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Preface

This book is an attempt to give, as much as possible, a self-contained presentation
of some of the main ideas involved in the mathematical analysis of the Sherrington–
Kirkpatrick model and closely related mixed p-spin models of spin glasses. Certain
topics, such as the high-temperature region and phase transition, are not covered and
can be found in the comprehensive manuscript of Michel Talagrand [66].

In 1975 David Sherrington and Scott Kirkpatrick introduced in [58] a model of
a spin glass—a disordered magnetic alloy that exhibits unusual magnetic behavior.
This model is also often interpreted as a question about a typical behavior of the
optimization problem maxσ∈ΣN HN(σ) for a certain function HN(σ) on the space
of spin configurations ΣN = {−1,+1}N. This means that the parameters of HN(σ)
are modeled as random variables and one would like to understand the asymptotic
behavior of the average Emaxσ∈ΣN HN(σ) in the thermodynamic (infinite-volume)
limit, as the size of the system N goes to infinity. We will see in Chap. 1 that, in
order to solve this problem, it is enough to compute the limit of the free energy,

lim
N→∞

1
N
E log ∑

σ∈ΣN

expβHN(σ),

for each inverse temperature parameter β = 1/T > 0, and the formula for this limit
was proposed by Sherrington and Kirkpatrick in [58] based on the so-called replica
formalism. At the same time, they observed that their replica symmetric solution
exhibits “unphysical behavior” at low temperature, which means that it can only be
correct at high temperature.

Several years later Giorgio Parisi proposed [51, 52] another replica symmetry
breaking solution within replica theory, now called the Parisi ansatz, which was
consistent at any temperature T ≥ 0 and, moreover, was in excellent agreement with
computer simulations. The key feature of the celebrated Parisi ansatz was the choice
of an ultrametric parametrization of the replica matrix in the computation of the free
energy based on the replica approach. A rich theory emerged in the physics literature
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viii Preface

during the subsequent interpretation of the Parisi solution in terms of some physical
properties of the Gibbs measure of the model

GN(σ) =
expβHN(σ)

∑ρ∈ΣN
expβHN(ρ)

.

In particular, in the work of Parisi [53], the order parameter in the ultrametric
parametrization of the replica matrix was related to the distribution of the overlap
R1,2 = N−1∑N

i=1σ1
i σ2

i of two spin configurations σ1,σ2 ∈ ΣN sampled from the
Gibbs measure. The Parisi ansatz was further interpreted in terms of the geometric
structure of the Gibbs measure in the work of Mézard et al. [37, 38], where it was
understood, for example, that the ultrametricity of the replica matrix corresponds to
the ultrametricity of the support of the Gibbs measure in the infinite-volume limit.
Such reinterpretation of the Parisi solution formed a beautiful general physical the-
ory of the model, which was described in the famous book of Mézard, Parisi, and
Virasoro, “Spin Glass Theory and Beyond,” [40]. In some sense, this also opened a
path to a rigorous mathematical theory of the model.

Around the same time, motivated by the developments in the SK model, Bernard
Derrida proposed two simplified models of spin glasses—the random energy model,
REM, in [16, 17], and the generalized random energy model, GREM, in [18, 19].
The REM can be viewed as a formal limit of the family of the so-called pure p-spin
models, in which the SK model corresponds to p = 2, and its Hamiltonian HN(σ) is
given by an i.i.d. sequence of Gaussian random variables with variance N indexed
by σ ∈ ΣN , which is a rather classical object. The GREM combines several random
energy models in a hierarchical way with the ultrametric structure built into the
model from the beginning. Even though these simplified models do not shed light
on the Parisi ansatz in the SK model directly, the structure of the Gibbs measures in
these models was predicted to be, in some sense, identical to that of the SK model
in the infinite-volume limit. For example, Derrida and Toulouse showed in [20] that
the Gibbs weights in the REM have the same distribution in the thermodynamic
limit as the Gibbs weights of the pure states (clusters of spin configurations) in the
SK model; this latter distribution was computed earlier in [37] using the replica
method. Independently, Mézard et al. [39] illustrated the connection between the
REM and the SK model from a different point of view and, finally, de Dominicis
and Hilhorst [15] demonstrated a similar connection between the Gibbs measure of
the GREM and the global structure of the Gibbs measure in the SK model predicted
by the Parisi ansatz.

The realization that the structure of the Gibbs measure in the SK model predicted
by the Parisi replica theory coincides with the structure of the Gibbs measure in
the GREM, which is much simpler than the SK model, turned out to be a very
important step toward a deeper understanding of the Parisi ansatz. In particular,
motivated by this connection with the SK model, in his seminal paper [56], David
Ruelle gave an alternative explicit description of the Gibbs measure in the GREM
in the thermodynamic limit in terms of a certain family of Poisson processes. As
a result, one could now study the properties of these measures, nowadays called
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the Ruelle probability cascades, using the entire arsenal of the theory of Poisson
processes. Some of these properties were already described in the original paper
of Ruelle [56], while other important properties, which express certain invariance
features of these measures, were discovered later by Erwin Bolthausen and Alain-
Sol Sznitman in [10]. We will study the Ruelle probability cascades, including their
invariance properties, in Chap. 2.

Another breakthrough in the mathematical analysis of the SK model came at
the end of the nineties with the discovery of the two so-called stability proper-
ties of the Gibbs measure in the SK model in the work of Stefano Ghirlanda and
Francesco Guerra [25] and Michael Aizenman and Pierluigi Contucci [1]. It was
clear that these stability properties, known as the Ghirlanda–Guerra identities and
the Aizenman–Contucci stochastic stability, impose very strong constraints on the
structure of the Gibbs measure, but the question was whether they lead all the way
to the Ruelle probability cascades. The Aizenman–Contucci stochastic stability is
identical to one part of the Bolthausen–Sznitman invariance property for the Ru-
elle probability cascades. The fact that the Ghirlanda–Guerra identities also hold
for the Ruelle probability cascades was first proved by Michel Talagrand in [62]
in the case corresponding to the REM and, soon after, by Anton Bovier and Irina
Kurkova [11] in the general case corresponding to the GREM. This means that
both the Aizenman–Contucci stochastic stability and the Ghirlanda–Guerra identi-
ties, which were discovered in the setting of the SK model, also appear in the setting
of the Ruelle probability cascades, suggesting some connection between the two.

The first partial answer to the above question was given in an influential work of
Louis-Pierre Arguin and Michael Aizenman [5] who proved that, under a technical
assumption that the overlap takes finitely many values in the thermodynamic limit,
the Aizenman–Contucci stochastic stability implies the ultrametricity predicted by
the Parisi ansatz. Soon after, it was shown in [43] that, under the same technical as-
sumption, the Ghirlanda–Guerra identities also imply ultrametricity (an elementary
proof can be found in [47]). Another approach was proposed by Talagrand in [65].
However, since at low temperature the overlap does not necessarily take finitely
many values in the thermodynamic limit, all these results were not directly applica-
ble to the SK model. Nevertheless, they strongly suggested that the stability prop-
erties can explain the Parisi ansatz and, indeed, the fact that the Ghirlanda–Guerra
identities imply ultrametricity in general, without any technical assumptions, was
proved in [50]. This means that the Ghirlanda–Guerra identities characterize the
Ruelle probability cascades, which confirms the prediction of the physicists that the
Gibbs measure in the SK model coincides with (or can be approximated by) the
Ruelle probability cascades.

Even though the proof of this result, which will be given at the end of Chap. 2,
is based only on the Ghirlanda–Guerra identities, it is important to mention that the
Aizenman–Contucci stochastic stability played an important role in the discovery.
It started with an observation made by Talagrand in 2007 (private communication,
see also [66]) who noticed that in the setting of the Ruelle probability cascades the
Ghirlanda–Guerra identities are contained in the Bolthausen–Sznitman invariance.
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Talagrand’s observation was reversed in [49] where the Ghirlanda–Guerra identities
were combined with the Aizenman–Contucci stochastic stability and expressed as
one unified stability property for the Gibbs measure in the SK model, which is the
exact analogue of the Bolthausen–Sznitman invariance property in the setting of the
Ruelle probability cascades. From this unified stability property one can derive a
new invariance property that will appear in Sect. 2.5, where it will be used to prove
the ultrametricity of the Gibbs measure in the SK model predicted by the Parisi
ansatz. However, this new invariance property can be obtained much more easily
as a direct consequence of the Ghirlanda–Guerra identities, which means that the
Ghirlanda–Guerra identities alone explain the Parisi ansatz in the SK model and, for
this reason, the Aizenman–Contucci stochastic stability will not be discussed in the
book, even though behind the scenes it played a very important role. In some sense,
this is good news because the Aizenman–Contucci stability is a more subtle property
to work with than the Ghirlanda–Guerra identities, especially in the infinite-volume
limit.

Once the structure of the Gibbs measure is understood, we will be in a position
to prove the celebrated Parisi formula for the free energy. This will be the main
focus of Chap. 3. The proof is based on two key results in the mathematical the-
ory of the SK model—the replica symmetry breaking interpolation bound of Guerra
[27] and the cavity computation scheme of Aizenman et al. [2]. The main idea of
Guerra [27] can be viewed as a very clever interpolation between the SK model and
the Ruelle probability cascades, which implies, due to monotonicity, that the Parisi
formula is, in fact, an upper bound on the free energy of the SK model. Following
this breakthrough discovery of Guerra, Talagrand proved in his famous tour-de-
force paper [64] that the Parisi formula, indeed, gives the free energy in the SK
model in the thermodynamic limit. Talagrand’s ingenious proof finds a way around
the Parisi ansatz for the Gibbs measure, but it is quite complicated. In Chap. 3 we
will describe a much more direct approach to the matching lower bound based on
the Aizenman–Sims–Starr cavity computation and the fact that the Gibbs measure
can be approximated by the Ruelle probability cascades. Another advantage of this
approach is that it yields the Parisi formula for all mixed p-spin models, while Tala-
grand’s proof worked only for mixed p-spin models for even p ≥ 2. For simplicity
of notation, we only consider models without the external field, but all the results
hold with obvious modifications in the presence of the external field.

In Chap. 4, we will study the Gibbs measure in the mixed p-spin models in more
detail and describe the joint distribution of all spins in terms of the Ruelle proba-
bility cascades. This chapter is motivated by a different family of mean-field spin
glass models that includes the random K-sat and diluted p-spin models, for which
the main predictions of the physicists remain open and, since we can prove these
predictions (in a certain sense) in the setting of the mixed p-spin models, we use it
as an illustration of what is expected in these other models.

I would to thank Michel Talagrand for valuable advice and Alessandra Cipriani
and Tim Austin for a number of useful questions, remarks, and suggestions.

College Station, TX Dmitry Panchenko
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Chapter 1

The Free Energy and Gibbs Measure

In Sect. 1.1, we will introduce the Sherrington–Kirkpatrick model and a family of
closely related mixed p-spin models and give some motivation for the problem of
computing the free energy in these models. A solution of this problem in Chap. 3
will be based on a description of the structure of the Gibbs measure in the ther-
modynamic limit and in this chapter we will outline several connections between
the free energy and Gibbs measure. At the same time, we will introduce various
ideas and techniques, such as the Gaussian integration by parts, Gaussian interpola-
tion, and Gaussian concentration, that will play essential roles in the key results
of this chapter and throughout the book. In the last section, we will prove the
Dovbysh–Sudakov representation for Gram-de Finetti arrays, which will allow us
to define a certain analogue of the Gibbs measure in the thermodynamic limit. As a
first step, we will prove the Aldous–Hoover representation for exchangeable and
weakly exchangeable arrays. In Sect. 1.4, we will give a classic probabilistic proof
of this result for weakly exchangeable arrays and, for a change, in the Appendix
we will prove the representation for exchangeable arrays using a different approach,
based on more recent ideas of Lovász and Szegedy in the framework of limits of
dense graph sequences. We will describe another application of the Aldous–Hoover
representations for exchangeable arrays in Chap. 4.

1.1 The Sherrington–Kirkpatrick Model

The Sherrington–Kirkpatrick model originated in physics and was introduced in
1975 as a model for a spin glass—a disordered magnetic alloy that exhibits unusual
magnetic behavior. However, even in the physics literature, it is often motivated
as a pure optimization problem. We will continue this tradition and consider the
following scenario, called the Dean’s problem. Suppose we have a group of N peo-
ple indexed by the elements of {1, . . . ,N} and a collection of parameters gi j for
1 ≤ i < j ≤ N, called the interaction parameters, which describe how much people i

D. Panchenko, The Sherrington-Kirkpatrick Model, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4614-6289-7 1, © Springer Science+Business Media New York 2013
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2 1 The Free Energy and Gibbs Measure

and j like or dislike each other. Naturally, a positive parameter means that they like
each other and a negative parameter means that they dislike each other. However
unrealistic it may seem, we will assume that the feeling is mutual. We will consider
different ways to divide a group into two subgroups and it will be convenient to
describe them using vectors of ±1 labels with the agreement that people with the
same label belong to the same group. Therefore, vectors

σ = (σ1, . . . ,σN) ∈ ΣN = {−1,+1}N

describe 2N possible such partitions. For a given configuration σ , let us write i ∼ j
whenever σiσ j = 1 or, in other words, if i and j belong to the same subgroup, and
consider the following comfort function:

c(σ) =∑
i< j

gi jσiσ j =∑
i∼ j

gi j −∑
i�∼ j

gi j. (1.1)

The Dean’s problem is then to maximize this function over all configurations σ
in ΣN . The interpretation of this objective is clear, since maximizing the comfort
function means that we would like to keep positive interactions as much as possi-
ble within the same groups and separate negative interactions into different groups.
It would be interesting to try to understand how this maximum behaves in a typical
situation and one natural way to give this question some meaning is to model the
interaction parameters (gi j) as random variables. The simplest choice is to let the in-
teractions be independent among pairs and have the standard Gaussian distribution
(we will see in Sect. 3.8 that, in some sense, the choice of the distribution is not re-
ally important). This is one common way to introduce the Sherrington–Kirkpatrick
(SK) model.

As a formal definition, we will consider a Gaussian process indexed by σ ∈ ΣN ,

HN(σ) =
1√
N

N

∑
i, j=1

gi jσiσ j, (1.2)

where the random variables gi j for 1 ≤ i, j ≤ N are i.i.d. standard Gaussian. This
process is called the Hamiltonian of the SK model and our goal is to study its
maximum maxσ∈ΣN HN(σ) as the size of the system N goes to infinity or, as the
physicists would say, in the thermodynamic limit. Notice that, compared with the
comfort function above, the Hamiltonian includes N2 terms indexed by all vectors
(i, j). From a mathematical point of view this will make no difference whatsoever,
but from the point of view of notation this choice will be more convenient. The nor-
malization by

√
N is, in some sense, also done for convenience of notation. With

this normalization, the covariance of the Gaussian process can be written as

EHN(σ1)HN(σ2) =
1
N

N

∑
i, j=1

σ1
i σ

1
j σ

2
i σ

2
j = N

( 1
N

N

∑
i=1

σ1
i σ

2
i

)2
= NR2

1,2 (1.3)

where the normalized scalar product
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R1,2 =
1
N

N

∑
i=1

σ1
i σ

2
i (1.4)

is called the overlap of two configurations σ1,σ2 ∈ ΣN . The fact that the covariance
of the Gaussian process (1.2) is a function of the scalar product, or overlap, between
points in ΣN will have very important consequences and one could say that this
property is what makes the SK model so special. For example, this means that the
distribution of the maximum maxσ∈ΣN HN(σ) would not be affected if we replaced
the index set ΣN by its image under any orthogonal transformation on R

N , since the
scalar products and the covariance would be left unchanged. The consequences of
this will gradually become clear.

Going back to the maximum of HN(σ), one would expect it to be of order N,
on average, since this is what happens in the case of 2N independent Gaussian ran-
dom variables with variance of order N, as in Eq. (1.3). However, we are not just
interested in the order of the maximum, but in the precise asymptotics

lim
N→∞

1
N
E max
σ∈ΣN

HN(σ). (1.5)

One standard approach to this random optimization problem is to think of it as the
zero-temperature case of a general family of problems at positive temperature and,
instead of dealing with the maximum in Eq. (1.5) directly, first to try to compute its
“smooth approximation”

lim
N→∞

1
Nβ

E log ∑
σ∈ΣN

expβHN(σ) (1.6)

for every inverse temperature parameter β > 0. To connect these two quantities, let
us write

1
N
E max
σ∈ΣN

HN(σ) ≤ 1
Nβ

E log ∑
σ∈ΣN

expβHN(σ)

≤ log2
β

+
1
N
E max
σ∈ΣN

HN(σ), (1.7)

where the lower bound follows by keeping only the largest term in the sum inside
the logarithm and the upper bound follows by replacing each term by the largest
one. This shows that Eqs. (1.5) and (1.6) differ by at most β−1 log2 and Eq. (1.6)
approximates Eq. (1.5) when the inverse temperature parameter β goes to infinity.
Let us denote

FN(β ) =
1
N
E logZN(β ), (1.8)

where ZN(β ) is defined by

ZN(β ) = ∑
σ∈ΣN

expβHN(σ). (1.9)
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The quantity ZN(β ) is called the partition function and FN(β ) is called the free
energy of the model. We will prove in the next section that the limit

F(β ) = lim
N→∞

FN(β )

exists, which means that Eq. (1.6) is equal to β−1F(β ). It is easy to see, by Hölder’s
inequality, that

β−1(FN(β )− log2) =
1

Nβ
E log

1
2N ∑

σ∈ΣN

expβHN(σ)

is increasing in β and, therefore, so is β−1(F(β )− log2), which implies that the
limit limβ→∞β−1F(β ) exists. It then follows from Eq. (1.7) that

lim
N→∞

1
N
E max
σ∈ΣN

HN(σ) = lim
β→∞

F(β )
β

. (1.10)

The problem of computing Eq. (1.5) was reduced to the problem of computing the
limit F(β ) of the free energy FN(β ) at every positive temperature. The formula for
F(β ) was discovered by the physicist Giorgio Parisi in 1979 and a proof of the Parisi
formula will be one of the main results presented in this book.

In statistical mechanics, the notion of the free energy FN(β ) is closely related to
another notion—the Gibbs measure of the model—which is a random probability
measure on ΣN defined by

GN(σ) =
expβHN(σ)

ZN(β )
. (1.11)

The problem of computing the free energy in the thermodynamic limit turns out to
be closely related to the problem of understanding the asymptotic structure of the
Gibbs measure GN , in a certain sense. On a purely intuitive level, it is clear that the
Gibbs measure Eq. (1.11) assigns more weight to the configurations σ correspond-
ing to the larger values of the Hamiltonian HN(σ) and, when the inverse temperature
parameter β goes to infinity, in the limit, GN concentrates on the optimal configu-
rations corresponding to the maximum maxσ∈ΣN HN(σ). Therefore, a set where GN

carries most of its weight, in some sense, corresponds to a set where HN takes large
values and understanding the structure of this set can be helpful in the computa-
tion of the limit in Eq. (1.5), or the limit of the free energy FN(β ). This is another
way to see that the model at small but positive temperature can be viewed as an
approximation of the model at zero temperature, the original optimization problem.
In the remainder of the chapter, we will try to explain this connection between the
free energy and Gibbs measure from several different points of view, while at the
same time introducing various techniques that will be used throughout the book.

Besides the classical Sherrington–Kirkpatrick model, we will also consider its
generalization, the so-called mixed p-spin model, corresponding to the Hamiltonian

HN(σ) = ∑
p≥1

βpHN,p(σ), (1.12)


