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Preface

This volume is a collection of papers mainly concerning phase space analysis, or
microlocal analysis, and its applications to the theory of partial differential equa-
tions (PDEs).

A number of papers composing this volume, all written by leading experts in their
respective fields, are expanded version of talks given at a meeting held in September
2011 at the Centro Residenziale Universitario (CEUB) of Bertinoro, on the hills
surrounding Cesena, Italy.

The Bertinoro workshop was the occasion to fix the state of the art in many
different aspects of phase space analysis. In fact the results collected here con-
cern general theory of pseudodifferential operators, Hardy-type inequalities, linear
and non-linear hyperbolic equations and systems, water-waves equations, Euler—
Poisson and Navier—Stokes equations, Schrodinger equations and heat and parabolic
equations.

We would like to seize this occasion to thank all the contributors as well as the
people who took part in the workshop.

A number of institutions have made it possible to hold the Bertinoro workshop
through their financial support. We’d like to list them here: the Italian Ministero
dell’Istruzione, dell’Universita e della Ricerca by means of the PRIN 2008 project
“Phase Space Analysis of PDE’s”, the Istituto Nazionale di Alta Matematica, the
University of Bordeaux 1, the University of Pisa and the Fondazione Cassa di
Risparmio di Cesena. We thank all of them for their generosity.

Bologna, Italy Massimo Cicognani

Pisa, Italy Ferruccio Colombini
Trieste, Italy Daniele Del Santo
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Chapter 1

The Water-Wave Equations: From Zakharov
to Euler

Thomas Alazard, Nicolas Burq, and Claude Zuily

Abstract Starting from the Zakharov/Craig—Sulem formulation of the water-wave
equations, we prove that one can define a pressure term and hence obtain a solution
of the classical Euler equations. It is proved that these results hold in rough domains,
under minimal assumptions on the regularity to ensure, in terms of Sobolev spaces,
that the solutions are C'.

Key words: Cauchy theory, Euler equations, Water-wave system

Mathematics Subject Classification: 35B65, 35B30, 35B60, 35J75, 35S05.

1.1 Introduction

We study the dynamics of an incompressible layer of inviscid liquid, having constant
density, occupying a fluid domain with a free surface.

We begin by describing the fluid domain. Hereafter, d > 1, ¢ denotes the time
variable, and x € R and y € R denote the horizontal and vertical variables. We work
in a fluid domain with free boundary of the form

Q={(t,x,y) € (0,T)xRI xR : (x,y) € Q(1)},

where Q(t) is the d + 1-dimensional domain located between two hypersurfaces:
a free surface denoted by X(r) which will be supposed to be a graph and a fixed

T. Alazard

Département de Mathématiques et Applications, Ecole Normale Supérieure et CNRS
UMR 8553, 45, rue d’Ulm, F-75230 Paris Cedex 05, France

e-mail: Thomas.Alazard@ens.fr
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2 T. Alazard et al.

bottom I". For each time ¢, one has

Q) ={(xy) €0 :y<n(t,x)},

where & is a given open connected domain and where 1) is the free surface elevation.
We denote by X the free surface

T ={(t,x,y):1€(0,T),(x,y) € Z(r)},

where X(1) = {(x,y) €RY xR : y =n(t,x)}, and we set ' = 9Q(¢) \ Z(¢).
Notice that I" does not depend on time. Two classical examples are the case of
infinite depth (& = R?*! so that I = 0) and the case where the bottom is the graph
of a function (this corresponds to the case & = {(x,y) € RY x R : y > b(x)} for
some given function b).
We introduce now a condition which ensures that, at time ¢, there exists a fixed
strip separating the free surface from the bottom:

(H;) : 3h>0: TI'c{(x,y) eR!xR:y<n(t,x)—h}. (1.1)

No regularity assumption will be made on the bottom I".

The Incompressible Euler Equation with Free Surface

Hereafter, we use the following notations:

V=(d)i<i<as Viy=(V,0)), A= 2 831,, Ax,y:A—i-ayz.

1<i<d
The Eulerian velocity field v: 2 — R?*! solves the incompressible Euler equation
Ov+v-Vyyv+ Vi ,P=—ge,, divy,v=0 inQ,

where g is the acceleration due to gravity (g > 0) and P is the pressure. The problem
is then given by three boundary conditions:

e A kinematic condition (which states that the free surface moves with the fluid)

on=4/1+|Vn?(v-n) onZX, (1.2)

where n is the unit exterior normal to € (7)
e A dynamic condition (that expresses a balance of forces across the free surface)

P=0 onX (1.3)
e The “solid wall” boundary condition at the bottom I"

Vv =0, (1.4)
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where v is the normal vector to I whenever it exists. In the case of arbitrary bottom,
this condition will be implicit and contained in a variational formulation.

The Zakharov/Craig—Sulem Formulation

A popular form of the water-wave system is given by the Zakharov/Craig—Sulem
formulation. This is an elegant formulation of the water-wave equations where all
the unknowns are evaluated at the free surface only. Let us recall the derivation of
this system.

Assume, furthermore, that the motion of the liquid is irrotational. The velocity
field v is therefore given by v =V, , @ for some velocity potential @: £ — R sat-
isfying

Ay®@ =0 inQ, o®=0 onl,

and the Bernoulli equation
1
AP+ 5 |Viy®" + Pgy=0 inQ. (1.5)

Following Zakharov [7], introduce the trace of the potential on the free surface:

y(t,x) = @(t,x,M(t,x)).

Notice that since @ is harmonic, 7 and ¥ fully determines @. Craig and Sulem
(see [3]) observe that one can form a system of two evolution equations for 7 and
y. To do so, they introduce the Dirichlet-Neumann operator G(n) that relates y to
the normal derivative d,® of the potential by

(G(n)l//)(tvx) =V 1+ |Vn|28nq)|y:ﬂ(t,x)

= (®)(t,x,n(t,x)) = Vin(t,x) - (Vi @)(t,x,1(,x)).

(For the case with a rough bottom, we recall the precise construction later on). Di-
rectly from this definition, one has

an=Gn)y. (1.6)

It is proved in [3] (see also the computations in §1.3.6) that the condition P = 0 on
the free surface implies that

1(Vn-Vy+G(m)y)®
2 11 viP

1
ay+gn+ 5 [Vl - =0. (1.7)

The system (1.6) and (1.7) is in Hamiltonian form (see [3, 7]), where the Hamiltonian
is given by

1
H = 5/ wG(n)y+gn°dx.
R4
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The problem to be considered here is that of the equivalence of the previous two
formulations of the water-wave problem. Assume that the Zakharov/Craig—Sulem
system has been solved. Namely, assume that, for some r > 14+d/2, (n,y) €
CO(I,H"(RY) x H"(R?)) solves (1.6)~(1.7). We would like to show that we have in-
deed solved the initial system of Euler’s equation with free boundary. In particular
we have to define the pressure which does not appear in the above system (1.6)—
(1.7). To do so, we set

g Yn-Vy+Gmn)y
L+|Vnp2 7

V =Vy—-BVn.

Then B and V belong to the space C°(I,H?(R?)). It follows from [1] that (for
fixed ¢) one can define unique variational solutions to the problems

Ay®=0 inQ, @lz=y, {hDd=0 onl.

1
A,0=0 inQ,  QOls=gn+3(B*+|VF), Q=0 ol

Then we shall define P € 2'(Q) by
1 2
P:=0—gy— 3 ’Vx’yq)‘

and we shall show firstly that P has a trace on ¥ which is equal to 0 and secondly
that Q = —d; @ which will show, according to (1.5), that we have indeed solved
Bernoulli’s (and therefore Euler’s) equation.

These assertions are not straightforward because we are working with solutions
of low regularity and we consider general bottoms (namely no regularity assumption
is assumed on the bottom). Indeed, the analysis would have been much easier for
r>2+d/2 and a flat bottom.

1.2 Low Regularity Cauchy Theory

Since we are interested in low regularity solutions, we begin by recalling the well-
posedness results proved in [2]. These results clarify the Cauchy theory of the water-
wave equations as well in terms of regularity indexes for the initial conditions as for
the smoothness of the bottom of the domain (namely no regularity assumption is
assumed on the bottom).

Recall that the Zakharov/Craig—Sulem system reads

1(Vn-Vy+Gmy)® (1.8)
2 1+|Vnl? -

1
oy +gn+ 5 [Vl ~

It is useful to introduce the vertical and horizontal components of the velocity
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B:= (vy)|y=n = (@) |y=n, V= (vx)ly=n = (Vx®@)|y=n.

These can be defined in terms of 17 and y by means of the formulas

_Vn-Vy+Gmv

B )
1+|Vn[?

V =Vy-BVn. (1.9)

Also, recall that the Taylor coefficient a = —8yP| > can be defined in terms of
n,V,B,andy only (see §4.3.1 in [5]).

In [2] we proved the following results about low regularity solutions. We refer
to the introduction of [2, 4] for references and a short historical survey of the back-
ground of this problem.

Theorem 1.1 ([2]). Let d > 1 and s > 1 +d /2 and consider an initial data (Mo, W)
such that:

(i) no € H**1(RY), wpe H"2(RY), Vo€ HRY), Bye H(RY).

(if) The condition (Hy) in (1.1) holds initially for t = 0.
(iii) There exists a positive constant c such that, for all x in R, ag(x) > c.

Then there exists T > 0 such that the Cauchy problem for (1.8) with initial data
(N0, Wo) has a unique solution:

(n,v) € C°([0.7], B3 (RY) x H**2(RY)),

such that

1. (V,B) € C°([0,T], H*(R?) x H*(RY)).
2. The condition (H,) in (1.1) holds fort € [0,T] with h replaced by h/2.
3. a(t,x) >c/2, forall (t,x) in [0,T] x RY.

In a forthcoming paper we shall prove the following result.

Theorem 1.2. Assume I’ =0. Letd =2 and s > 1+ % — % and consider an initial
data (Mo, Wo) such that

moeHI(RY), wyeHTI(RY), VpeH(RY), ByeH(RY),

Then there exists T > 0 such that the Cauchy problem for (1.8) with initial data
(No, Wo) has a solution (n, ) such that

(n,w,V,B) € C°([0, T}; H**2 (RY) x H*"2 (R?) x H'(RY) x H*(R)).

Remark 1.1. (i) For the sake of simplicity we stated Theorem 1.2 in dimension d =2
(recall that d is the dimension of the interface). One can prove such a result in any
dimension d > 2, the number 1/12 being replaced by an index depending on d.

(i) Notice that in infinite depth (I' = 0) the Taylor condition (which is assump-
tion (iif) in Theorem 1.1) is always satisfied as proved by Wu ([6]).
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Now having solved the system (1.8) in (17, ), we have to show that we have indeed
solved the initial system in (1,v). This is the purpose of the following section.

There is one point that should be emphasized concerning the regularity. Below
we consider solutions (17, ) of (1.8) such that

(n,w) € C°([0, T]; H 3 (RY) x H'3 (RY)),

with the only assumption that s > % + % (and the assumption that there exists 4 > 0
such that the condition (H;) in (1.1) holds for 7 € [0,7]). Consequently, the result
proved in this note applies to the settings considered in the above theorems.

1.3 From Zakharov to Euler

1.3.1 The Variational Theory

In this paragraph the time is fixed so we will skip it and work in a fixed domain €2
whose top boundary X is Lipschitz, i.e, n € W= (R9).

We recall here the variational theory, developed in [1], allowing us to solve the
following problem in the case of arbitrary bottom,

@
AD=0 inQ, @|sz=uy, g—v|pzo. (1.10)

Notice that €2 is not necessarily bounded below. We proceed as follows.
Denote by Z the space of functions u € C(£2) such that V, yu € L?(Q2), and let
2 be the subspace of functions u € & such that u vanishes near the top boundary X.

Lemma 1.1 (see Prop 2.2 in [1]). There exist a positive weight g € L}, (Q) equal
to 1 near the top boundary X of Q and C > 0 such that for all u € %,

J[ st Pasdy <c [| Voutey)Paray. @
Using this lemma one can prove the following result.

Proposition 1.1 (see page 422 in [1]). Denote by H'°(Q) the space of functions u
on § such that there exists a sequence (u,) C 2y such that

Viyttn = Vyyu in Lz(.Q), Up —>u in LZ(.Q,gdxdy),
endowed with the scalar product
(,v)g0(@) = (Vatt, Viv) 12 () + (9, 0yv) 12

Then H''*(Q) is a Hilbert space and (1.11) holds for u € H'0(Q).
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Let y € H2(R?). One can construct (see below after (1.21)) y € H'(Q) such
that

suppy C {(x,y):n(t,x)—h<y<n(x)}, ylz=y.

Using Proposition 1.1 we deduce that there exists a unique u € H'(Q) such that,
forall 6 € H'Y(Q),

J[L Veoute)- Vaso(xy)drdy = = [ Vi w3) - Vi, 0xy)dndy.

Then to solve the problem (1.10) we set @ = u + y.

Remark 1.2. As for the usual Neumann problem the meaning of the third condition
in (1.10) is included in the definition of the space H'?(Q). It can be written as
in (1.10) if the bottom I is sufficiently smooth.

1.3.2 The Main Result

Let us assume that the Zakharov system (1.8) has been solved on 7 = (0,7, which
means that we have found, for s > % + %, a solution

(n,y) € OLH 2 (RY) x H* T2 (RY)),
of the system

atn = G(n)y/7
1(Vy-Vn+Gm)y)? (1.12)
2 1+ [VnP

1
Iy =—gn—|Vy*+
Let B,V be defined by (1.9). Then (B,V) € CO(I,H*~ (RY) x H*~2 (R%)).
The above variational theory shows that one can solve (for fixed ) the problem

1

S (B + V) cHIRY). (113

Ax,yQZO in Q, Q|2:gn+

Here is the main result of this article.

Theorem 1.3. Let @ and Q be the variational solutions of the problems (1.10)
and (1.13). Set P=Q — gy — %|Vx7y(1)|2. Then v := V., ® satisfies the Euler system

Ov+(V-Viy v+ VP =—ge, inQ,

together with the conditions
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divyyv=0, curl,yv=0 inf2,

an=>0+Vn)?: (v-n) onZ, (1.14)
P=0 on2ZX.

The rest of the paper is devoted to the proof of this result. We proceed in several
steps.

1.3.3 Straightening the Free Boundary

First of all if condition (H;) is satisfied on I, for T small enough, one can find
N« € L”(R?) independent of ¢ such that

() Vi € B, V.l < €I

(i) M(x) <00 <N~ 3, Viox) € 1x R (1.15)
(i) I C{(x,y) €0 :y<n.x)}.

Indeed using the first equation in (1.12) we have

do

0.9 = oll-e < [ 1GM)w(o, )]
<7c(|(n.v)

H‘V7§ (Rd>
HL°°(1,HS+% (Rd) XHS+% (Rd))) :

Therefore taking 7' small enough we make [|1(t,-) — o]/, (ga) as small as we want.
Then we take 1, (x) = —23—h + =910y and writing
— _ _ ~8IDid
M:(x) = =5+ 1(1,0) = (M (7,2) = Mo(x)) + (M0 = 1o(x)),
we obtain (1.15).

In what follows we shall set
Qi(t) ={(x,y) :x e R i (x) <y < n(t,x)},
Ql = {([,X,y) e 17 ('xay) € Ql(t)}a QZ = {('xvy) € ﬁy S n*(x)}7

Q) ={(x,2):xeR? z€(-1,0)}, (1.16)
QZ = {(X,Z) € Rd X (_007_1] : (X,Z+ 1 +n*(x)) € QZ}
Q= .Ql UQQ

Following Lannes ([4]), for ¢ € I consider the map (x,z) + (x,p(t,x,z)) from Q
to RY*! defined by

_ 52<Dx> — i )
{p(t,x,z) (1+z)e N(t,x) —zn.(x) if (x,2) € € (1.17)

p(tx,2) =2+ 14+n.(x) if (v,2) € Q.



1 The Water-Wave Equations: From Zakharov to Euler 9

where § is chosen such that

Slinll 3 ) =8 <<1.

Notice that since s > 1 + 4, taking & small enough and using (1.15) (i) and, (i),
we obtain the estimates

() dplixz) > min(5.1) Vixz)elx D,

(@) NVazP =gy < C(L+ Nl )-

(1.18)

Lw(z,H”% (R%))

It follows from (1.18) (i) that the map (z,x,z) — (t,x,p(r,x,z)) is a diffeomorphism
from I x Q to Q which is of class W'
We denote by « the inverse map of p.

(I,X,Z) €lx Qu(tvxup(tu-xaz)) = (tu-xay)

= (x)=Earn) e

1.3.4 The Dirichlet-Neumann Operator

Let @ be the variational solution described above (with fixed ¢) of the problem

A, ®=0 inQ(r),

Dly) = y(t,), (1.20)
Let us recall that
D = ut+y (1.21)

where u € H'(Q(t)) and W is an extension of y to Q(#).
Here is a construction of y. Let y € C*(R), x(a) =0ifa < —1,x(a) =lifa >

—1. Let y(t,x,2) = x(z)eP >l[/(t x) for z <0.Itis classical that y € L™ (I, H' (Q))
if y € L*(1,H? (R?)) and

190y < CM 3

Then we set

y(t,x,y) = J(t,x K(1,x,y)). (1.22)

Since 1 € C°(1,W!=(R?)) we have y(z,-) € H'(Q(t)), ¥|s() = . and

10 sy < CUM oy W -
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Then we define the Dirichlet-Neumann operator by

Gy (t,x) =/1+|Vn[*0, @5 (1.23)

= () (5, 1(1,2)) = Ve (1,) - (Vo) (3,11, )).
It has been shown in [2] (see Sect. 3) that G(n)y is well defined in C° (T,H’% (R))
ifn e COT,W'=(R?)) and y € CO(T,H? (RY)).

Remark 1.3. Recall that we have set

Qt)={(xy)e0:y<nt,x)}, Q={(txy) :tel,(xy) cQ()}. (1.24)

1
loc

For a function f € L
we have

(Q) if 0, f denotes its derivative in the sense of distributions,

(0, ) = lim

e—0

<f(._|_g7.,.)_

. f(""'),<p>, Vo € C(Q). (1.25)

This point should be clarified due to the particular form of the set £2 since we have
to show that if (z,x,y) € supp@ = K, then (r + &,x,y) € Q for ¢ sufficiently small
independently of the point (z,x,y). This is true. Indeed if (¢,x,y) € K, there exists a
fixed 6 > 0 (depending only on K, 1) such that y < n(z,x) — &. Since by (1.12)

In(t+e,x)—n(tx)| < SHG(TI)WHL‘”(IXR“’) <eC

)

where C =C(|(n, )| , we have if £ < &,

Lw(z,H”% (R9) WH1 (Rd)))
y=—n(t+ex)=y—n(t,x)+n(t,x)—nt+ex)<-6+eC<O0.
Notice that since 1 € CO(T,H”% (RY)),d,n = G(n)y € C°(T, H*~2 (R%)), and
s>4+% wehavep € W= (Ix Q).
The main step in the proof of Theorem 1.3 is the following.

Proposition 1.2. Let @ be defined by (1.20) and Q € H'"*(Q(t)) by (1.13). Then for
allt el
(i) 9 @(t,-) e H'(Q(1)).

(i) d®=-Q in2'(Q).
This result will be proved in §1.3.6

1.3.5 Preliminaries

If f is a function defined on €, we shall denote by f its image by the diffeomor-
phism (7,x,z) — (¢,x,p(t,x,z)). Thus we have
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f(t,x,z) :f(tvxap(taxvz)) <:>f(t7xay) :f(taxv K(tvxay))' (126)

Formally we have the following equalities for (¢,x,y) = (¢,x,p(¢,x,z)) € Q and
V=V,

1 ~ ~
ayf(tu-xay) = %azf(tu-xvz) <~ azf(tu-xaz) = azp(tu-xa K(taxuy))ayf(t?)cuy)a

Y o <
Vitxy) = (Vf- % 9:f)(t.x,2) & VF(t,x,2) = (Vf+Vp dyf) (t.xy),

alf(taxvy) = (alf+afK(tax7y)azf) (taxv K(tvxay))'
(1.27)
We shall set in what follows

1

A= —
' op

Vip
2., Aszx—ﬁaz (1.28)
Eventually recall that if u is the function defined by (1.21), we have

/ / Vieyu(t,x,y) - Viy0(x,y)dxdy = — / / VayW(t,x,y) - Vay0(x,y)dxdy
JJQ(1) JJQ(r) -

(1.29)
forall 8 € H'"*(Q(z)) which implies that for ¢ € I,

[Vayu(t, )20 < C(Hn||L°°(1,W1"’°(Rd))||W”LM(LH%(Rd))- (1.30)

Let u be defined by (1.21). Since (17, y) € CO(T,H* 2 (RY) x H**1(RY)), the
elliptic regularity theorem proved in [2] (see Theorem 3.16) shows that

9.1, Vii € C([—1,0], H* "2 (R)) € C°([—1,0] x RY),

since § — % > %
It follows from (1.27) that dyu and V,u have a trace on X and

dyulz = maﬂz(z,x,m, Vouls = (Voii— %aﬂ) (1,x,0).
Since ii(t,x,0) = 0, it follows that
Vaulz + (Van)dyulz =0
from which we deduce, since @ = u + v,
V.®ls +(V.1)d, @z = Vi (131)

On the other hand one has

Gy = (9@ —V.n-V®D)|s. (1.32)
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It follows from (1.31), (1.32), and (1.9) that we have
V.®@|s =V, 9,P|5x=B8B. (1.33)

According to (1.13), P = Q — gy — 4|V, ,®|? has a trace on X and P[5 =0

1.3.6 The Regularity Results

The main steps in the proof of Proposition 1.2 are the following.

Lemma 1.2. Let ii be defined by (1.26) and x by (1.19). Then for all ty € I the func-
tion (x,y) + U(to,x,y) := dii(ty,x, K(tg,x,y)) belongs to H'*(Q(ty)). Moreover
there exists a function F : RT — R such that

sup [Vt Psdy < F (10w, ).

rel (Rd)XHY+2(R‘1))

Lemma 1.3. In the sense of distributions on €2 we have the chain rule
diu(t,x,y) = dii(t,x,x(t,x,y)) + o k(t,x,y)04(t,x, k(t,x,y)).
These lemmas are proved in the next paragraph.
Proof (of Proposition 1.2). According to (1.21) and Lemma 1.3 we have
0:D(t,x,y) = dii(t,x, k(t,x,y)) + w(t,x,y) (1.34)

where
w(t,x,y) = Kk(t,x,y)dd(t, x,k(t,x,y)) + dh y(t,x,y).

According to Lemma 1.2 the first term in the right-hand side of (1.34) belongs to
H'9(Q(1)). Denoting by w the image of w, if we show that

(ii) suppw C {(x Z) €R?x (-1,0)} (1.35)
(i) wlx = —gn— 5(8*+|VP)

then 0, @ will be the variational solution of the problem

1
Acy(9®) =0, 0P[5 =—gn—5(B*+|V[).
By uniqueness, we deduce from (1.13) that d,®@ = —Q, which completes the proof
of Proposition 1.2. Therefore we are left with the proof of (1.35).
Recall that J(t,x,2) = % (2)ePx)y (1, x). Moreover by Lemma 1.3 we have



