Worsey-Farin split we construct minimal determining sets for
Cr macro-elements over the Clough-Tocher split of a triangle, which are
more variable than those in the literature.



Zusammenfassung

In dieser Arbeit konstruieren wir zwei Methoden zur lokalen Lagrange-
Interpolation mit trivariaten Splines, welche optimale Approximationsor-
dnung besitzen, sowie Cr Makro-Elemente, welche auf der Alfeld- und der
Worsey-Farin-Unterteilung einer Tetraederpartition basieren. Eine Inter-
polationsmethode basiert auf kubischen C1 Splines auf Typ-4 Würfelparti-
tionen. Für diese werden auch numerische Tests angegeben. Die nächste
Methode ist die erste zur lokalen Lagrange-Interpolation mit trivariaten
C2 Splines. Sie basiert auf beliebigen Tetraederpartitionen und verwendet
Splines vom Grad neun. Um diese Methode zu erhalten, werden einige
neue Resultate zu C2 Splines über partiellen Worsey-Farin-Unterteilungen
benötigt. Wir konstruieren trivariate Makro-Elemente beliebiger Glattheit,
die auf der Alfeld-Unterteilung, bei der jeder Tetraeder in vier Subtetraeder
unterteilt ist, und der Worsey-Farin-Unterteilung, bei welcher jeder Tetra-
eder in zwölf Subtetraeder unterteilt ist, einer Tetraederpartition beruhen.
Um die Makro-Elemente, die auf der Worsey-Farin-Unterteilung basieren,
zu erzeugen, konstruieren wir minimal bestimmende Mengen für Cr

Makro-Elemente über der Clough-Tocher-Unterteilung eines Dreiecks,
welche, im Vergleich zu den bereits in der Literatur bekannten, variabler
sind.
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1 Introduction

Multivariate splines play an important role in several areas of applied
mathematics. Due to their efficient computability and their approximation
properties, they are widely used for the construction and reconstruction
of surfaces and volumes, the interpolation and approximation of scattered
data, and many other fields in computer aided geometric design and nu-
merical analysis, such as the solution of partial differential equations.

In this thesis we consider the space of multivariate splines of degree d de-
fined on a tessellation Δ of a polyhedral domain Ω ⊂ Rn into n-simplices,
which is given by

S r
d(Δ) := {s ∈ Cr(Ω) : s|T ∈ Pn

d for all T ∈ Δ},

where Cr(Ω) is the space of functions of Cr smoothness and Pn
d is the space

of multivariate polynomials of degree d. We are mainly interested in the
case n = 3, and to some extend n = 2, and there we mostly consider cer-
tain subspaces, the spaces of supersplines, which fulfill supersmoothness
conditions at vertices and edges of the tetrahedra or triangles, and in some
cases also additional individual smoothness conditions.

A common approach for the construction and reconstruction of volumes
is interpolation. For a tessellation Δ of a domain Ω ⊂ Rn, a set L :=
{κ1, . . . ,κm} is called a Lagrange interpolation set for an m-dimensional
spline space S r

d(Δ), provided that for each function f ∈ C(Ω) there exists a
unique spline s f ∈ S r

d(Δ), such that

s f (κi) = f (κi), i = 1, . . . ,m,

holds. If also derivatives of a sufficiently smooth function f are interpo-
lated, the corresponding set H is called a Hermite interpolation set.

An important property of interpolation sets is locality. An interpolation
set is called local, provided that the value of an interpolant s f at a point
ξ ∈ Ω only depends on data values in a finite environment of ξ. Thus,
the interpolant can be determined by solving several smaller linear sys-
tem of equations at a time, which is very useful for the implementation

M. A. Matt, Trivariate Local Lagrange Interpolation and Macro Elements
of Arbitrary Smoothness, DOI 10.1007/978-3-8348-2384-7_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012



2 1 Introduction

of interpolation methods. A further desirable property is the stability of
an interpolation method. Roughly speaking, a method is called stable if
a small modification of a data value only leads to a small change of the
corresponding interpolant. These two properties are important in order to
achieve optimal approximation order. The approximation order of a spline
space S r

d(Δ) is the biggest natural number k, such that

dist( f ,S r
d(Δ)) := inf{‖ f − s‖ : s ∈ S r

d(Δ)} ≤ K|Δ|k

holds for a constant K > 0 that only depends on f , d, and the smallest
angles of Δ, where |Δ| is the mesh size of Δ. Then, for an interpolation
method, the approximation error | f − s f | is considered, where s f is the in-
terpolant of f constructed by the method. Thus, the approximation order
gives the rate of convergence of the error for refinements of the tessellation
Δ. It was shown by Ciarlet and Raviart [23] that d + 1 is an upper bound
for the approximation order, which implies that k = d + 1 is the optimal
approximation order. Following de Boor and Jia [36], the optimal approxi-
mation order cannot be obtained by every interpolation method.

The terminology ”spline function” was first used in Schoenberg [91, 92],
though earlier papers were concerned with splines without actually using
this name (see [86, 88]). Univariate splines were extensively studied and
many results on approximation and interpolation, as well as on the dimen-
sion of univariate spline spaces, are known (see [32, 69, 93], and references
therein).

In recent years a lot of research has been done on bivariate splines (see
[2–8, 8, 14, 15, 20, 22, 25–29, 31, 34, 38, 39, 44–53, 56–61, 70, 71, 73–80, 82,
85, 87, 89, 90, 94, 100, 101]).

In contrast, much less is known about trivariate splines, especially for
spline spaces with a low degree of polynomials compared to the degree
of smoothness (see [12, 16, 17, 21, 41, 43, 62, 105]). Due to the complex
structure of these spline spaces many problems, such as the construction
of local interpolation sets, are still open. One approach are macro-element
methods, which are mostly based on the refinement of the tetrahedra of
a given partition into smaller subtetrahedra (see [1, 9–11, 13, 18, 55, 63,
64, 96–99, 103, 104]). Another approach is based on regular tetrahedral
partitions (see [40, 42, 72, 81, 83, 95]).

In this thesis, we consider local Lagrange interpolation methods for C1

and C2 splines and Cr macro-elements based on the Alfeld and the Worsey-
Farin split of tetrahedra.
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Local Lagrange interpolation methods can be used to interpolate scat-
tered data and to construct and reconstruct volumes. We consider local La-
grange interpolation with C1 cubic splines on type-4 cube partitions. There
are already a few articles on trivariate local Lagrange interpolation on vari-
ous tetrahedral partitions (see [41–43, 81, 95]). Though the method by Matt
and Nürnberger [67] presented here is the first one that was actually im-
plemented. Hence, it is the first time that it can also be shown numerically
that the spline space corresponding to the trivariate Lagrange interpolation
method yields optimal approximation order. We also construct local and
stable Lagrange interpolation sets for C2 splines on arbitrary tetrahedral
partitions. It can be seen from above that there exists some literature on
bivariate Lagrange interpolation methods based on C2 and also some liter-
ature on local Lagrange interpolation with trivariate C1 splines. Here, we
construct the first trivariate Lagrange interpolation method for C2 splines.
We also show that the interpolation set is local and stable and that the cor-
responding spline space yields optimal approximation order.

We also examine Cr macro-element methods based on the Alfeld and the
Worsey-Farin refinement of a tetrahedron. Macro-elements can be used
for example to numerically solve partial differential equations, to simu-
late properties of materials or economic models. In the bivariate case there
exists a vast literature on macro-elements, also for those of type Cr (see
[6, 7, 59, 61, 106]). In the trivariate setting there exists some literature on
C1 and C2 macro-elements (see [1, 9–11, 13, 18, 55, 64, 96–99, 103, 104]),
though only polynomial Cr macro-elements are known so far (see [63]).
Their degree of polynomials is d = 8r + 1, which is quite high. By split-
ting the tetrahedra with the Alfeld and the Worsey-Farin split, we obtain
Cr macro-elements with a significantly lower degree of polynomials. We
also show that for the corresponding Hermite interpolation methods the
considered superspline spaces yield optimal approximation order.

This thesis is divided into the following chapters: In chapter 2, we con-
sider the fundamentals of multivariate spline theory. First, we investi-
gate tessellations of a polyhedral domain Ω ⊂ Rn into n-simplices, espe-
cially tetrahedral partitions, as well as some special tessellations for n = 2
and n = 3. Subsequently, we introduce multivariate splines and super-
splines, and their basis, the multivariate polynomials. Then, we examine
the Bernstein-Bézier techniques for multivariate splines. Using barycentric
coordinates, the multivariate Bernstein polynomials, and thus the B-form



4 1 Introduction

of polynomials, can be defined. Following, we consider the de Casteljau
algorithm for efficient evaluation of polynomials in the B-form, which can
also be used for subdivision. Next, we describe smoothness conditions
for polynomials in the B-form on adjacent n-simplices, especially for n = 2
and n = 3, which were introduced by Farin [39] and de Boor [33]. Subse-
quently, we consider the concept of minimal determining sets, which can
be used to characterize spline spaces. Minimal determining sets also play
an important role, since their cardinality is equal to the dimension of the
corresponding spline space. Next, we define the Lagrange and Hermite in-
terpolation and some properties of interpolation sets, such as locality and
stability. Finally, we introduce nodal minimal determining sets and define
the approximation order of spline spaces.

In chapter 3, we consider minimal determining sets for C1 and C2 splines
on partial Worsey-Farin splits of a tetrahedron, which were defined in
chapter 2. First, we review the results of Hecklin, Nürnberger, Schumaker,
and Zeilfelder [42] for C1 splines. Subsequently, we construct several min-
imal determining sets for different C2 superspline spaces. We also state
some lemmata that show how a spline defined on a tetrahedral partition
Δ \ T can be extended to a spline defined on Δ, where the tetrahedron T is
refined with a partial Worsey-Farin split. To this end, additional smooth-
ness conditions are used. The minimal determining sets and the lemmata
considered in this chapter are then applied in chapters 4 and 5.

In chapter 4, we present the work on local Lagrange interpolation with
trivariate C1 splines on type-4 cube partitions by Matt and Nürnberger
[67]. At first the type-4 cube partition is defined. Therefore, the cubes of
a cube partition � are divided into five classes. Afterwards, each cube is
split into five tetrahedra, according to the classification of the cubes. Then,
following this classification and the location of the tetrahedra in the cubes,
we chose the interpolation points and refine some of the tetrahedra with a
partial Worsey-Farin split. Subsequently, it is shown that the set of inter-
polation points chosen is a Lagrange interpolation set for the space of C1

splines of degree three on the final tetrahedral partition. The final partition
is obtained by refining some of the tetrahedra even further, though by the
time a spline is determined on these tetrahedra this is not needed and thus
omitted at the moment, in order to keep the computation of the spline less
complex. We also give a nodal minimal determining set for the interpola-
tion method. Following that, we show that the interpolation method yields
optimal approximation order. Finally, numerical tests and visualizations of
the Marschner-Lobb test function (see [65]) are given.
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In chapter 5, we construct a local Lagrange interpolation method for C2

splines of degree nine on arbitrary tetrahedral partitions. The construction
is based on a decompositions of a tetrahedral partition Δ into classes of
tetrahedra. This decomposition induces an order of the tetrahedra in Δ, ac-
cording to their number of common vertices, edges, and faces. In contrast
to the decomposition used in [43] to create a local Lagrange interpolation
method for C1 splines, the number of common vertices, edges, and faces
has to be considered simultaneously in order to construct a local Lagrange
interpolation set for C2 splines. Next, as with the Lagrange interpolation
method considered in chapter 4, some of the tetrahedra of the partition Δ
have to be refined with partial Worsey-Farin splits according to the num-
ber of common edges with the previous tetrahedra in the order imposed
by the decomposition. Then, we construct a superspline space based on
the refined partition, which is endowed with several additional smooth-
ness conditions corresponding to the lemmata in chapter 3. Subsequently,
we construct a local and stable Lagrange interpolation set. It is notable that
the interpolation set is 11-local which is very low, compared to the number
of 24 classes needed to create the method and especially when compared
to the C1 method for local Lagrange interpolation on arbitrary tetrahedral
partitions by Hecklin, Nürnberger, Schumaker, and Zeilfelder [43] which is
10-local. We also give a nodal minimal determining set for the superspline
space considered in this chapter. Finally, we examine the approximation
order of the spline space considered in this chapter and show that it is op-
timal.

In chapter 6, we consider the minimal determining sets for bivariate Cr

macro-elements based on the Clough-Tocher split of a triangle constructed
by Matt [66]. First, we consider conditions on the minimal degree of poly-
nomials and the minimal degrees of supersmoothnesses in order to con-
struct Cr macro-elements based on non-split triangles and triangles refined
with a Clough-Tocher or a Powell-Sabin split, respectively. These are used
throughout this chapter and in chapters 7 and 8, in order to derive the min-
imal conditions for macro-elements based on the Alfeld and the Worsey-
Farin split of a tetrahedron. Then, minimal determining sets for Cr splines
with various degrees of polynomials and supersmoothnesses based on the
Clough-Tocher split of a triangle are examined. In case the minimal de-
grees are applied, the macro-elements reduce to those constructed in [59].
These minimal determining sets are needed for the construction of trivari-
ate Cr macro-elements over the Worsey-Farin split of a tetrahedron in chap-
ter 8. Subsequently, we illustrate the minimal determining sets of the Cr
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macro-elements with several examples for r = 0, . . . ,9. These are also used
in the examples for minimal determining sets for macro-elements based on
the Worsey-Farin split of a tetrahedron in chapter 8.

In chapter 7, we consider the trivariate Cr macro-elements based on the
Alfeld split of a tetrahedron by Lai and Matt [54]. It is firstly shown which
restrictions for the degree of polynomials, as well as the supersmoothness
conditions, have to be fulfilled in order to construct macro-elements over
the Alfeld split of a tetrahedron. These can be derived from the restric-
tions for bivariate macro-elements considered in chapter 6. Thus, it can be
seen that the degree of polynomials and supersmoothnesses is the lowest
possible to construct such macro-elements. Subsequently, a corresponding
superspline space and minimal determining sets for the macro-elements
are examined, first on one tetrahedron divided with the Alfeld split and
then on a refined tetrahedral partition. Since these minimal determining
sets are quite complex, we illustrate them for Cr macro-elements on a sin-
gle tetrahedron for r = 1, . . . ,6. It can be seen that for r = 1,2 the macro-
elements reduce to those in [62] in section 18.3 and 18.7. In the follow-
ing, we consider nodal minimal determining sets for the macro-elements.
First, nodal minimal determining sets for the macro-element defined on
one Alfeld split tetrahedron are analyzed, and then for macro-elements
over a refined tetrahedral partition. Finally, we examine a Hermite inter-
polation set for Cr splines over the Alfeld split of tetrahedra and show that
it yields optimal approximation order.

In chapter 8, we examine the Cr macro-elements based on the Worsey-
Farin split of tetrahedra by Matt [66]. We first consider the conditions
for the minimal degree of polynomials and the minimal degrees of super-
smoothnesses needed to construct Cr macro-elements based on the Worsey-
Farin split. Again, these can be derived from the corresponding condi-
tions for bivariate macro-elements considered in chapter 6. Following, we
present a superspline space which can be used to define Cr macro-elements
based on the Worsey-Farin split of a tetrahedron and a corresponding min-
imal determining set. We also give a minimal determining set for a su-
perspline space defined on a tetrahedral partition, where each tetrahedron
is refined with a Worsey-Farin split. Subsequently, we illustrate minimal
determining sets for Cr macro-elements based on the Worsey-Farin split of
one tetrahedron for r = 1, . . . ,6. For r = 1 and r = 2 the macro-elements
reduce to those considered by Lai and Schumaker [62] in sections 18.4 and
18.8, respectively. Next, we examine nodal minimal determining sets for
the Cr macro-elements, first for macro-elements based on a single Worsey-
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Farin split tetrahedron and then on a whole tetrahedral partitions that has
been refined with the Worsey-Farin split. We conclude this chapter with
a Hermite interpolation set for Cr splines over the Worsey-Farin split of
tetrahedra and consider the approximation order, which is optimal.

The next chapter contains the references. It is followed by appendix A,
where we state several bivariate lemmata concerned with minimal deter-
mining sets for splines based on triangles refined with the Clough-Tocher
split. These lemmata are needed in chapter 3 in order to proof the theorems
on minimal determining sets for splines on tetrahedra refined with partial
Worsey-Farin splits. For a better understanding we illustrate the minimal
determining sets constructed here.



2 Preliminaries

In this chapter, we consider some results and techniques of multivariate
spline theory. Since we are mainly interested in trivariate splines in this
work, and as an aid to some extent also bivariate splines, we state most of
the results and definitions shown in this chapter combined in the multi-
variate setting. However, to ease the understanding, we also show some of
theses results for the trivariate and bivariate case. In section 2.1, we define
tessellations of a domain in Rn. Furthermore, we show some refinement
schemes of triangles and tetrahedral partitions and introduce some nota-
tion and the Euler relations for tetrahedra. In section 2.2, we examine mul-
tivariate polynomials, which form a basis for the subsequently considered
multivariate splines and supersplines. In the next section, we describe the
Bernstein-Bézier techniques for multivariate splines. These are based on
the barycentric coordinates, which are needed to define Bernstein polyno-
mials and the resulting B-form of polynomials that is used throughout this
dissertation. Subsequently the de Casteljau algorithm, which can be used
to efficiently evaluate polynomials in the B-form, as well as smoothness
conditions between two polynomials are considered. Finally, the concept
of minimal determining sets is introduced. In the last section, we define
the problem of interpolation and give another characterization of spline
spaces, nodal minimal determining sets. In the end we define the approxi-
mation order of spline spaces.

2.1 Tessellations of Rn

In this section we define tessellations of a polyhedral subset of Rn into n-
simplices. Especially the cases n = 2,3 are of interest here. Then, we define
certain special refinements of triangles and tetrahedral partitions. More-
over, some notation concerning the relations of tetrahedra are established,
as well as the trivariate Euler relations.

M. A. Matt, Trivariate Local Lagrange Interpolation and Macro Elements
of Arbitrary Smoothness, DOI 10.1007/978-3-8348-2384-7_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012
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2.1.1 Tessellations of Rn into n-simplices

First, since the methods considered in this dissertation are mostly in the
trivariate setting, tetrahedral partitions are denominated. Thereafter, tes-
sellations of Rn, n ∈ N, into n−simplices are defined, which are also
needed later on in this chapter.
Definition 2.1:
Let Ω be a polyhedral subset of R3. If Ω is divided into tetrahedra Ti, i =
1, . . . , N, such that the intersection of two different tetrahedra is either
empty, a common vertex, a common edge, or a common face, then
Δ := {T1, . . . , TN} is called a tetrahedral partition of Ω.

A tetrahedron T := 〈v1,v2,v3,v4〉 is called non-degenerated provided
that it has nonzero volume.

Ω

Figure 2.1: Tetrahedral partition of a polyhedral domain Ω.

Definition 2.2:
Let Ω be a polyhedral subset of Rn, n ∈ N. If Ω is divided into n-simplices
Ti, i = 1, . . . , N, such that the intersection of two different n-simplices is ei-
ther empty or a common k−simplex, for k = 0, . . . ,n − 1, then
Δ := {T1, . . . , TN} is called a tessellation of Ω into n-simplices.

An n-simplex T := 〈v1, . . . ,vn+1〉 is called non-degenerated if the points
vi ∈ Rn, i = 1, . . . ,n + 1, are linear independent.

In the bivariate case a tessellation of Ω into 2-simplices is called a trian-
gulation.
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2.1.2 Special n-simplices

In this subsection, special refinements of n-simplices are considered. These
are, the Clough-Tocher and the Powell-Sabin split of a triangle, as well the
Alfeld and Worsey-Farin split of a tetrahedron and a tetrahedral partition.
Moreover, partial Worsey-Farin splits of a tetrahedron are considered.

2.1.2.1 Refinements of triangles

Definition 2.3 (Clough-Tocher split (cf. [24])):
Let F := 〈v1,v2,v3〉 be a triangle in R2, and let vF be a point strictly inside F.
Then the Clough-Tocher split of F is obtained by connecting vF to the three
vertices of F. The resulting refinement is denoted by FCT , which consists of
the three subtriangles Fi := 〈vi,vi+1,vF〉, i = 1,2,3, where v4 := v1.

v1 v2

v3

vF

F1

F3 F2

Figure 2.2: Clough-Tocher split of a triangle F := 〈v1,v2,v3〉 at the split
point vF in the interior of F.

Definition 2.4 (Powell-Sabin split (cf. [85]):
Let F := 〈v1,v2,v3〉 be a triangle in R2, vF be a point strictly inside F, and let
ve,i, i = 1,2,3, be points strictly in the interior of the edges
ei := 〈vi,vi+1〉, i = 1,2,3, respectively, where v4 := v1. Then the Powell-
Sabin split of F is obtained by connecting vF to the three vertices of F
and to the three points ve,i, i = 1,2,3. The resulting refinement is denoted
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by FPS and consists of the six subtriangles Fi := 〈vi,ve,i,vF〉, i = 1,2,3, and
F̃i := 〈ve,i,vi+1,vF〉, i = 1,2,3, where v4 := v1.

v1 v2

v3

vF

F1

F3

F2

ve,1

ve,2
ve,3

F̃1

F̃2

F̃3

Figure 2.3: Powell-Sabin split of a triangle F := 〈v1,v2,v3〉 at the split point
vF in the interior of F, and the points ve,i, i = 1,2,3, in the inte-
rior of the edges of F.

Remark 2.5:
In order to construct the Clough-Tocher split of a triangle F := 〈v1,v2,v3〉,
usually the barycenter vF := v1+v2+v3

3 of F is chosen as split point.

To construct the Powell-Sabin split of a triangle F, the incenter of F is
chosen as the split point vF in the interior of F. As split points in the interior
of the edges of F, the centers of the edges are chosen. In case F shares an
edge with another triangle F̃, then the split point in the common edge is
chosen as the intersection of the line connecting the incenters vF of F and
vF̃ of F̃ with this edge. To chose the incenters of the triangles as split points
ensures, that the line connecting two interior split points of neighboring
triangles intersects the common edge. This property is needed in order to
obtain Cr, r > 0 smoothness, which is explained later on in this chapter,
across this edge.
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2.1.2.2 Refinements of tetrahedral partitions

Definition 2.6 (Alfeld split (cf. [1])):
Let T := 〈v1,v2,v3,v4〉 be a tetrahedron in R3, and let vT be the barycenter
of T. Then the Alfeld split of T is constructed by connecting vT to the four
vertices of T. The obtained refinement is denoted by TA, which consists
of the four subtetrahedra Ti := 〈vi,vi+1,vi+2,vT〉, i = 1, . . . ,4, where v5 :=
v1 and v6 := v2. For a tetrahedral partition Δ, the partition obtained by
applying the Alfeld split to each tetrahedron in Δ is denoted by ΔA.

v1

v2

v3

v4

vT

Figure 2.4: Alfeld split of a tetrahedron T := 〈v1,v2,v3,v4〉 at the split point
vT in the interior of T.

Definition 2.7 (Worsey-Farin split (cf. [103])):
Let Δ be a tetrahedral partition and for each tetrahedron T in Δ let vT
be the incenter of T. For each interior face F of Δ, let vF be the intersec-
tion of F and the straight line connecting the two incenters of the tetra-
hedra sharing F. In case F is on the boundary of Δ, the point vF is cho-
sen as the barycenter of F. Then the Worsey-Farin split of a tetrahedron
T := 〈v1,v2,v3,v4〉 is constructed by connecting vT to the four vertices of
T and the four points vF,i, i = 1, . . . ,4, in the interior of the faces Fi :=
〈vi,vi+1,vi+2〉, where v5 := v1 and v6 := v2, and by connecting the points
vF,i, i = 1, . . . ,4, to the three vertices of the corresponding face Fi, respec-
tively. The obtained refinement is denoted by TWF, which consists of the
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twelve subtetrahedra Ti,j := 〈ui,j,ui,j+1,vF,i,vT〉, i = 1, . . . ,4, j = 1,2,3, where
ui,j := vi+j−1, with ui,4 := ui,1 and ui,j := vi+j−5 for i + j > 5 and j� 4. We de-
fine ΔWF to be the refined tetrahedral partition obtained by dividing each
tetrahedron of Δ with the Worsey-Farin split.

v1

v2

v3

v4

vT vF,2
vF,4

vF,1

vF,3

Figure 2.5: Worsey-Farin split of a tetrahedron T := 〈v1,v2,v3,v4〉 at the
split point vT in the interior of T and the split points vF,i,
i = 1, . . . ,4, in the interior of the faces of T.

Note that by choosing the incenters of the tetrahedra as interior split points,
it is ensured that the line connecting two of these split points from neigh-
boring tetrahedra intersects the common face F (cf. Lemma 16.24 in [62]).

Definition 2.8 (Partial Worsey-Farin splits (cf. [42])):
Let T be a tetrahedron in R3, and let vT be the incenter of T. Given an
integer 0 ≤ m ≤ 4, let F1, . . . , Fm be distinct faces of T, and for each i =
1, . . . ,m, let vF,i be a point in the interior of Fi. Then the m-th order partial
Worsey-Farin split Tm

WF of T is defined as the refinement obtained by the
following steps:

1. connect vT to each of the four vertices of T;

2. connect vT to the points vF,i for i = 1, . . . ,m;

3. connect vF,i to the three vertices of Fi for i = 1, . . . ,m.
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Figure 2.6: Partial Worsey-Farin splits of order m for m = 0, . . . ,4, of a tetra-
hedron.

Note that in case T shares a face F with another tetrahedron, that is re-
fined with a partial Worsey-Farin split, the point vF is chosen as the inter-
section of the straight line connecting the incenters of the two tetrahedra
and the face F. Else, the point vF is chosen as the barycenter of F. Thus,
the split points are chosen in the same way as for the Worsey-Farin split of
a tetrahedron (cf. Definition 2.7).

It can easily be seen that the m-th order partial Worsey-Farin split of a
tetrahedron results in 4 + 2m subtetrahedra. For m = 0 the partial Worsey-
Farin split reduces to the Alfeld split (cf. Definition 2.6), although here
the incenter is chosen as split point and not the barycenter. For the case
m = 4 the partial Worsey-Farin split results in the Worsey-Farin split (cf.
Definition 2.7).

2.1.3 Notation and Euler relations

In this subsection some notation are established and the Euler relations are
stated for tetrahedral partitions Δ.
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Notation 2.9:
For a tetrahedral partition Δ we define the following sets:

VI ,VB,V : Set of inner, boundary, and all vertices of Δ
EI ,EB,E : Set of inner, boundary, and all edges of Δ
FI ,FB,F : Set of inner, boundary, and all faces of Δ
N : Cardinality of the set of tetrahedra in Δ

Following Leonhard Euler, the following properties hold:

#VB = 2N − #FI + 2
N = #VI − #EI + #FI + 1

In order to characterize the tetrahedra of a partition Δ, the following
terms and definitions are used.

Two tetrahedra T, T̃ ∈ Δ touch each other, if they share a common vertex,
or a common edge. They are called neighbors, if they share a common face.

Two triangular faces F, F̃ ∈ F are called neighbors, if there is a tetrahe-
dron T ∈ Δ where F, F̃ ∈ T. Two faces F and F̃ of two tetrahedra T and T̃
are called degenerated if they lie in a common plane.

The next definition deals with certain subsets of a tetrahedral partition
Δ. It is equivalent for tessellations Δ of a domain Ω ⊆ Rn.

Definition 2.10:
Let T ∈ Δ and

star0(T) := T.

Then, for n ≥ 1, starn(T) is defined inductively as

starn(T) :=
⋃{T̃ ∈ Δ : T̃ ∩ starn−1(T) � ∅}.

2.2 Splines

In this section first multivariate polynomials are defined. These form a ba-
sis for the space of multivariate splines, which are introduced afterwards.
Furthermore, special subspaces of the spline space, the spaces of multivari-
ate supersplines, are defined.
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2.2.1 Multivariate polynomials
Definition 2.11:
Let d ∈ N0 and (x1, . . . , xn) ∈ Rn. Then

Pn
d = span{xi1

1 · . . . · xin
n : i1, . . . , in ≥ 0, i1 + . . . + in ≤ d}

is the space of polynomials in n dimensions of total degree ≤ d, where
dim(Pn

d ) = (d+n
n ).

Thus, each multivariate polynomial p ∈ Pn
d can be written in the form

p(x1, . . . , xn) = ∑
i1+...+in≤d

i1,...,in≥0

ai1...in xi1
1 · . . . · xin

n ,

where the ai1...in ∈ R are linear factors. This representation of multivariate
polynomials is also called the monomial form.

2.2.2 Multivariate splines

In this subsection multivariate splines are defined. Therefore, first the
space of smooth functions has to be denominated.

Definition 2.12:
Let Ω be a domain in Rn, n ∈ N, and let r ∈ N0. Then

Cr(Ω) := { f : Ω −→ R : f is r-times continuous differentiable}
is the space of functions of Cr smoothness, or also Cr continuity. For C0(Ω),
we also write C(Ω).

Now, the space of multivariate splines can be defined.

Definition 2.13:
Let r,d ∈N0, with 0≤ r < d, and let Ω ⊂Rn,n ∈N, be a polyhedral domain
and Δ a tessellation of Ω into n−simplices. Then

S r
d(Δ) = {s ∈ Cr(Ω) : s|T ∈ Pn

d ∀ T ∈ Δ}
is called the space of multivariate splines of Cr smoothness of degree d.

Functions contained in S r
d(Δ) are piecewise polynomials of degree d which

have Cr continuity at each intersection of two simplices in Δ.
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2.2.3 Multivariate supersplines

For certain problems, as the partial Worsey-Farin splits in chapter 3, there-
with also the Lagrange interpolation methods in chapter 4 and 5, or the
macro-elements presented in chapter 7 and 8, additional smoothness con-
ditions are needed, i.e. at the vertices and edges of a tetrahedral partition.
The subspace of splines that fulfill these additional conditions is called the
space of multivariate superspline. Thus, for a given tessellation Δ of a do-
main Ω into n−simplices, n ∈ N, a superspline subspace of S r

d(Δ) is to be
of Cρk,i smoothness at the k−simplices vk,i in Δ, for k = 0, . . . ,n − 1, with
r ≤ ρn−1,i ≤ . . . ≤ ρ0,i < d.

Definition 2.14:
Let r,d be in N0, with 0 ≤ r < d, Ω a polyhedral domain in Rn, Δ a tes-
sellation of Ω into n−simplices, n ∈ N, Nk the cardinality of the set of
k−simplices in Δ, for k = 0, . . . ,n − 1, and let {vk,1, . . . ,vk,Nk

} be the set
of k−simplices in Δ. Let ρk := (ρk,1, . . . ,ρk,Nk

), ρk,i ∈ N, for i = 1, . . . , Nk
and k = 0, . . . ,n − 1, where the ρk,i are to fulfill r ≤ mini=1,...,Nn−1 ρn−1,i ≤
maxi=1,...,Nn−1 ρn−1,i ≤ . . . ≤ mini=1,...,N0 ρ0,i ≤ maxi=1,...,N0 ρ0,i < d. Then the
space

S r,ρ0,...ρn−1
d (Δ) = {s ∈ S r

d(Δ) : s ∈ Cρk,i (vk,i), i = 1, . . . , Nk, k = 0, . . . ,n − 2}
is called a superspline subspace of S r

d(Δ).

Following Definition 2.14, for Ω ⊂ R2 and a corresponding triangulation Δ
a spline in S r,ρ

d consists of bivariate polynomials of degree d that join with
Cr smoothness at the edges of Δ and Cρ smoothness at the vertices of Δ.
Accordingly, for Ω ⊂ R3 and a tetrahedral partition Δ, splines in S r,ρ1,ρ2

d
are piecewise polynomials of degree d that join with Cr smoothness at the
triangular faces of Δ, Cρ2 smoothness at the edges of Δ, and Cρ1 smoothness
at the vertices of Δ.

2.3 Bernstein-Bézier techniques

In this section, we consider the well known Bernstein-Bézier techniques,
which are used to examine multivariate splines. The basis for these tech-
niques can be found in [14, 33, 39, 62], among others. We first introduce
barycentric coordinates, that form a basis for the Bernstein-Bézier tech-
niques. Subsequently, we introduce the Bernstein polynomials and the
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B-form of a polynomial, which will be used throughout this work. Then,
the de Casteljau algorithm for the evaluation of polynomials in the B-form,
and also the subdivision of polynomials, is considered (cf. [37]). In the next
subsection, smoothness conditions between adjacent n-simplices are inves-
tigated. Finally, the concept of minimal determining sets is introduced,
which can be used to characterize spline spaces and to consider their di-
mension.

2.3.1 Barycentric coordinates

In this subsection, we consider barycentric coordinates. These are very ef-
ficient for the representation of points in Rn relative to an n-simplex T,
since they are affine invariant, in contrast to the usual Cartesian coordi-
nates. Note that here and in the course of this work, we will assume that T
is a non-degenerated n-simplex.

Definition 2.15:
Let T := 〈v1, . . . ,vn+1〉 be an n-simplex in Rn with vertices v1, . . . ,vn+1.
Then there exist unique barycentric coordinates φ1, . . . ,φn+1 ∈Pn

1 , that sat-
isfy

n+1

∑
i=1

φi = 1,

as well as the interpolation property

φi(vj) = δi,j =

{
1, for i = j,

0, for i � j,
i, j = 1, . . . ,n + 1.

They can be explicitly computed as

φi(v) =

∣∣∣∣( 1 . . . 1 . . . 1
v1 . . . v . . . vn+1

)∣∣∣∣∣∣∣∣( 1 . . . 1 . . . 1
v1 . . . vi . . . vn+1

)∣∣∣∣ , for i = 1, . . . ,n + 1, and for all v∈Rn.

Moreover, for each point v ∈ Rn

v = φ1(v)v1 + . . . + φn+1(v)vn+1

holds.


