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Preface to the Second Edition

In this second edition, we include new material on single-crystal plasticity
and on various models of strain-gradient plasticity. The relevant mechanics
and variational aspects of these models are presented, and attention is given
to selected numerical analyses. We have also taken the opportunity to revise
various parts of the first edition. For instance, Section 10.2 has been com-
pletely rewritten. The set of references has been updated and expanded, and
a number of minor refinements have also been made.

We thank our many friends, colleagues and family members whose interest,
guidance, and encouragement made this work possible. One of us (B.D.R.) is
grateful to Morton Gurtin for his contributions, whether through collaborative
work or the extensive discussions on the topic of gradient plasticity. We are
grateful for the support from the Simons Foundation (to W.H.) and from the
National Research Foundation through the South African Research Chair in
Computational Mechanics (to B.D.R.). We thank Andrew McBride for his
comments on drafts of the manuscript. Tim Povall prepared a number of new
figures, and together with Andrew McBride also revised the figures in the
first edition. This assistance is gratefully acknowledged. It is a pleasure to
acknowledge the skillful assistance from the staff at Springer, especially Achi
Dosanjh and Donna Chernyk, and members of the Springer TeX support team.

W.H. B.D.R.
Iowa City Cape Town
August 2012
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Preface to the First Edition

The basis for the modern theory of elastoplasticity was laid in the nineteenth-
century, by Tresca, St. Venant, Lévy, and Bauschinger. Further major
advances followed in the early part of this century, the chief contributors
during this period being Prandtl, von Mises, and Reuss. This early phase
in the history of elastoplasticity was characterized by the introduction and
development of the concepts of irreversible behavior, yield criteria, hardening
and perfect plasticity, and of rate or incremental constitutive equations for
the plastic strain.

Greater clarity in the mathematical framework for elastoplasticity theory
came with the contributions of Prager, Drucker, and Hill, during the
period just after the Second World War. Convexity of yield surfaces, and all
its ramifications, was a central theme in this phase of the development of the
theory.

The mathematical community, meanwhile, witnessed a burst of progress
in the theory of partial differential equations and variational inequalities from
the early 1960s onwards. The timing of this set of developments was particu-
larly fortuitous for plasticity, given the fairly mature state of the subject, and
the realization that the natural framework for the study of initial boundary
value problems in elastoplasticity was that of variational inequalities. This
confluence of subjects emanating from mechanics and mathematics resulted
in yet further theoretical developments, the outstanding examples being the
articles by Moreau, and the monographs by Duvaut and J.-L. Lions, and
Temam. In this manner the stage was set for comprehensive investigations
of the well-posedness of problems in elastoplasticity, while the simultaneous
rapid growth in interest in numerical methods ensured that equal attention
was given to issues such as the development of solution algorithms, and their
convergences.

The interaction between elastoplasticity and mathematics has spawned
among many engineering scientists an interest in gaining a better understand-
ing of the modern mathematical developments in the subject. In the same
way, given the richness of plasticity in interesting and important mathemat-
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X Preface to the First Edition

ical problems, many mathematicians, either students or mature researchers,
have developed an interest in understanding the mechanical and engineering
basis of the subject, and its connections with the mathematical theory. While
there are many textbooks and monographs on plasticity that deal with the
mechanics of the subject, they are written mainly for a readership in the en-
gineering sciences; there does not appear to us to have existed an extended
account of elastoplasticity which would serve these dual needs of both engi-
neering scientists and mathematicians. It is our hope that this monograph
will go some way towards filling that gap.

We present in this work three logically connected aspects of the theory
of elastic-plastic solids: the constitutive theory, the variational formulations
of the related initial boundary value problems, and the numerical analysis of
these problems. These three aspects determine the three parts into which the
monograph is divided.

The constitutive theory, which is the subject of Part I, begins with a moti-
vation grounded in physical experience, whereafter the constitutive theory of
classical elastoplastic media is developed. This theory is then cast in a convex
analytic setting, after some salient results from convex analysis have been re-
viewed. The term “classical” refers in this work to that theory of elastic-plastic
material behavior which is based on the notion of convex yield surfaces, and
the normality law. Furthermore, only the small strain, quasi-static theory is
treated. Much of what is covered in Part I will be familiar to those working on
plasticity, though the greater insights offered by exploiting the tools of convex
analysis may be new to some researchers. On the other hand, mathematicians
unfamiliar with plasticity theory will find in this first part an introduction
that is self-contained and accessible.

Part II of the monograph is concerned with the variational problems in
elastoplasticity. Two major problems are identified and treated: the primal
problem, of which the displacement and internal variables are the primary
unknowns; and the dual problem, of which the main unknowns are the gen-
eralized stresses.

Finally, Part III is devoted to a treatment of the approximation of the
variational problems presented in the previous part. We focus on finite ele-
ment approximations in space, and both semi- and fully discrete problems.
In addition to deriving error estimates for these approximations, attention is
given to the behavior of those solution algorithms that are in common use.

Wherever possible we provide background materials of sufficient depth to
make this work as self-contained as possible. Thus, Part I contains a review of
topics in continuum mechanics, thermodynamics, linear elasticity, and convex
analytic setting of elastoplasticity. In Part II we include a treatment of those
topics from functional analysis and function spaces that are relevant to a
discussion of the well-posedness of vatriational problems. And Part III begins
with an overview of the mathematics of finite elements.

In writing this work we have drawn heavily on the results of our joint col-
laboration in the past few years. We have also consulted, and made liberal use
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of the works of many: we mention in particular the major contributions of G.
Duvaut and J.-L. Lions, C. Johnson, J.B. Martin, H. Matthies, and
J.C. Simo. While we acknowledge this debt with gratitude, the responsibility
for any inaccuracies or erroneous interpretations that might exist in this work,
rests with its authors.

We thank our many friends, colleagues and family members whose interest,
guidance, and encouragement made this work possible.

W.H. B.D.R.
Iowa City Cape Town
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Part I

Continuum Mechanics and Elastoplasticity
Theory



1

Preliminaries

1.1 Introduction

The theory of elastoplastic media is now a mature branch of solid and struc-
tural mechanics, having experienced significant development during the latter
half of the twentieth century. In particular, the classical theory, which deals
with small-strain elastoplasticity problems, has a firm mathematical basis,
and from this basis further developments, both mathematical and computa-
tional, have evolved. Small-strain elastoplasticity is well understood, and the
understanding of its governing equations can be said to be almost complete.
Likewise, theoretical, computational, and algorithmic work on approximations
in the spatial and time domains are at a stage at which approximations of
desired accuracy can be achieved with confidence.

The finite-strain theory has evolved along parallel lines, although it is con-
siderably more complex and is subject to a number of alternative treatments.
The form taken by the governing equations is nevertheless reasonably settled,
and there has been considerable progress in mathematical analyses of the
problem. Computationally, great strides have been made in in the last four
decades, and it is now possible to solve highly complex problems with the aid
of the computer.

This monograph focuses on theoretical aspects of the small-strain theory
of elastoplasticity with hardening assumptions. It is intended to provide a
reasonably comprehensive and unified treatment of the mathematical theory
and numerical analysis, exploiting in particular the great advantages to be
gained by placing the theory in a convex-analytic framework.

The monograph is divided into three parts. The first part contains the first
four chapters and provides a detailed introduction to plasticity, in which the
mechanics of elastoplastic behavior is emphasized. The equations describing
elastoplastic behavior are subsequently recast in the language and setting of
convex analysis. In particular, the flow law can be written in terms of either
the dissipation function or the yield function. Thus, it is possible to present
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4 1 Preliminaries

the flow law in two alternative yet equivalent forms, which are dual to each
other.

The conventional or classical problem of elastoplasticity is treated first,
with formulations of the problem for both the polycrystalline and single-
crystal cases. Thereafter, attention shifts to various non-local or strain-
gradient extensions of these problems. Strain-gradient plasticity has received
increasing attention over the last 25 years, primarily because of its importance
in modelling size-dependent effects that the conventional theory is unable to
capture.

The second part of the monograph is taken up with mathematical consid-
erations of the elastoplasticity problem. It begins with some preparations on
basic knowledge from functional analysis and weak formulations of boundary
value problems. These are the contents of Chapters 5 and 6. Depending on
the form of the flow law used, we obtain two formulations for the elastoplas-
ticity problem: the primal variational formulation, which uses the dissipation
function to describe the flow law, and the dual variational formulation, which
uses the yield function to describe the flow law. The two forms are equiva-
lent. The main task of the second part is a thorough mathematical treatment
of the well-posedness of the two alternative formulations of the small-strain
problem. The primal variational problem is analyzed in Chapter 7, and the
dual variational problem in Chapter 8.

Numerical analysis of the elastoplasticity problem is the topic of the third
part. For the convenience of the reader, we introduce the basic ideas of the
finite element method and some typical finite element interpolation results in
Chapter 9. We then review some standard results in the error analysis for finite
element approximations of boundary value problems for differential equations
and inequalities. This is followed by error analysis of various semidiscrete
and fully discrete approximations for both the primal and dual variational
problems. We also discuss convergence properties of a number of solution
algorithms commonly used in practice.

Plasticity is a vast research area, and it is impossible to touch on every
aspect of this area in a single volume. Thus, several important topics are
not included in this monograph, for example, applications of elastoplasticity
theory to the analysis of engineering structures, which have been covered in
many books on elastoplasticity directed at the engineering community (see,
for example, Martin [115] and Chen and Han [29]).

In this book, we deal exclusively with hardening elastoplasticity and strain-
gradient plasticity. The reader will find in Temam [176] a comprehensive math-
ematical treatment of the elastic, perfectly-plastic problem. A complete treat-
ment of the conventional perfectly plastic problem has recently been presented
by Dal Maso et al. [37].

Details of the implementation and behavior of specific algorithms are omit-
ted, as are other topics, such as viscoplasticity, and matters pertaining to the
finite-strain problem. These topics are given a comprehensive treatment in the
monograph by Simo and Hughes [168], the extended survey by Simo [166], and
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the recent book by de Souza Neto, Perić and Owen [39]. These works, and
many of the references cited in them, contain a wealth of numerical examples.

The list of the references at the end of the book includes only those that
are more relevant to the present exposition, and we do not attempt to make
the list complete.

This work summarizes some recent results on mathematical analysis and
numerical analysis of the elastoplasticity problem. We hope that it will be
useful to those readers who wish to know more about recent developments in
the analysis of the elastoplasticity problem and to those who are preparing to
carry out research in the area of plasticity. For the convenience of the reader,
we include brief introductions to various mathematical materials that should
be sufficient for reading the book. In this way, it will not be necessary to have
any extensive prior knowledge of advanced mathematical topics, such as func-
tional analysis and convex analysis. Nevertheless, some degree of maturity in
mathematics and some knowledge of mechanics are expected from the reader.
We hope that the book will also be helpful to those whose main interests lie in
the solution of plasticity problems in engineering practice. We are convinced
that attempts at solving practical problems in this area—as, indeed, is the
case in many other areas—would benefit from a background in the theoretical
aspects of the subject.

1.2 Some Historical Remarks

Early works on plasticity. It is generally agreed that the origin of plasticity
dates back to a series of papers by Tresca from 1864 to 1872 (see [179]) on
the extrusion of metals. In this work the first yield condition was proposed:
the condition, known subsequently as the Tresca yield criterion, stated that a
metal yields when the maximal shear stress attains a critical value. In the same
time period, St. Venant [10] introduced basic constitutive relations for rigid,
perfectly plastic materials in plane stress, and suggested that the principal
axes of the strain increment coincide with the principal axes of stress. Lévy
[107] derived the general equations in three dimensions. In 1886, Bauschinger
[12] observed the effect that now carries his name: a previous plastic strain
with a certain sign diminishes the resistance of the material with respect to
the next plastic strain with the opposite sign. In a landmark paper in 1913,
von Mises [180] derived the general equations for plasticity, accompanied by
his well-known pressure-insensitive yield criterion (J2-theory, or octahedral
shear stress yield condition).

In 1924, Prandtl [143] extended the St. Venant–Lévy–von Mises equations
for the plane continuum problem to include the elastic component of strain,
and Reuss [157] in 1930 carried out their extension to three dimensions. In
1928, von Mises [181] generalized his previous work for a rigid, perfectly plastic
solid to include a general yield function and discussed the relation between the
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direction of plastic strain increment and the smooth yield surface, thus intro-
ducing formally the concept of using the yield function as a plastic potential
in the incremental stress–strain relations of the flow theory.

Compared to perfect plasticity, the development of incremental constitu-
tive relations for hardening materials proceeded more slowly. In 1928, Prandtl
[144] attempted to formulate general relations for hardening behavior. In 1938,
Melan [123] generalized the foregoing concepts of perfect plasticity by giving
incremental relations for hardening solids with smooth yield surfaces, and
discussing uniqueness results for elastoplastic incremental problems for both
perfectly plastic and hardening materials, based on some limiting assump-
tions.

Since 1940, the theory of plasticity has seen more rapid development. In
1949, Prager [141] obtained a general framework for the plastic constitutive
relations for hardening materials with smooth yield functions and recognized
the relationship between the convexity of the yield surface plus the normality
law and the uniqueness of the associated boundary value problem. Drucker
[42], in 1951, proposed his material stability postulate. With this concept,
the plastic stress–strain relations together with many related fundamental
aspects of the subject may be treated in a unified manner. In 1953, Koiter [102]
generalized the plastic stress–strain relations for nonsmooth yield surfaces and
obtained some uniqueness and variational results. He introduced the device of
using more than one yield function in the stress–strain relations, the plastic
strain increment receiving a contribution from each active yield surface and
falling within the normal cone to the yield surface. For further details, see
[103].

A detailed description of the early development of plasticity theory and
a comprehensive list of references on plasticity published before 1980 can be
found in Życzkowski [193], which also contains a wealth of discussions on
various aspects of plasticity.
Recent mathematical and numerical analyses of problems in plas-
ticity. Mathematical and numerical aspects of the quasistatic problem in
elastoplasticity have been the subject of sustained attention since the 1970s.
The first systematic mathematical study of the boundary value problems of
elastoplasticity is due to Duvaut and Lions [43], who considered the problem
for an elastic perfectly plastic material and formulated the problem as a vari-
ational inequality. Moreau [130, 131] considered the same issues, but from a
more geometric viewpoint. Johnson [90] subsequently extended the analysis in
[43] by approaching the problem in two stages; in the first stage the velocity
variable is eliminated and the problem becomes a variational inequality posed
on a time-dependent convex set. The second stage involves the solution for
the velocity variable.

The theory for perfectly plastic materials was advanced greatly through the
introduction and investigation of the space BD(Ω) of functions of bounded
deformation [120, 122, 177, 178]. This space is essential for a proper study
of the perfectly plastic problem, since discontinuity surfaces (sliplines) may
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be accommodated within this framework; the framework of Sobolev spaces,
on the other hand, is not appropriate. A comprehensive summary account of
the mathematical theory of perfect plasticity in the framework of the space
BD(Ω) can be found in [176], which is, however, confined to the total strain, or
holonomic, problem, an approximate model in which a one-to-one relationship
between stress and strain is assumed. A complete treatment of the evolution
problem for perfect plasticity has been presented by Dal Maso et al. [37].

Analysis of the elastoplastic problem with hardening, on the other hand,
can be achieved within the framework of Sobolev spaces. There are two alter-
native formulations of the problem, depending on the form of the flow law.
One formulation makes use of the yield function in the plastic flow law and
will be called the dual formulation in this work, for reasons that will become
clear in Chapter 4. An alternative approach is to express the plastic flow law
in terms of the dissipation function, which leads to the primal formulation of
the problem. The primal and dual formulations are extensions, respectively,
of the displacement and stress problems in linearized elasticity.

The first analysis of the dual formulation of the hardening problem is due
to Johnson [92], who gave an existence and uniqueness result. A detailed anal-
ysis of the primal formulation of the hardening problem was presented by Han,
Reddy, and Schroeder [80]. The unknowns are the displacement and internal
variables, while the problem takes the form of a variational inequality of the
mixed kind: it is an inequality both because of the presence of a nondifferen-
tiable functional in the formulation and because the problem is posed on a
closed convex cone in a Hilbert space.

In the last decade there have been significant developments in the treat-
ment of the problem of elastoplasticity for finite strains. The works [25, 113,
126, 127] are most relevant, and take as a point of departure an energetic
approach developed by Mielke for rate-independent problems [125].

Strain-gradient theories of plasticity have received sustained attention
since the early 1980s. The importance of these theories lie in their ability
to model scale-dependent effects, a feature that is absent in classical plastc-
ity theories, which do not possess a natural length scale. A general survey of
work in strain-gradient plasticity up to the lat 1990s may be found in [53]. The
monograph [69] contains a detailed treatment of models of gradient plasticity
due to Gurtin and co-authors, as well as of an early theory due to Aifantis
[2]. The mathematical and numerical analyses in our work of strain-gradient
plasticity will focus on the model developed by Aifantis, and more extensively
on those developed by Gurtin and co-authors [67, 68].

Analyses of finite element approximations of the elastoplastic problem have
enjoyed steady attention. Johnson [91] considered a formulation of the elastic,
perfectly-plastic problem in which stress is the primary variable and derived
error estimates for the fully discrete (that is, discrete in both time and space)
problem. In a later work, Johnson [93] analyzed fully discrete finite element
approximations of the elastoplasticity problem with hardening, in the context
of a mixed formulation in which stress and velocity are the variables. Related
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work can also be found in Hlaváček [85], and summary accounts in Hlaváček,
Haslinger, Nečas, and Lov́ı̌sek [86], and Korneev and Langer [104].

The dual formulation is a popular approach in practice for the hardening
problem; see, for example, the comprehensive treatments of computational
aspects of the problem by Simo [166], and by Simo and Hughes [168]. However,
while there exist some results on stability, consistency, and convergence for
certain numerical approximation schemes, the whole picture is by no means
complete.

In comparison, numerical analysis of the primal formulation of the hard-
ening problem did not receive attention until recently. Various schemes for ap-
proximating the primal formulation of the hardening problem were analyzed
for the first time in [80]. Related treatments include those by Carstensen and
co-authors [22, 23, 24]. These focus on the primal problem and give attention
to issues such as improved estimates and adaptive mesh refinement.

A more classical approach to the analysis and numerical analysis of the
hardening plasticity problem is taken by Bonnetier [16], and by Li and
Babuška [108, 109]. First, spatial discretization is carried out using finite ele-
ments, and the resulting semidiscrete problem is written as a system of highly
nonlinear ordinary differential equations. Then it is shown that as the finite
element mesh size approaches zero, the solution of the semidiscrete problem
converges, and the limit is the solution of the plasticity problem.

The work of Han and Reddy [78] provides a comprehensive treatment of
the mathematical and numerical analysis of the elastoplasticity problem with
hardening. The question of existence and uniqueness of solutions is addressed
for both primal and dual formulations. Various approximation schemes for
each formulation are studied. The schemes considered include semidiscrete
approximations in which either the spatial domain or the time domain is dis-
cretized, and fully discrete approximations where discretization is carried out
with respect to both space and time. Error estimates for these approximations
are derived, not only for the approximate stress, but also for the approximate
displacement; in comparison, the study in [93] is confined to one involving
the stress and velocity, and results on convergence are presented only for the
stress.

The resulting discrete systems are nonlinear and large. Various solution
algorithms are used in practice to solve these systems. Some popular solution
algorithms are discussed in [78], and for the first time convergence of some of
the solution algorithms is proved rigorously.

The present monograph is an expanded and updated version of our previ-
ous work [78].

Recent numerical analyses of problems in strain-gradient plasticity include
the works [154, 184].
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1.3 Notation

Throughout this work we will use the popular mathematical symbol “∀” to
stand for “for any” or “for all”. Also, we will use “:=” for equality by definition.
The letter c will denote a generic constant independent of certain quantities
(which are clear from the context). The value of c may differ at different
places.
Vectors, tensors. Some pertinent results from vector and tensor analysis are
summarized here for convenience. More comprehensive sources can be found
in the literature (see, for example, Lemaitre and Chaboche [106]).

We will use boldface italic letters to denote vectors and tensors. We adopt
the summation convention for repeated indices, unless stated otherwise. Most
often, vectors are denoted by lowercase boldface italic letters, and second-
order tensors by lowercase boldface Greek letters. Fourth-order tensors are
usually denoted by uppercase boldface italic letters.

Our discussion applies to Euclidean space R
d of any dimension d (in prac-

tice, d = 1, 2, 3). However, for definiteness of exposition and because of its
importance in applications, we will give the presentation in the context of
three-dimensional space. Thus, we will make use of a Cartesian coordinate
system with an orthonormal basis {e1, e2, e3} that is chosen once and for all .
Where it is necessary to show components of a vector or a tensor, these will
always be relative to the orthonormal basis {e1, e2, e3}.

A second-order tensor τ is a linear operator mapping vectors to vectors
and may be identified with a matrix. For any vector a, τa represents a vector
such that the action of τ on a is linear; that is, τ (αa + βb) = ατa + βτb for
any scalars α, β, and any vectors a and b. We will always use ai, 1 ≤ i ≤ 3, to
denote the components of the vector a, and τij , 1 ≤ i, j ≤ 3, the components
of the second-order tensor τ . With the basis defined, the action of the second-
order tensor τ on the vector a may be represented in the form

τa = τijajei.

The scalar products of two vectors a and b, and of two second-order tensors
(or matrices) σ and τ , are denoted by a ·b and σ : τ and have the component
representations

a · b := aibi, σ : τ := σijτij .

The magnitudes of the vector a and the second-order tensor τ are defined by

|a| := (a · a)
1
2 , |τ | := (τ : τ )

1
2 .

The vector product c = a ∧ b of two vectors a and b is a vector c with
components defined by

ci := εijkajbk,

where εijk is the permutation symbol: εijk = +1 for (i, j, k) a cyclic per-
mutation of (1, 2, 3), −1 for (i, j, k) an anticyclic permutation, and is zero
otherwise.
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The tensor product a⊗ b of two vectors a and b is a second-order tensor
defined by the relation

(a⊗ b)c := (b · c)a ∀ c.

Viewed as a matrix, we have the representation

a⊗ b = abT .

Thus the tensor product a⊗ b has the components aibj . The nine quantities
ei ⊗ ej , 1 ≤ i, j ≤ 3, form a basis for the space of the second-order tensors,
and any such tensor τ can be represented in the form

τ = τijei ⊗ ej .

Since we will be working with a fixed basis, there is little point in making a
formal distinction between the tensor τ and the 3×3 matrix of its components,
so that unless otherwise stated, τ will represent the tensor and the matrix of
its components. With this understanding, it is merely necessary to point out
that all the usual matrix operations such as addition, transposition, multipli-
cation, inversion, and so on, apply to tensors, and the standard notation is
used for these operations. Thus, for example, τT and τ−1 are, respectively,
the transpose and inverse of the tensor (or matrix) τ .

We will use S
3 to denote the space of all the symmetric 3× 3 matrices (or

second-order symmetric tensors). We will use S
3
0 to denote the subspace of S

3

with vanishing trace; that is,

S
3
0 := {τ ∈ S

3 : tr τ = 0},

where as usual, tr τ = τii is the trace of τ .
One special and important second-order tensor is the identity I, which

is defined by the relation Ia = a for any vector a. The components of the
identity tensor I are the Kronecker delta

δij :=
{

1 if j = i,
0 otherwise.

Every second-order tensor τ may be additively decomposed into a devia-
toric part τD and a spherical part τS ; these are defined by

τS := 1
3 (tr τ )I, τD := τ − 1

3 (tr τ )I,

so that
τ = τD + τS .

For spatial domains of dimension d, a second-order tensor τ is identified
with a d × d matrix, and the formulae for its deviatoric and spherical parts
are modified to
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τS := 1
d (tr τ )I, τD := τ − 1

d (tr τ )I.

For planar problems, for example, d = 2.
The only higher-order tensors that will occur are those of third or fourth

order. Third-order tensors will be needed in the discussion of strain-gradient
plasticity. For two third order tensors K = (Kijk) and L = (Lijk), their scalar
product is defined as

K
... L := KijkLijk.

The length of K is then
|K| := (K

... K)1/2.

The fourth-order tensors will appear as tensors of material moduli and will
be denoted by uppercase boldface italic letters. A fourth-order tensor C may
be defined as a linear operator mapping the space of second-order tensors
into itself. The action of a fourth-order tensor C on a second-order tensor τ
is denoted by Cτ and is the second-order tensor with components Cijklτkl,
where Cijkl are the components of C relative to the canonical orthonormal
basis ei⊗ej⊗ek⊗el, 1 ≤ i, j, k, l ≤ 3. An important special fourth-order tensor
is the identity tensor I, which satisfies Iτ = τ for any symmetric second-order
tensors τ . This identity tensor has the component representation

Iijkl = 1
2 (δikδjl + δilδjk).

We use the same symbol I for both the second-order and fourth-order identity
tensors.

From time to time, we will need to consider collections of quantities of
different kind, and we will use sans serif fonts (for example, S) or boldface
lowercase Greek letters to denote such collections. For example, in Section
3.2, we will use the notion of a generalized stress Σ, defined to be (σ,χ),
where σ is the stress tensor, χ = (χi)m

i=1 is a set of internal variables χ1, · · · ,
χm which are scalars or tensors. Correspondingly, we will need the notion of
a generalized plastic strain P := (p, ξ) with the plastic strain tensor p and
ξ = (ξi)m

i=1. The inner product of Σ and P is indicated by the symbol �:

Σ � P := σ : p + χi : ξi.

Here, for χi and ξi scalars, χi : ξi is the ordinary multiplication of χi and ξi.

Invariants of second-order tensors (or 3 × 3 matrices). The problem
of finding a scalar λ and a nonzero vector q with

τq = λq

leads to the eigenvalue problem of solving the characteristic equation

det (λI − τ ) = 0.

This equation can be written equivalently as
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λ3 − I1λ
2 + I2λ− I3 = 0,

where I1(τ ), I2(τ ), and I3(τ ) are the principal invariants of τ . The invariants
are defined by

I1 := tr τ = τii = λ1 + λ2 + λ3,

I2 := 1
2

[
(tr τ )2 − tr τ 2

]
= 1

2 (τiiτjj − τijτji) = λ1λ2 + λ2λ3 + λ3λ1,

I3 := det τ = λ1λ2λ3.

Here, λ1, λ2, and λ3, the eigenvalues of τ , are the roots of the characteristic
equation (a multiple root is counted repeatedly according to its multiplicity).

We denote by
ι(τ ) := (I1(τ ), I2(τ ), I3(τ ))

the set of three invariants of τ . The eigenvalues λi of a matrix τ are often
denoted by τi (note the single index) and are called the principal components
of τ .
Scalar, vector, and tensor fields. The gradient of a scalar field φ(x) is
denoted by ∇φ and is the vector defined by

∇φ :=
∂φ

∂xi
ei.

The divergence divu and gradient ∇u of a vector field u(x) are respectively
a scalar and a second-order tensor field, defined by

divu :=
∂ui

∂xi
,

∇u :=
∂ui

∂xj
ei ⊗ ej .

Thus the components of ∇u are ∂ui/∂xj . The transpose of ∇u is denoted by
(∇u)T and is the second-order tensor with components ∂uj/∂xi. The diver-
gence div τ of a second-order tensor τ is a vector defined by

div τ :=
∂τij

∂xj
ei.

For a scalar-valued function f(u) of a vector variable u = (u1, u2, u3)T ,
its derivative with respect to u can be identified with a vector,

∂f(u)
∂u

=
∂f(u)
∂ui

ei.

For a scalar-valued function f(τ ) of a second-order tensor τ = (τij), the
derivative with respect to τ is a second-order tensor,

∂f(τ )
∂τ

=
∂f(τ )
∂τij

ei ⊗ ej .
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If f(τ ) is a matrix-valued function of a second-order tensor variable τ , then
its derivative with respect to τ is a fourth-order tensor with components

∂f(τ )
∂τij

=
∂fkl(τ )
∂τij

ek ⊗ el.

For a time-dependent quantity z, we will use ż to denote the partial deriva-
tive of z with respect to the temporal variable t.
Landau’s notation for orders of magnitude. We will use the “big oh” (O)
and “little oh” (o) symbols in the following senses. Given two functions f(t)
and g(t) of a real variable t, we say that f(t) is of a lower order of magnitude
than g(t) as t→ 0+ and write

f(t) = o(g(t)), t→ 0+,

if

lim
t→0+

f(t)
g(t)

= 0.

We say that f(t) is dominated by g(t) as t→ 0+, and write

f(t) = O(g(t)), t→ 0+,

if for some positive constants c and δ,

|f(t)| ≤ c |g(t)|, t ∈ (0, δ).

These definitions can be easily adapted to cover other similar expressions,
such as

f(t) = o(g(t)), t→ 0,

or
xn = O(yn), n→∞,

for two sequences of numbers {xn} and {yn}.
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Continuum Mechanics and Linearized
Elasticity

We will be concerned with bodies that at the macroscopic level may be re-
garded as being composed of material that is continuously distributed. By
this it is meant, first, that such a body occupies a region of three-dimensional
space that may be identified with R

3. The region occupied by the body will
of course vary with time as the body deforms. It is convenient, then, for the
purpose of keeping track of the evolution of the body’s behavior to locate any
point in the body by its position vector x with respect to some previously
chosen origin 0, at a fixed time. For simplicity we will take this to be at the
time t = 0, and we will assume that the body is undeformed and unstressed
in this state, unless stated otherwise. The region occupied by the body at
the time t = 0 is denoted by Ω, and is called the reference configuration. To
emphasize the identification between points in the region Ω and points in the
undeformed body we will often refer to a point x ∈ Ω as a material point . If
we go one step further and place a set of Cartesian axes with the origin 0,
then the position vector x has components xi (i = 1, 2, 3) with respect to the
orthonormal basis {e1, e2,e3} associated with this set of axes. The situation
is illustrated in Figure 2.1, in which Ωt is the current configuration, the region
occupied by the body at the current time t.

The objective will be to obtain a complete description of the motion and
deformations of the body, for given loading conditions, within the framework
of continuum mechanics. There is an extensive literature on continuum me-
chanics; the texts [28, 31, 69] are examples of works that may be consulted
for further details.

Second, it is assumed that both the properties and the behavior of such a
body can be described in terms of functions of position x in the body and time
t. Thus, for example, we may associate with the body a scalar temperature
distribution θ that varies within the body and with the passage of time, so
that the value of the temperature of a material point x at time t is represented
by the function θ(x, t), or equivalently by θ(x1, x2, x3, t).

It will be necessary at some stage to stipulate the properties assumed or
expected of functions defined on the body. For the time being there is no need
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