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Preface

This book is devoted to the presentation of progress made during the last 10
years in the studies of the structure of approximate solutions of variational
problems considered on subintervals of a real line. We present the results on
properties of approximate solutions which are independent of the length of
the interval, for all sufficiently large intervals. The results in this book deal
with the so-called turnpike property of the variational problems. To have
this property means, roughly speaking, that the approximate solutions of the
problems are determined mainly by the integrand (objective function) and
are essentially independent of the choice of interval and endpoint conditions,
except in regions close to the endpoints. Turnpike properties are well known
in mathematical economics. The term was first coined by P. Samuelson in
1948 when he showed that an efficient expanding economy would spend most
of the time in the vicinity of a balanced equilibrium path (also called a von
Neumann path). Now it is well known that the turnpike property is a general
phenomenon which holds for large classes of variational problems. For these
classes of problems using the Baire category approach, it was shown that the
turnpike property holds for a generic (typical) problem. In this book we are
interested in individual (non-generic) turnpike results and in sufficient and
necessary conditions for the turnpike phenomenon.

Haifa, Israel Alexander J. Zaslavski
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1

Introduction

In this chapter we introduce and discuss turnpike properties and describe the
structure of the book.

The study of optimal control problems and variational problems defined on
infinite intervals and on sufficiently large intervals has been a rapidly growing
area of research [3, 4, 7, 9, 10, 11, 12, 13, 16, 18, 19, 20, 23, 25, 30, 31, 32, 33, 39,
40, 51]. These problems arise in engineering [1, 21, 53], in models of economic
growth [2, 15, 17, 24, 29, 34, 35, 37, 51], in infinite discrete models of solid-
state physics related to dislocations in one-dimensional crystals [6, 38], and in
the theory of thermodynamical equilibrium for materials [14, 22, 26, 27, 28].

Our book consists of four chapters. Here, in Chap. 1, we describe its struc-
ture. In Chap. 2 we study the structure of approximate solutions of nonau-
tonomous variational problems with continuous integrands f W Œ0;1/ � Rn �
Rn ! R1, where Rn is the n-dimensional Euclidean space. In Chap. 3, we
study turnpike properties for autonomous variational problems with inte-
grands f W Rn � Rn ! R1. Finally, in Chap. 4 we study the structure of ap-
proximate solutions of variational problems with integrands f W Rn�Rn ! R1

which are convex functions on Rn � Rn.
Now we describe the structure of the book. We begin in Chap. 2 with the

study of the structure of solutions of the variational problems:

Z T2

T1

f .t; ´.t/; ´0.t//dt ! min; ´.T1/ D x; ´.T2/ D y; .P /

´ W ŒT1; T2� ! Rn is an absolutely continuous function;

where T1 � 0, T2 > T1, x; y 2 Rn, and f W Œ0;1/ � Rn � Rn ! R1 belongs
to a complete metric space of integrands M which is introduced in Sect. 2.1.
Note that these integrands do not satisfy any convexity assumption which is
usually used in the calculus of variations.

It is well known that the solutions of the problems (P) exist for integrands
f which satisfy two fundamental hypotheses concerning the behavior of the

A.J. Zaslavski, Structure of Solutions of Variational Problems, SpringerBriefs
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2 1 Introduction

integrand as a function of the last argument (derivative): one that the inte-
grand should grow superlinearly at infinity and the other that it should be
convex [8, 36]. Moreover, certain convexity assumptions are also necessary
for properties of lower semicontinuity of integral functionals which are crucial
in most of the existence proofs. For integrands f which do not satisfy the
convexity assumption the existence of solutions of the problems (P) is not
guaranteed, and in this situation we consider ı-approximate solutions.

Let T1 � 0, T2 > T1, x; y 2 Rn, and f W Œ0;1/ � Rn � Rn ! R1 be
an integrand, and let ı be a positive number. We say that an absolutely
continuous (a.c.) function u W ŒT1; T2� ! Rn satisfying u.T1/ D x, u.T2/ D y

is a ı-approximate solution of the problem (P) if

Z T2

T1

f .t; u.t/; u0.t//dt �
Z T2

T1

f .t; ´.t/; ´0.t//dt C ı

for each a.c. function ´ W ŒT1; T2� ! Rn satisfying ´.T1/ D x; ´.T2/ D y.
In Chap. 1 we deal with the so-called turnpike property of the variational

problems (P) associated with an integrand f . To have this property means
that there exists a bounded continuous function Xf W Œ0;1/ ! Rn depending
only on f such that for each pair of positive numbers K; � > 0, there exist
positive constants L D L.K; �/ and ı D ı.K; �/ depending on �, K such that
if u W ŒT1; T2� ! Rn is an ı-approximate solution of the problem (P) with

T2 � T1 � L; ju.Ti /j � K; i D 1; 2;

then
ju.t/ �Xf .t/j � � for all t 2 ŒT1 C �1; T2 � �2�;

where �1; �2 2 Œ0; L�.
(The precise description of the turnpike property is given in Sect. 2.1.)
If the integrand f possesses the turnpike property, then the solutions of

variational problems with f are essentially independent of the choice of time
interval and values at the endpoints except in regions close to the endpoints of
the time interval. If a point t does not belong to these regions, then the value
of a solution at t is closed to a trajectory Xf (“turnpike”) which is defined
on the infinite time interval and depends only on f . This phenomenon has
the following interpretation. If one wish to reach a point A from a point B by
a car in an optimal way, then one should turn to a turnpike, spend most of
time on it, and then leave the turnpike to reach the required point.

Turnpike properties are well known in mathematical economics. The term
was first coined by Samuelson in 1948 (see [35]) where he showed that an
efficient expanding economy would spend most of the time in the vicinity of
a balanced equilibrium path (also called a von Neumann path). This prop-
erty was further investigated for optimal trajectories of models of economic
dynamics (see, e.g., [2, 15, 17, 24, 29, 34, 37, 51]). Many turnpike results are
collected in [51].
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In the classical turnpike theory the function f does not depend on the
variable t , is strictly convex on the space Rn � Rn, and satisfies a growth
condition common in the literature. In this case, the turnpike property can be
established, the turnpike Xf is a constant function, and its value is a unique
solution of the maximization problem f .x; 0/ ! min, x 2 Rn.

It was shown in our research, which was summarized in [51], that the
turnpike property is a general phenomenon which holds for large classes of
variational and optimal control problems without convexity assumptions. For
these classes of problems a turnpike is not necessarily a constant function (sin-
gleton) but may instead be an nonstationary trajectory (in the discrete time
nonautonomous case) [51] or an absolutely continuous function on the inter-
val Œ0;1/ as it was described above (in the continuous time nonautonomous
case) [44, 45, 51] or a compact subset of the space X (in the autonomous case)
[39, 40, 41, 43, 50, 51].

More precisely, in Chap. 2 of [51] we study the turnpike properties for
variational problems with integrands which belong to a subspace Mco of M.
The subspace Mco � M consists of integrands f 2 M such that the function
f .t; x; �/ W Rn ! R1 is convex for any .t; x/ 2 Œ0;1/ � Rn. In Chap. 2 of [51]
we showed that the turnpike property holds for a generic integrand f 2 Mco.
Namely, we established the existence of a set Fco � Mco which is a countable
intersection of open everywhere dense sets in Mco such that each f 2 Fco

has the turnpike property.
In [45] we extend this turnpike result of [51] established for the space Mco

to the space of integrands M. We show the existence of a set F � M which
is a countable intersection of open everywhere dense sets in M such that each
f 2 F has the turnpike property. In [45] we show that an integrand f 2 F
has a turnpike Xf which is a bounded continuous function.

Therefore according to the results of [45, 51], the turnpike property is a
general phenomenon which holds for large classes of variational problems. For
these classes of problems, using the Baire category approach, it was shown
that the turnpike property holds for a generic (typical) problem. In this book
we are interested in individual (nongeneric) turnpike results and in sufficient
and necessary conditions for the turnpike phenomenon.

In Chap. 2 we consider the following question. Assume that f 2 M and
X W Œ0;1/ ! Rn is a bounded continuous function. How to verify if the in-
tegrand f possesses the turnpike property and X is its turnpike? In Sect. 2.1
we introduce two properties (P1) and (P2) and show that f has the turn-
pike property if and only if f possesses the properties (P1) and (P2). The
property (P2) means that all approximate solutions of the corresponding infi-
nite horizon variational problem have the same asymptotic behavior while the
property (P1) means that if an a.c. function v W Œ0; T � ! Rn is an approximate
solution and T is large enough, then there is � 2 Œ0; T � such that v.�/ is close
to X.�/. This result, which was obtained in [47], is stated in Sect. 2.1 while it
is proved in Sects. 2.2–2.6.
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In Chap. 2 we also consider the strong turnpike property, which was in-
troduced and studied in [49], for an integrand f 2 M such that the function
f .t; x; �/ W Rn ! R1 is convex for any .t; x/ 2 Œ0;1/ � Rn. We say that the
integrand f possesses the strong turnpike property if the turnpike property
holds for f with the function Xf being the turnpike, and moreover, in the
definition of the turnpike property, �1 D 0 if

jv.T1/� Xf .T1/j � ı

and �2 D 0 if
jv.T2/� Xf .T2/j � ı:

This additional condition means that if at the point T1 (T2, respectively) the
value of the approximate solution v is closed to a trajectory Xf , then the
value of the solution v at t is closed to a trajectory Xf for all t except in a
region close to the endpoint T2 (T1, respectively).

In Sect. 2.1 we state Theorem 2.4 (the second main result of Chap. 2) which
was obtained in [49]. According to this result, the integrand f possesses the
strong turnpike property with the function Xf being the turnpike if and only
if the properties (P1) and (P2) hold and the function Xf is a unique solution
of the corresponding infinite horizon variational problem associated with the
integrand f .

In Chap. 3 we study turnpike properties for autonomous variational prob-
lems with continuous integrands f W Rn � Rn ! R1 which belong to the
subspace of functions A � M introduced in Sect. 3.1. It should be mentioned
that A is a large space of autonomous integrands which was considered in
Chaps. 3–5 of [51]. In [41] and in Chap. 3 of [51] we study the structure of
approximate solutions of variational problems (P) with integrands f 2 A and
show the existence of a subset F � A which is a countable intersection of
open everywhere dense subsets of A such that each integrand f 2 F has a
turnpike property, where the turnpike is a nonempty compact subset of the
n-dimensional Euclidean space Rn. More precisely, we show there (using the
Baire category approach) that for a generic (typical) integrand f 2 A, there
exists a nonempty compact set H.f / � Rn such that the following property
holds:

For each � > 0 there exists a constant L > 0 such that if v is a solution
of problem (P), then for most of t 2 ŒT1; T2� the set v.Œt; t C L�/ is equal to
H.f / up to � with respect to the Hausdorff metric.

Note that for a generic integrand f 2 A the turnpike H.f / is a nonempty
compact subset of Rn which is not necessarily a singleton. It should be men-
tioned that there exists f 2 A which does not have this turnpike property.
In Chap. 3 we prove individual (nongeneric) turnpike results for autonomous
variational problems with integrands f 2 A.

Let f 2 A. A locally absolutely continuous (a.c.) function v W R1 ! Rn is
called .f /-minimal if

supfjv.t/j W t 2 R1g < 1


