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 Anthropogenic pressures are implicated in the degradation of invaluable natural 
resources. Assessing the impacts of global soil salinization on plant growth and 
productivity and identifying approaches for mitigation salinization are subjects of 
global importance. It is reported that about 7% of the total land on Earth and 20% 
of the total arable area are affected by a high salt content. Plant productivity is also 
affected by the elevated levels of salt content in the soil. The reason for the low 
production is that various metabolic processes that work independently or in coor-
dination with one another are affected by the deleterious effects of salt. 

 Poly-omics – namely, proteomics, genomics, micromics, transcriptomics, meta-
blomics, inomics, metallomics, etc. – have emerged as a powerful tool for under-
standing the mechanism of plant response toward salinity stress. The exploitation of 
different genes and proteins involved in the regulation of various environmental 
stresses will be very useful in generating crops with enhanced food production 
under salinity stress. With the help of metabolomics, we will recognize different 
metabolic pathways the plant is rearranging during stress. Plants perceive both 
external and internal signals and use them to regulate various responses for their 
development. 

 During salinity stress, plants respond in various ways and can withstand the 
stress. Salinity stress is responsible for osmotic, ionic, and oxidative stresses, which 
lead to reduced growth and development of the plant. Plants can tolerate these 
stresses by the accumulation of osmolytes and osmoprotectants. Another machinery 
is the expression of different types of enzymatic and non-enzymatic antioxidants. 
Understanding the full mechanism of salt tolerance through different means is an 
enigmatic subject for scientists in general and plant biologists in particular. 

 The outline of this volume, “ Salt Stress in Plants: Omics, Signaling and 
Adaptations ,” encompasses the following: Chapter   1     deals with advances of metab-
olomics to reveal plant response during salt stress. Chapter   2     narrates the role of 
microRNAs (micromics) in response to salt stress in plants. Chapter   3     sheds light on 
the role of proteomics in salt-stressed plants. Chapter   4     discusses improving salinity 
tolerance in plants through genetic approaches. Chapter   5     describes the role of LEA 
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proteins in salinity tolerance in plants. Chapter   6     highlights the effect the salt stress 
on crop production and the role of omics in salinity tolerance. Chapters   7    ,   8     and   9     
deal with the role of different kinds of signaling molecules in plants under salt 
stress. Chapters   10     and   11     examine the approaches to improve salt tolerance in rice 
and maize. Chapter   12     highlights the role of phytochromes in stress tolerance. 
Chapter   13     discusses alleviating salinity stress through arbuscular mycorrhiza. 
Chapter   14     deals with breeding approaches in stress tolerance in citrus. Chapter   15     
highlights the effect of salt stress in photosynthesis under ambient and elevated 
atmospheric CO 

2
  concentrations. Chapter   16     deals with nitrogen-use-ef fi ciency in 

plants under salt stress. Chapter   17     sheds light on the response of salt-affected plants 
to cadmium, and Chap.   18     highlights the role of plant tissue culture in screening the 
salt tolerance in plants. 

 This volume will provide valuable information about the omic approaches, sig-
naling, and responses of plants under salt stress. We would like to thank all the 
authors of this volume for their contributions. We are also thankful to my colleagues 
who helped us directly or indirectly in completing this volume. We are also grateful 
to Hanna Smith (Associate Editor, Springer) and Margaret Burns (Developmental 
Editor, Springer) for their help, suggestions, and timely publication of the volume. 

 Srinagar, India Parvaiz Ahmad 
 Qena, Egypt M.M. Azooz 
 Hyderabad, India M.N.V. Prasad    
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  Abstract   Salt stress is the major limiting factor in agriculture and portraits a major 
challenge to food security. The adverse effect of salt stress is expressed on whole 
plant levels. Plants have acquired various processes that functions to balance cel-
lular hyperosmolarity and ion disequilibrium in an effort to combat salt stress. These 
processes occur due to signi fi cant changes in the gene expression that in turn bring 
about changes in plant metabolism. These metabolic changes help the plant to adapt 
to disorganized metabolic homeostasis. It has been observed that adverse growth 
conditions have impact on the synthesis of secondary plant products or metabolites 
that help in plant defence. The diverse nature of these metabolites has lead to the 
development of ‘Metabolomics’. The metabolite  fi ngerprinting and pro fi ling 
approaches provides accurate identi fi cation and quanti fi cation of stressed sample 
even before they can bring about change(s) in the transcriptome or proteome. Using 
metabolic pro fi le changes as a marker for stress physiology, metabolic movements 
and factors can be analysed in combination with other ‘omic’ techniques, such as 
transcriptomics. Revealed analyses of salt acclimation effects and related stress 
factors to salinity stress may provide help in crop breeding programs to develop 
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    Chapter 1   
 Recent Advances of Metabolomics to Reveal 
Plant Response During Salt Stress       
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salt tolerance varieties. In this review, we will focus on recent advancements and 
application of metabolomics in plants under salinity stress.  

  Keywords   Salinity  •  Signaling  •  Phenolic compounds  •  Alkaloids      

 Salinity in agriculture has been a major restricting factor in food production. Soil 
salinity is known to restrict the land use and limits crop yield. The various environ-
mental programs carried throughout the world estimates that approximately 20% of 
agricultural land and 50% of cropland in the world is salt-stressed (   Munns and 
Tester  2008  ) . Hence, the existing soil salinity is a large confront for food security. 
Increase in levels of water-soluble salts e.g. NaCl, Na 

2
 CO 

3
  and CaCl 

2
  is mainly due 

to irrigation, results in soil salinity. Soil salinity results in reduced biomass produc-
tion by affecting important physiological and biochemical processes of plant 
(Ahmad and John  2005 ; Ahmad and Sharma 2006,  2008,   2010 ; Ahmad  2010 ; 
Ahmad et al.  2010a,   b,   c,   2012  ) . 

 The adverse effect of salt stress is expressed on whole plant level, and appears 
during all developmental stages including germination, seedling and vegetative 
stages. However, tolerance in respect to salt stress varies at different plant develop-
mental stages and also from species to species. Salt stress occur as a calamitous 
episode, be imposed constantly or from time to time and then gradually becoming 
more severe at any stage during development. The plant respond to salt stress by 
various processes that functions in coordination to balance cellular hyperosmolarity 
and ion disequilibrium. Salt tolerance in plants and their yield stability are complex 
genetic traits that are complicated and dif fi cult to establish in crops. 

 Plant’s ability to tolerate salt is dependent on multiple biochemical pathways that 
lead to production of osmotically dynamic metabolites, free radicals and speci fi c 
proteins to manage ion and water  fl ux. Thus providing support to scavenging oxy-
gen radicals and in turn maintaining ion homeostasis. Therefore there was need to 
determine the underlying biochemical mechanisms of salinity tolerance so as to 
provide plant breeders with appropriate indicators. But salt stress has showed to 
affect many intracellular substances, like nucleic acids, proteins, carbohydrates and 
amino acids (Ahmad and Sharma  2008,   2010 ; Ahmad et al.  2010a,   b,   c ; Ahmad  2010  ) . 
Thereby the introducing molecular biological techniques into plant stress physiol-
ogy provided an enhanced effort that lead to the identi fi cation of stress-inducible 
genes (Bartels and Sunkar  2005 ; Umezawa et al.  2006  ) . These studies succeeded in 
over-expression of genes that are known to be involved in stress responses, provided 
tolerance to abiotic stress. Another approach, quantitative trait locus (QTL) analysis 
brought about bene fi ts in the enabled creation of stress-tolerant crops by combining 
QTLs for various stress tolerances traits (Takeda and Matsuoka  2008 ; Krasensky 
and Jonak  2012  ) . Several studies related to QTL in various salt stress tolerances 
have been reported. For example, Ren et al.  (  2005  )  identi fi ed the SKC1 locus encod-
ing a high af fi nity K +  transporter (HKT)-type sodium transporter by analyzing a 
QTL for salinity tolerance using salt-tolerant and salt-susceptible rice varieties. 
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However, plant responses to salinity involve diversi fi ed changes in the activity of 
genes and proteins, which invariably lead to changes in plant metabolism. It is now 
known that plants have numerous metabolic pathways that direct to thousands of 
secondary products which are capable of effectively responding to salt stress situ-
ations. These pathways, often diverge from primary metabolic pathways upon ini-
tial gene duplication (Nascimento and Fett  2010 ; Mastrobuoni et al.  2012  ) . So, the 
different type of growth conditions has a noteworthy impact on the synthesis and 
accretion of secondary plant products. Because of these extremely assorted chemi-
cal natures of metabolites, metabolome analyses can provide accurate identi fi cation 
and quanti fi cation from a single stressed sample (Birkemeyer et al.  2005  ) . More 
precisely, the metabolite  fi ngerprinting approach and its summary provides 
identi fi cation of the early compounds that signal the perception of stress even 
before they can bring about change(s) in the transcriptome or proteome could be 
detected to access the eventual biological information current connecting gene 
expression and metabolic phenotype. In this review, we will be summarizing some 
of the plant stress physiology and techniques used to study the metabolome of 
plants during salt stress. 

   Physiology of Plants Under Salt Stress 

 Mechanisms of plants towards salt tolerance occur by restricting the entry of salt into 
the plant (especially minimizing the accumulation of salt in photosynthetic tissues 
and cytoplasm) (Munns  2002  ) . The plant follows two major adaptive strategies 
towards high environment salinity tolerance:  fi rstly to avoid stress due to different 
physical and physiological barriers, secondly enhancing the adaptive mechanisms 
internally that will enable successful survival. Therefore, the Na +  uptake and its 
transport regulation across the plasma membranes and tonoplast is one of the key 
factors that establish the plant cell response to salinity stress (Dajic  2006  ) . Avoidance 
of salt uptake can take place by salt exclusion; it is a very ef fi cient but complex way 
of reducing the permeability of massive ion in the root zone, especially sodium. This 
process enables a low uptake and accumulation of salts in the upper parts, especially 
in the transpiring organs of the plant. Many glycophytes are known to show better 
skills for Na +  exclusion from the shoot and also for maintaining elevated levels of K +  
(Flowers and Hajibagheri  2001  ) . Studies have revealed salt in-tolerant plants, such as 
beans and maize are known to be the most outstanding Na +  excluders (Bayuelo-
Jimenez et al.  2003  )  whereas salt tolerant crops like bread wheat has reduced speed 
of Na +  transport to the shoots and high K + /Na +  intolerance (Gorham  1990  ) . 

 A study done by Munns et al.  (  1988  )  and Jeschke and Hartung  (  2000  )  have shown 
salt exclusion to function at the cellular as well as at the whole plant level and to a 
greater extent is related to regulation of K/Na ion selection. In mangrove  Avicennia 
marina  is known to have 98% degree of salt exclusion property (Ball  1988  ) . Whereas 
it was demonstrated by Munns et al.  (  1999  )  glycophyte or halophyte, has the prop-
erty of restraining of Na +  uptake and accumulation in the shoots. In some salt tolerant 
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species, for example wheat have the property to exclude salts is achieved by changing 
sodium and calcium ions, rather than bringing about modi fi cation in osmotic poten-
tial, as adsorption on membranes of root cells of calcium ions directs towards reduced 
penetration of monovalent cations (Munns et al.  1999  ) . 

 Salt excretion is another very ef fi cient way of preventing excessive absorption 
and building up of salts in photosynthetic tissues. This mechanism is equipped with 
developed special features, which are mostly present in leaf epidermis, known as 
salt glands and salt hairs (bladders). These structures are commonly found in 
many halophytes such as  Spartina ,  Aeluropus  (Poaceae),  Limonium ,  Armeria  
(Plumbaginaceae),  Atriplex  (Chenopodiaceae),  Glaux  (Primulaceae),  Tamarix ,  Reamuria  
(Tamaricaceae), and in mangrove species, e.g.  Avicennia ,  Aegiceras  and  Acanthus  
(Popp  1995  ) . The glandular structures that are involved in salt excretion may vary 
in structure, position, mechanism and also in ecological signi fi cance. The simplest 
ones are two celled found in  Spartina  and  Aeluropus,  and three-celled types known 
to occur in  Chloris gayana . There are also complex structures composed of 5–9 
cells in  Avicennia , 8 cells present in  Tamarix  and also 16 celled present in the family 
Plumbaginaceae (Crawford  1989  ) . Glandular structures are present all over the sur-
face area of the shoot, and are most abundant on the leaves. 

 Still excessive exposure of plants to salt stress can lead to the production of reactive 
oxygen species (ROS) such as H 

2
 O 

2
  (hydrogen peroxide), O 

2
  •−  (superoxide),  1 O 

2
  (sin-

glet oxygen) and  • OH (hydroxyl radical). Excess ROS is a source of toxic reactions 
like lipid peroxidation, protein degradation and DNA mutation (Vinocur and Altman 
 2005 ; Pitzschke et al.  2006 ; Ahmad et al.  2008,   2009,   2010b,   2011,   2012  ) . In plant 
cells, H 

2
 O 

2
 , superoxide anion (O 

2
  − ), and hydroxyl radical ( • OH) are generated due to 

oxidative damage to cells during environmental stress in the cytosol, chloroplasts, 
mitochondria, and the apoplastic space and they have the potential to cause 
(Mittler  2002  ) . Research work has revealed that ROS has an important role as signal 
transduction molecules in plants. It is involved in mediating responses to environmen-
tal stresses, pathogen infection, and programmed cell death (Torres and Dangl  2005  ) . 
Increased production of ROS related to salt stress causes membrane injury (Shalata 
et al.  2001  ) . This increase in levels of ROS results from closure of stomata that leads 
to reduced in CO 

2
  concentration within the chloroplasts and also decreases in NADP +  

concentration causing photoinhibition (Foyer and Noctor  2003  ) . 
 Among all these synchronized physiological responses in plants, abscisic acid 

(ABA), the plant hormone, plays a essential role. ABA is a stress hormone as for its 
rapid accretion towards the response to stress and its intervention, help plant endur-
ance over much stress. The  fi rst requirement is that ABA production should be 
rapidly triggered by the stress signals so that inhibition of physiological functions is 
avoided. Secondly, ABA should be quickly degraded and deactivated once the stress 
is reassured so that normal plant growth and functions can recommence. 

 Research on plant tolerance towards salt stress cover many portions of its 
in fl uence on plant behaviour, which includes alterations at the morphological, phys-
iological and molecular levels. Previously, stress studies are focused on: transgenic 
plants development, improvement of plant breeding and modi fi cation in the genetic 
structures of existing crops towards enhanced adaptation to salinity conditions. 
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Recently, the progress of research in ‘omics’ like proteomics and metablomics and 
has created a better platform for understanding of molecular mechanism in salinity 
stress (Tester and Davenport  2003  ) .  

   Cell Signalling and Secondary Signal Molecules 
During Salt Stress 

 During environmental stress plant cells receive stress signals that are in fl uenced by 
various signalling pathways. The secondary messengers, stress responsive plant hor-
mones, signal transducers and regulatory transcriptional molecules together to induce 
signals via signalling pathway. Early response in plant cells towards salinity stress is 
Ca 2+ , derived; leading to a sudden increase in its concentration in cytosol either from 
in fl ux of Ca 2+  from the apoplastic space or release from internal stores. The release 
of Ca 2+  is further controlled by second messengers for example, cyclic ADP ribose, 
NADP +  and inositol polyphosphates and that are present as ligand-sensitive Ca ion 
channels. These molecules enable the release of Ca 2+  in plant cells particularly in 
guard cells (Schroeder et al.  2001  ) . Hrabak et al.  (  2003  )  reported that two protein 
kinases are assumed to be the targets of the Ca 2+  signal in plants. One is SnRK3-type 
kinases, whose action is reliant on the Ca 2+ -binding calcineurin B-like (CBL) pro-
teins (Krasensky and Jonak  2012 ; Sarwat et al.  2012  ) . Work done by Luan  (  2009  )  in 
Arabidopsis has showed SnRK3 as one of the best characterized protein kinase which 
was eventually recognized as a vital factor in salt stress response. The other protein 
kinase concerned in stress response is Ca 2+ -dependent kinase (CDPK). 

 Mitogen activated protein kinase (MAPK) mechanism in plant cell are as well 
accountable for the assembly of osmolytes and antioxidants. Receptors/sensors 
such as kinases (histidine kinases and protein tyrosine kinases) and G-protein are 
known to activate these MAPK pathways (Kong et al.  2011 ; Zhang et al.  2011 ). 

 Late embryogenesis–abundant ( LEA )-type genes and the dehydration-responsive 
element (DRE)/C-repeat (CRT) among the class of important responsive genes 
towards stress play role in regulation of osmolyte production. Researchers showed 
that  LEA  -type genes represents damage repair pathways (Xiong and Zhu  2002  ) . 
Since the activity of phospholipase C in plants that is regulated by G-proteins, and 
phosphoinositols organize the up-regulation of these  LEA  – like genes under salt 
stress. G-protein–related receptors may also provide with membrane-bound recep-
tors for ABA response (Wang et al.  2001  ) . Under salinity stress, ABA plays a very 
important role in bringing about a radical change in the expression pro fi le of gene 
and cellular processes of plant (Park et al.  2009  ) . Other plant hormones play direct 
or indirect substantial task during abiotic stress. ABA during abiotic stress is known 
to interconnect with Salicylic acid (SA), ethylene (ET) as well as jasmonic acid (JA) 
(Grant and Jones  2009  ) . 

 Plasma membrane plays a role of barrier between living cells and the surround-
ing environments. It also has an important part in the insight and conduction of 
exterior details. Variation in phospholipid components occurs when osmotic stress 
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is initiated and this change is detected in plants (Munnik et al.  1998  ) . However, the 
major role of phospholipids is they form the backbone of cellular membranes and 
serve as precursor for the production of second-messenger molecules. The relevant 
enzymes involved in cleaving are the phospholipases (PIP) A2, C, and D. PIP 
besides being involved in signal transduction is also involved in several processes, 
like employing, assembly and transportation of signalling complexes to the speci fi c 
membrane locations (Martin  1998  ) . PIP 2 is also involved in cellular ion homeosta-
sis.  PI5K , is one of the gene that encodes a phosphatidylinositol 4-phosphate 
5-kinase (PIPK) that functions in the production of PIP 2 (Mikami et al.  1998  ) . As 
osmotic stress increases, so does the production of PIP 2 by upregulating the expres-
sion of  P15K  gene. Increase in PIPK isoforms expression contribute to increased 
conversion of PIP 2 to two important molecules, of diacylglycerol and inositol 
1,4,5-trisphosphate (IP3). Diacylglycerol and IP3 are important secondary messen-
gers that are able to stimulate protein kinase C and  fi nally release trigger Ca 2+  
release.  

   Abiotic Stress Responses: Genome Wide Expression 

 Abiotic stresses causes increase of many intracellular substances, also affects 
nucleic acids, proteins, carbohydrates and amino acids. Molecular biology tech-
niques introduction in plant biology enables an immense effort towards the 
identi fi cation of stress-inducible genes. Molecular studies thrive in isolating genes 
that were known to function in stress responses and tolerance. It is now known that 
transcriptional activation happens at different time points in response to stress stim-
uli. This suggests that abiotic stress responses are very complicated is controlled by 
a various signalling means and different transcription factors. Identi fi cation of many 
signi fi cant factors in the stress pathway had been able to use responsive genes as 
markers. For example, dehydration responsive element (CRE)/C-repeat (CRT) (A/
GCCGAC) an abiotic stress-responsive cis-element, and its post-translational 
modi fi cations were recognized, which in turn has increases the scope of research 
that play central role in identifying the transcriptional regulating factors (Shinozaki 
and Yamaguchi-Shinozaki  2007  ) . Also the genetic screening for mutations affects 
the expression of stress inducible genes thus enabled the identi fi cation of novel 
components in the abiotic regulatory system (Chinnusamy et al.  2002  ) . 

 Completions of the genomes of  Arabidopsis  and  Oryza sativa  have also added to 
the information available on stress physiology. The absolute genome sequence is 
now-a-days accessible and also has enabled genome-wide gene expression pro fi ling 
to a variety of abiotic stresses (Kilian et al.  2007  ) . Microarray technology has also 
enabled the knowledge of genes responding to abiotic stresses that have been 
identi fi ed more in detail than before. Complete transcriptome analysis have facili-
tated the relationships between stress-regulated transcripts, and their regulatory ele-
ments (Weston et al.  2008  ) . The function of stress-inducible genes can also be 
determined by the reverse genetic approach, assisted by insertion mutation lines. 



71 Recent Advances of Metabolomics to Reveal Plant Response During Salt Stress

Vast microarray experiments have lead to the identi fi cation of the regulators for 
stress-inducible intracellular signalling and gene expression of various types of 
transcription factors (e.g. MAP kinases, phosphatises and metabolic phospholipid 
enzymes). This classi fi cation of inducible stress signal transducers augmented an 
thought that plants have developed transformable cellular response means to 
resourcefully react to various abiotic stresses.  

   Metabolic Pro fi le Under Abiotic Stress 

 Metabolism reveals biological activities dependent on the environmental condi-
tions. Study of metabolic pro fi le under abiotic stress conditions has made possible 
the detection and recognition of metabolites. Under stress conditions, plants re-
organize their metabolic pathways in order to adapt to changing conditions (Kaplan 
et al.  2004  ) . Using these metabolic pro fi le changes as a marker, metabolic move-
ments and factors that regulate them were analysed in combination with other ‘omic’ 
analyses, such as transcriptome particularly through mass spectrometry-based ana-
lytical methods (Saito et al.  2008 ; Sawada et al.  2009  ) . The metabolic pathways 
often employed from vital primary metabolism pathways, upon initial gene duplica-
tion, play main part in the plant and environment communication (Nascimento and 
Fett  2010  ) . Accordingly, the diverse growth surroundings have a major impact on 
the synthesis and accrual of secondary plant products. Therefore, this production of 
secondary plant products acts as a surviving response for plants to manage the 
increasing stress. There are varieties of secondary products synthesized during these 
processes and are listed below. 

   Phenolic Compounds 

 A large variety of secondary products produced by plants contain a phenol group, a 
hydroxyl functional group on an aromatic ring called Phenol, a chemically heterog-
enous group. This group forms an important part of the plants defence system 
against biotic and abiotic stress condition. Increase in salt concentration increases 
the total phenolic content of leaves (Savirnata et al.  2010  ) . Flavinoids form one of 
the largest classes of plant phenolics that carry out extremely dissimilar functions in 
plant coordination also including defence and pigmentation (Kondo et al.  1992  ) . 
Like  fl avonoids, anthocyanins also have multiple biological activities as antioxidant 
component. 

 Iso fl avonoids are derivatives of  fl avonone intermediate, naringenin that occurs 
universally in plants. They are known to be released by the legumes playing an 
important part in encouraging the creation of nitrogen- fi xing nodules by symbiotic 
rhizobia (Sreevidya et al.  2006  ) . Besides this they also participated in plant growth 
and defence responses. Studies done by Posmyk et al.  (  2009  )  observed that the pro-
duction of these  fl avonoids is an ef fi cient approach against ROS.  
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   Alkaloids 

 About 20% of the species of vascular plants has substantial members of N-containing 
secondary metabolites. Most of alkaloids include pyrrolizidine alkaloids (PAs). They are 
considered to be toxic and primarily serve as defence against herbivoral attack (   Schafer 
and Wink  2009  ) . But under highly suppressive conditions these alkaloids play role as 
ROS scavengers. Studies have also shown that ROS production also regulates the alka-
loid pathway occurring in undifferentiated cells. It seems they also have mechanisms for 
directing the alkaloid pathway in other parts of the plants (Sachan et al.  2010  ) .   

   In fl uence of Salt Stress on the Synthesis of Secondary 
Plant Products 

 Salt stress is one of the serious factor that limits the ef fi ciency of crops and 
especially quantity and quality of their metabolic (secondary plant products) prod-
ucts. Against the attack of pathogens, plants manufacture secondary plant products 
as a part of defence mechanism. Therefore, the concentrations of large amount of 
secondary products are totally dependent on the surrounding environmental circum-
stances. High salt concentrations in the soil are accountable for the production of 
the secondary plant products by making a major change in the metabolic enzymes/
pathways. Volatile sulphur compounds, vitamins, carbonyl compounds, ascorbic 
acid and  fl avonoids are some of the active secondary metabolities that are stimu-
lated under environmental stresses (Krasensky and Jonak  2012  ) . Enzymes like 
Phenylalanine ammonium lyase (PAL) and Glutathione-S-transferase (GSTs) also 
get induced from unfavourable effects of stresses (Marrs  1996  ) . PAL, in action with 
cinamates 4-hydroxylase forms essential group of enzymes that helps in biosynthe-
sis of several important secondary metabolites from phenyl alanine (Singh et al. 
 2009  ) . In a series of experimental observations, it could be shown that plants which 
are exposed to salt stress produce a greater amount of secondary plant products such 
as phenols, terpenes as well as N and S containing substances such as alkaloids, 
cyanogenic glucosides or gluco-sinolates (Singh et al.  2009  ) .  

   Metabolomics: Recent Technology Developments 
and Applications 

 Plants are known to be nature’s excellent chemists, as they have a huge variety of 
chemical substances that  fi t according to the needs of a highly variable and generally 
hostile environment conditions (Baxter and Borevitz  2006  ) . Natural metabolic range 
and a lack of combination of principles require identi fi cation of compounds, forming 
major analytical challenge (Breitling et al.  2006  ) . As, metabolomic applications in 
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crop/plant analysis are constantly growing, therefore the use of liquid chromatography 
mass spectrometry (LC-MS), GCMS and NMR are greatly explored to get more full 
insight into the variation of compositions in the metabolities. Research in potato using 
 fl ow injection mass spectrometry analysis (FIMS) of a varied range of genotypes, 
showed the correlation between genotypes with different traits in free amino acid con-
tent (Beckman et al.  2007  ) . Metabolomic technologies facilitate the multivariant meta-
bolic data using varied, chromatographic detection systems, such as GC-MS, 
Fourier-transformed infrared spectroscopy/NMR-based methods. 

 Techniques like Matrix-assisted laser desorption/ionization (MALDI-TOF) and 
GC-MS pro fi ling revealed dissimilarity in metabolic composition like amino acids 
and organic acids in tomato cultivars even though these cultivars were closely related 
(Fraser et al.  2007  ) . Thus, the excellence of crop/plants nutritional value is the expres-
sion of metabolite content (Memelink  2004  ) . There is therefore great importance of 
using a metabolomics approach to know better what in particular has happened dur-
ing stress encroachment and provide help to plan new ideas for crop improvement. 

 Metabolomics is entirely positioned to perceive the pathway that drive the expression 
of a trait and potentially enable breeders, to select the desired trait of superiority for high-
yielding varieties also with tolerance to abiotic stress. Plant’s response to salinity involves 
changes in the functionality of genes and proteins that consistently lead to changes in 
plant metabolism. Gas chromatography time-of- fl ight mass spectrometry outlines the 
novel details from the plant models, Rice,  Arabidopsis thaliana and Lotus japonicus  that 
demonstrated the power of metabolite pro fi ling providing insight to disturbed cellular 
balance between amino acids and organic acids in response to salt stress. 

 Because of the highly assorted nature of metabolites, metabolome analyses are 
subjected to combination of technological and analytics. The most noteworthy 
advantage of metabolome analyses is the static chemical uniqueness of metabolite 
entities. In comparison to genomics, transcriptomics and proteomics analyses that 
enables the identity of genes and proteins, metabolomics provide highly appropriate 
investigations of metabolic, like the physiological responses caused by environmen-
tal perturbations (Desbrosses et al.  2005  ) . 

 This data-rich analytical advancement have ignited the development of bioinfor-
matic tools to sort through the complex  fi ngerprints and pro fi les of data sets for 
relevant descriptive information. More speci fi cally, bioinformatics with metabolite 
 fi ngerprinting and pro fi ling approaches grant access to the eventual biological infor-
mation  fl ow between gene expression and metabolic phenotype. 

 Some studies on higher plants upon exposure to salt stress utilize pro fi les of meta-
bolic  fi ngerprinting to explore changes in them. The metabolic impact of salt stress have 
been studied in crops like  Lycopersicom esculantum ,  Solanum lycopersicon ,  Oryza 
sativa ,  Vitis vinifera  and the model plant  Arabidopsis thaliana  (Cramer et al.  2007 ; Kim 
et al.  2007 ; Zuther et al.  2007  ) . Comparisons of metabolite pro fi les have also been car-
ried out in halophytic species, such as the  Populus euphratica  tree or the shrubs  Limonium 
latifolium  and  Thellungiella halophila  (Gong et al.  2005 ; Gagneul et al.  2007  ) . 

 Analysis of the FT-IR spectra, provided information on compound classes speci fi c 
that revealed signals from nitriles and amino radicals and some nitrogen containing 
compounds allowing the comparison between control samples and salt-treated fruits, 
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leading to a clear classi fi cation of the investigated cultivars of  S. lycopersicon . Another 
study on the salt-tolerant tree  P. euphratica  in combination with transcriptomics and 
GC-MS based metabolomic analyses revealed that within the natural habitat of plants, 
they are acclimated to the environment. It was observed that there was an increase in 
amino acid levels, speci fi cally proline, valine and b-alanine, changes in sugar and 
polyol metabolism this may be due to high sodium concentration in the  fi eld. Increase 
in the levels of myo-inositol, glyceric acid and glycerol were reported while a decrease 
was observed in levels of fructose and mannitol (Brosché et al.  2005  ) . 

 Study by Gong et al.  (  2005  )  where the transcriptional and metabolic pro fi les 
were investigated in the glycophyte  A. thaliana  to short term salt stress in compari-
son to halophyte  T. halophila.  An interspecies difference was demonstrated by 
GC-MS-based metabolite pro fi ling that moderately ampli fi ed during response to 
150 mM NaCl salt shock. Surprisingly, constant group of numerous metabolites and 
transcripts that are stress-responsive were found to be already changed in  T. halo-
phila  even before exposure to salinity, signifying a continuous adjustment mecha-
nism in halophytic species. Also, research have shown that sugars along with 
proline, citric acid, malic acid and succinic acids were reportedly higher in halo-
phyte  T. halophila  than in  A. thaliana . 

 Cramer et al.  (  2007  )  explored and compared the transcriptome and GC-MS-
based metabolomic pro fi le of drought and salt stress shoot tips from  V. vinifera  cv. 
Cabernet. It was revealed from metabolomics, sucrose, aspartic, succinic and fumaric 
acids levels reduced. The pro fi le of proline, asparagine, malic acid and fructose 
showed increase in their levels under salt stress. Further, under water-limited condi-
tions most metabolites exhibited similar trends, in contrast to glucose, malic acid 
and proline which increased noticeably. Recently, the role of the compatible solutes 
was also studied in the halophytic species  L. latifolium , by means of untargeted and 
targeted metabolic pro fi les (Gagneul et al.  2007  ) . It was noticed that sugars, inosi-
tols and proline acted as osmolytes balancing the cell environment, while organic 
acids decreased upon salt stress. 

 Investigations by Sanchez et al.  (  2008  )  during salt stress in legume plant  Lotus 
japonicus  used an combination of transcriptomics, ionomics and metabolomics tech-
nique, thereby found a vast enlargement in the constant levels of many amino acids, 
sugars and polyols, with a simultaneous reduction in accumulation of most of the 
organic acids. It was thus suggested that, metabolic responses during increased salin-
ity showing changes in organic solute composition are there by guarded by adaptive 
developmental programs, that be inferred to metabolic anticipation of stress.  

   Conclusion and Future Perspective 

 It can be concluded from past and present metabolomic studies of plant response 
towards salinity is that; the changes occurring in metabolism are complex and therefore 
involve multiple pathways. Particularly during acclimation of salt stress the response is 
coupled with changes in metabolism of organic acid, amino acid and sugar. The changes 
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that appear are in the form of primary metabolism that overlaps with the reaction of 
other interacting/regulatory stress factors. These traits are accompanied with a broad 
array of response at the whole-plant level (molecular and cellular). Metabolomics is 
coming up as one of the key tools in studying plant stress responses in the direction of 
gene expression individually/in group. Metabolic networks are highly dynamic parti-
cles and they keep on moving from one cellular compartment to another. Given that the 
metabolic pro fi ling enables the better understanding of the unchanged level of metabo-
lites, kinetics and  fl ux analyses. It also adds to the knowledge of the unpredictable 
metabolic changes occurring towards stress. Metabolic examination at the plants-
subcellular level in speci fi c tissues plays a part for future challenge. Signi fi cant new 
discoveries in metablomics have enhanced the  fi eld. Combination of metabolomics, 
proteomics, transcriptomics and mathematical modeling in future will provide us an 
insight on how plants respond to salt stress and thus will enable us to develop strategies 
for enhancement towards the stress tolerance in plants.      
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