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Preface

In this book we present the recently developed statistical theory of turbulence in a
form that can be appreciated by physicists, mathematicians, and engineers. The the-
ory is grounded in probability theory and we develop from probability all the results
that are necessary to understand the turbulence theory, without proofs. However,
references are given to standard texts where the proofs and more background details
can be found. The goals are to find estimates for structure functions of turbulence
that are realized in simulation and experiments; to derive the invariant measure of
turbulence both for the one-point statistics and the two-point statistics; and finally
to derive the probability density function (PDF) for the statistics that are used in
practice. We do not assume any mathematical background but familiarity with basic
probability theory and partial differential equations obviously helps.

We will see that the Navier–Stokes equation for all but the largest scales in tur-
bulent flow can be expressed as a stochastic Navier–Stokes equation (1.65). The
stochastic forcing results from instabilities of the flow that magnifies small ambient
noise and saturates its growth into large stochastic forcing. This has been mod-
eled before by a Reynolds decomposition and by a coarse graining of the flow. The
stochastic force is generic and is determined by the general principles of probability
with a minimum of physical inputs. It consists of two components: additive noise
and multiplicative noise and the additive component is determined by the central
limit theorem and the large deviation principle. The physical input is that these two
terms must produce similar scalings because they are the detailed description of the
same dissipative processes. This determines the rate in the large deviation principle.
The multiplicative noise multiplies the fluid velocity and models jumps (vorticity
concentrations) in the velocity gradient. It is expressed by a generic Poisson process
where only the rate needs to be given. This rate is determined by the spectral analy-
sis of the (linearized) Navier–Stokes operator and the requirement, following [64],
that the dimension of the most singular vorticity structure (filaments) is one. Thus
the stochastic forcing is generic and determined with two mild physical inputs.

The stochastic Navier–Stokes equation can be expressed as an integral equation
(2.17) and the log-Poissonian processes found by She and Leveque and explored
by She and Waymire and Dubrulle are produced from the multiplicative noise by
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the Feynman–Kac formula. This gives a satisfying mathematical derivation of the
intermittency phenomena that had earlier been derived from impirical considera-
tions. Moreover, the integral equations show how the Navier–Stokes evolution and
the log-Poissonian intermittency processes act on the dissipation processes to pro-
duce the intermittency in the dissipation. This is a mathematical derivation of the
experimental observation that intermittent dissipation processes accompany inter-
mittent velocity variations. Using the integral equation, we get an estimate on all
the structure functions of the velocity differences in turbulence. The evidence from
simulations and experiments is that this upper bound is reached in turbulent flow.
Why the inertial cascade achieves this maximal efficiency in the energy transfer
remains to be explained.

We then build on Hopf’s [29] ideas to compute the invariant measure of turbulent
flow. This measure can be computed because it solves a linear functional differential
equation, the Kolmogorov–Hopf equation; see [56]. It turns out to be an infinite-
dimensional Gaussian multiplied by a (discrete) Poisson distribution. This Poisson
distribution corresponds to the intermittency and the log-Poisson processes. Then by
taking the trace of the invariant measure we get the PDF of the velocity differences.
We first derive the functional differential equation (PDE) for the PDF and then show
that there are infinitely many PDFs, each corresponding to a particular moment
because of the intermittency corrections. The PDE (3.15) for the sequence of PDFs
can also be solved and the PDFs turn out to be the normalized inverse Gaussian
(NIG) distributions of Barndorff–Nielsen [7]. Their parameters are easly computed
and we see how to do this for both simulations and experiments.

It is interesting to notice that although the solution of the Navier–Stokes equation
may not be unique or smooth the invariant measure of the velocity differences (3.12)
is still well defined by Leray’s [42] existence theory. Moreover, different velocities
produce equivalent measures, so the statistical observables of turbulence are unique
although the turbulent velocity may not be.

The theory presented in this book must be complemented by a dynamical systems
theory for the large-scale structures in fluid flow and eventually one wants to work
out how the small-scale flow presented here influences the large-scale dynamics.
This is a material for future research, but hopefully the tools presented in this book
will also be helpful in that endeavor.

Santa Barbara, California, Björn Birnir
United States
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Chapter 1
The Mathematical Formulation of Fully
Developed Turbulence

1.1 Introduction to Turbulence

The purpose of the research discussed in this book is to develop new mathematical
tools that open the theory of turbulence up to theoretical investigations. Great strides
are currently being made both in turbulence experiments and simulations, but the
new mathematical development will allow theoreticians to compare with both sim-
ulations and experiments and make new predictions useful to both areas.

The ultimate goal of turbulence research is to develop methods to systematically
improve the simulations of turbulent systems. Such methods have been ad hoc so
far, with different techniques applied to each situations. The new theory will permit
a systematic approach where the simulations and experiment can be made increas-
ingly accurate in a stepwise fashion.

These developments will eventually have a big effect on technology permitting
improvements in aircraft and car design, more efficient travel in and out of space,
less pollution, more fuel efficiency, and greater efficiency of wind turbines and
wave energy farms. It will help to understand weather patterns and greatly advance
weather predictions. In addition it will aid a wide variety of applications of turbu-
lence in industry and science.

In 1941 Kolmogorov and Obukhov [34, 35, 49] proposed a statistical theory of
turbulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent fluid

E(|u(x, t)− u(x+ l, t)|p) = Sp =Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3. This
theory was immediately criticized by Landau for not taking into account the influ-
ence of the large flow structure on the constants Cp and later for not including the
influence of the intermittency, in the velocity fluctuations, on the scaling exponents.

In 1962 Kolmogorov and Obukhov [36, 50] proposed a corrected theory where
both of those issues were addressed. They also pointed out that the scaling exponents
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