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Chapter 1
Basic Statistics

It is proven that the celebration of birthdays is healthy.
Statistics show that those people who celebrate the most
birthdays become the oldest.

Introduction

This chapter introduces the basic statistics concepts you will need throughout your
use of the OpenStat package. You will be introduced to the symbols and formulas
used to represent a number of concepts utilized in statistical inference, research
design, measurement theory, multivariate analyses, etc. Like many people first
starting to learn statistics, you may be easily overwhelmed by the symbols and
formulas—don’t worry, that is pretty natural and does NOT mean you are retarded!
You may need to re-read sections several times however before a concept is
grasped. You will not be able to read statistics like a novel (don’t we wish we
could) but rather must “study” a few lines at a time and be sure of your understand-
ing before you proceed.

Symbols Used in Statistics

Greek symbols are used rather often in statistical literature. (Is that why statistics is
Greek to so many people?) They are used to represent both arithmetic types of
operations as well as numbers, called parameters, that characterize a population or
larger set of numbers. The letters you usually use, called Arabic letters, are used for
numbers that represent a sample of numbers obtained from the population of
numbers.

W. Miller, Statistics and Measurement Concepts with OpenStat, 1
DOI 10.1007/978-1-4614-5743-5_1, © Springer Science+Business Media New York 2013



2 1 Basic Statistics

Two operations that are particularly useful in the field of statistics that are
represented by Greek symbols are the summation operator and the products
operator. These two operations are represented by the capital Greek letters Sigma
Y and Pi I1. Whenever you see these symbols you must think:

¥ = “The sum of the values :”, or
IT = “The product of the values :”

For example, if you see Y = X (1,3,5,9) you would read this as “the sum of 1, 3, 5
and 9”. Similarly, if you see Y = I1(1,3,5,9) you would think “the product of 1
times 3 times 5 times 9”.

Other conventions are sometimes adopted by statisticians. For example, as in
beginning algebra classes, we often use X to represent any one of many possible
numbers. Sometimes we use Y to represent a number that depends on one or more
other numbers X1, X2, etc. Notice that we used subscripts of 1, 2, etc. to represent
different (unknown) numbers. Lower case letters like y, X, etc. are also sometimes
used to represent a deviation of a score from the mean of a set of scores. Where it
adds to the understanding, X, and x may be italicized or written in a script style.

Now lets see how these symbols might be used to express some values.
For example, we might represent the set of numbers (1,3,7,9,14,20) as X1, X2, X3,
X4, X5, and X6. To represent the sum of the six numbers in the set we could write:

6
Y:ZX,»:1+3+7+9+14+20:54 (1.1)
=1

If we want to represent the sum of any arbitrary set of N numbers, we could write
the above equation more generally, thus

Y = in (1.2)

represents the sum of a set of N values. Note that we read the above formula as “Y
equals the sum of X subscript i values for the value of i ranging from 1 through N,
the number of values”.

What would be the result of the formula below if we used the same set of
numbers (1,3,7,9,14,20) but each were multiplied by five ?

N N
Y:ZI:SX,:SZ;X,:WO (1.3)

To answer the question we can expand the formula to
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Y =5X; +5X; +5X53 + 5X4 + 5X5 + 5X¢
=5(X; +Xo+ X3+ Xy + X5 + Xe)
=514+34+7+9+ 14 +20)
=5(54) =270 (1.4)

In other words,

Y:ZCXi:CZXi (1.5)

Y=Y Cx;=C) X (1.6)

What happens when we sum a term which is a compound expression instead of a
simple value? For example, how would we interpret

N

Y=> (X;—C) (1.7)

i—1

where C is a constant value?
We can expand the above formula as

Y=(X-C)+ (X -C)+...4+(Xny—0C) (1.8)

(Note the use of ... to denote continuation to the Nth term).
The above expansion could also be written as

Y=(Xi+X,+...+Xn) —NC (1.9)

N
OrY:ZXi—NC (1.10)

i=1

We note that the sum of an expression which is itself a sum or difference of
multiple terms is the sum of the individual terms of that expression. We may say
that the summation operator distributes over the terms of the expression!

Now lets look at the sum of an expression which is squared. For example,

N
Yy=> (x;,-C)° (1.11)
=1

i
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When the expression summed is not in its most simple form, we must first
evaluate the expression. Thus

Y:Z(Xi—CY:ENj(Xi—Q(Xi—C):EN:[X?—ZCXf+C2]

1 i=1 i=1

N
orY = Zx? —2C ZX,« +NC? = sz — 2CNX — NC?

1 i=1 i=1

N
=3 X - CNEX - C) (1.12)

Probability Concepts

Maybe, possibly, could be, chances are, probably are all words or phrases we use to
convey uncertainty about something. Yet all of these express some belief that a
thing or event could occur or exist. The field of statistics is concerned about making
such statements based on observations that will lead us to correct “guesses” about
an event occuring or existing. The field of study called “statistics” gets its name
from the use of samples that we can observe to estimate characteristics about the
population that we cannot observe. If we can study the whole population of objects
or events, there is no need for statistics! Accounting methods will suffice to describe
the population. The characteristics (or indexes) we observe about a sample from a
population are called statistics. These indexes are estimates of population
characteristics called parameters. It is the job of the statistician to provide indexes
(statistics) about populations that give us some level of confidence that we have
captured the true characteristics of the population of interest.

When we use the term probability we are talking about the proportion of objects
in some population. It might be the proportion of some discrete number of heads
that we get when tossing a coin. It might be the proportion of values within a
specific range of values we find when we observe test scores of student achievement
examinations.

In order for the statistician to make useful observations about a sample that will
help us make confident statements about the population, it is often necessary to
make assumptions about the distribution of scores in the population. For example,
in tossing a coin 30 times and examining the outcome as the number of heads or
tails, the statistician would assume that the distribution of heads and tails after a
very large number of tosses would follow the binomial distribution, a theoretical
distribution of scores for a binary object. If the population of interest is the
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relationship between beginning salaries and school achievement, the statistician
may have to assume that the measures of salary and achievement have a normal
distribution and that the relationship can be described by the bivariate-normal
distribution.

A variety of indexes (statistics) have been developed to estimate characteristics
(measurements) of a population. There are statistics that describe the central
tendency of the population such as the mean (average), median and mode. Other
statistics are used to describe how variable the scores are. These statistics include
the variance, standard deviation, range, semi-interquartile range, mean deviation,
etc. Still other indices are used to describe the relationship among population
characteristics (measures) such as the product-moment correlation and the multiple
regression coefficient of determination. Some statistics are used to examine
differences among samples from possibly different populations to see if they are
more likely to be samples from the same population. These statistics include the “t”
and “z” statistic, the chi-squared statistic and the F-Ratio statistic.

The sections below will describe many of the statistics obtained on samples to
make inferences about population parameters. The assumed (theoretical) distribu-
tion of these statistics will also be described.

Additive Rules of Probability

Formal aspects of probability theory are discussed in this section. But first, we need
to define some terms we will use. First, we will define a sample space as simply a set
of points. A point can represent anything like persons, numbers, balls, accidents, etc.
Next we define an event. An event is an observation of something happening such as
the appearance of “heads” when a coin is tossed or the observation that a person you
selected at random from a telephone book is voting Democrat in the next election.
There may be several points in the sample space, each of which is an example of an
event. For example, the sample space may consist of 5 black balls and 4 white balls
in an urn. This sample space would have 9 points. An event might be “a ball
is black.” This event has 5 sample space points. Another event might be “a ball is
white.” This event has a sample space of 4 points. We may now say that the
probability of an event E is the ratio of the number of sample points that are examples
of E to the total number of sample points provided all sample points are equally
likely. We will use the notation P(E) for the probability of an event. Now let an event
be “A ball is black” where the sample space is the set of 9 balls (5 black and 4 white.)
There are 5 sample points that are examples of this event out of a total of 9 sample
points. Thus the probability of the event P(E) = 5/9. Notice that the probability that a
ball is white is 4/9. We may also say that the probability that a ball is red is 0/9 or that
the probability that the ball is both white and black is 0/9. What is the probability
that the ball is either white OR black? Clearly this is (5 + 4)/9 = 1.0.
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In our previous example of urn balls, we noticed that a ball is either white or
black. These are mutually exclusive events. We also noted that the sum of exclusive
events is 1.0. Now let us add 3 red balls to our urn. We will label our events as B, W
or R for the colors they represent. Our sample space now has 12 points. What is the
probability that two balls selected are either B or W? When the events are exclusive
we may write this as P(B U A).

Since these are exclusive events, we can write: P(B U W) = P(B) + P(W) = 5/12
+4/12 = 9/12 = 3/4 = 0.75.

It is possible for a sample point to be an example of two or more events. For
example if we toss a “fair” coin three times, we can observe eight possible outcomes:

1. HHH 2. HHT 3. HTH 4. HTT 5. TTT 6. TTH 7. THT and 8. THH

If our coin is fair we can assume that each of these outcomes is equally likely, that
is, has a probability of 1/8. Now let us define two events: event A will be getting a
“heads” on flip 1 and flip 2 of the coin and event B will be getting a “heads” on flips 1
and 3 of the coin. Notice that outcomes 1 and 2 above are sample points of event A
and that outcomes 1 and 3 are events of type B. Now we can define a new event that
combines events A and B. We will use the symbol A N B for this event. If we assume
each of the eight sample points are equally likely we may write P(A N B) = number
of sample points that are examples of A N B/total number of sample points, or

P(A N B) = 1/8. Notice that only 1 of the points in our sample space has heads
on both flips 1 and 2 and on 2 and 3 (sample point 1.) That is, the probability of
event A and B is the probability that both events A and B occur.

When events may not be exclusive, we are dealing with the probability of an
event A or Event B or both. We can then write

P(A U B) =P(A) + P(B) —P(AN B) (1.13)

Which, in words says, the probability of events A or B equals the probability of
event A plus the probability of event B minus the probability of event A and B.
Of course, if A and B are mutually exclusive then the probabilty of A and B is zero
and the probability of A or B is simply the sum of P(A) and P(B).

The Law of Large Numbers

Assume again that you have an urn of 5 black balls and 4 white balls. You stir the
balls up and draw one from the urn and record its color. You return the ball to
the urn, again stir the balls vigourously and again draw a single ball and record its
color. Now assume you do this 10,000 times, each time recording the color of the
ball. Finally, you count the number of white balls you drew from the 10,000 draws.
You might reasonably expect the proportion of white balls to be close to 4/9
although it is likely that it is not exactly 4/9. Should you continue to repeat this
experiment over and over, it is also reasonable to expect that eventually, the
proportion would be extremely close to the actual proportion of 4/9. You can see
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that the larger the number of observations, the more closely we would approximate
the actual value. You can also see that with very small replications, say 12 draws
(with replacement) could lead to a very poor estimate of the actual proportion of
white balls.

Multiplication Rule of Probability

Assume you toss a fair coin five times. What is the probability that you get a “heads”
on all five tosses? First, the probability of the event P(E) = 1/2 since the sample
space has only two possible outcomes. The multicative rule of probability states that
the probability of five heads would be 1/2 * 1/2 * 1/2 * 1/2 * 1/2 or simply (1/2) to the
fifth power (1/32) or, in general, P(E)" where n is the number of events E.

As another example of this rule, assume a student is taking a test consisting of six
multiple-choice items. Each item has five equally attractive choices. Assume the
student has absolutely no knowledge and therefore guesses the answer to each item
by randomly selecting one of the five choices for each item. What is the probability
that the student would get all of the items correct? Since each item has a probability
of 1/5, the probability that all items are answered correctly is (1 /5)6 or 0.000064.
What would it be if the items were true-false items?

Permutations and Combinations

A permutation is an arrangement of n objects. For example, consider the letters A,
B, C and D. How many permutations (arrangements) can we make with these four
letters? We notice there are four possibilities for the first letter. Once we have
selected the first letter there are 3 possible choices for the second letter. Once the
second letter is chosen there are two possibilities for the third letter. There is only
one choice for the last letter. The number of permutations possible then is 4 x 3
x 2 x 1 = 24 ways to arrange the four letters. In general, if there are N objects, the
number of permutations is N x (N—1) x (N—2) x (N—3) x ... (1). We abbrevi-
ate this series of products with an exclamation point and write it simply as N! We
say “N factorial” for the product series. Thus 4! = 24. We do, however, have to let
0! = 1, that is, by definition the factorial of zero is equal to one. Factorials can get
very large. For example, 10! = 3,628,800 arrangements. If you spent a minute
examining one arrangement of 12 guests for a party, how long would it take you to
examine each arrangement? I’'m afraid that if you worked 8 hours a day, 5 days a
week for 52 weeks a year you (and your descendants) would still be working on it
for more than a 1,000 years!

A combination is a set of objects without regard to order. For example, the
combination of A, B, C and D in any permutation is one combination. A question
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arises however concerning how many combinations of K objects can be obtained
from a set of N objects. For example, how many combinations of 2 objects can be
obtained from a set of 4 objects. In our example, we have the possibilities of A + B,
A+C,A+D,B+C,B+ DandC + D or a total of 6 combinations. Notice that
the combination AB is the same as BA because order is not considered. A formula
may be written using permutations that gives us a general formula for
combinations. It is

N!'/ [K! (N=K)!] (1.14)

In our example then, the number of combinations of 2 things out of 4 is 4!/
[2! (4—2)!] which might be written as

4x3x2x1 24
. T _¢6 1.15
2x)x(2x1) 4 (1.15)

A special mathematics notation is often used for the combination of k things out

of N things. It is
N N!
= (1.16)
K K!(N — K)!

You will see the use of combinations in the section on the binomial distribution.

Conditional Probability

In sections above we defined the additive law for mutually exclusive events as the
sum of the invidual probabilities. For example, for a fair die the probability of each
of the faces is 1/6 so the probability of getting a 1 in two tosses (toss A and a toss B)
is P(A) + P(B) = 1/6 + 1/6 = 1/3. Our multiplicative law for independent events
states that the probability of obtaining event A and event B is P(A) x P(B). So the
probability of getting a 1 on toss A of a die 1 and toss B of the die is P(1) X
P(2) = 1/6 x 1/6 = 1/36. But what if we don’t know our die is a “fair” die with
equal probabilties for each face on a toss? Can we use the prior information from
toss A of the die to say what the probability if for toss B?

Conditional probability is the probability of an event given that another event
has already occurred. We would write

P(ANB)

PBIA) =

(1.17)
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If A and B are independent then

P(A)P(B)
P(B|A) = PA) P(B) (1.18)
or the probability of the second toss is 1/6, the same as before.

Now consider two events A and B: for B an individual has tossed a die four times
with outcomes E1, E2, E3 and E4; For A the event is the tosses with outcomes E1
and E2. The events might be the toss results of 1, 3, 5 and 6. Knowing that event A
has occurred, what is the probabilty of event B, that is, P(AIB)? Intuitively you
might notice that the probabilty of the B event is the sum of the individual
probabilities or 1/6 + 1/6 + 1/6 + 1/6 = 2/3, and that the probability of the A
event is 1/6 + 1/6 = 1/3 or half the probability of B. That is, P(A)/P(B) = 1/2.

A more formal statement of conditional probability is

P(ANB)

PAIB) =~

(1.19)

Thus the probability of event A is conditional on the prior probability of B. The
result P(AIB) is sometimes called the posterior probability. Notice we can rewrite
the above equation as:

P(A|B)P(B) = P(ANB) (1.20)
and
P(BJA)P(A) = P(ANB) (1.21)
Since both equations equal the same thing we may write

P(B|A)P(A)

PAIB) = =

(1.22)

The above is known as Bayes Theorem for events.

Now consider an example. In a recent poll in your city, 40% are registered
Democrats and 60% are registered Republicans. Among the Democrats, the poll
shows that 70% feel that invading Iraq was a mistake and 20% feel it was justified.
You have just met a new neighbor and have begun a conversation over a cup of
coffee. You learn that this neighbor feels that invading Iraq was a mistake. What is
the probability that the neighbor is also a Democrat? Let A be the event that
the neighbor is Democrat and B be the event that she feels the invasion was a
mistake. We already know that the probability of A is P(A) = 0.6. We also know
that the probability of B is P(B |A) = 0.7 . We need to compute P(B), the probabil-
ity the neighbor feels the invasion was a mistake. We notice that the probability of
B can be decomposed into two exclusive parts: P(B) = P(B and A) and P(B and
not A) where the probability of not A is I—P(A) or 0.4, the probability of not being
a democrat. We can write
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P(B N notA) = P(notA)P(B|A) (1.23)
or P(B) = P(B and A) + P(notA)P(B|notA) (1.24)
or P(B) = P(B|A)P(A) + P(notA) P(B|notA) (1.25)

Now we know P(A) = 0.4, P(not A) = 1—.4 = 0.6, P(BIA) = 0.7 and P(Bl not A)
= 0.2. Therefore,

P(B) = (0.7) (0.4) + (0.6)(0.2) = 0.40

Now knowing P(B) we can compute P(AIB) using Bayes’ Theorem:

paB) =" (BIL/?Z; “) _ (0'70).(40'4) =07 (1.26)

is the probability of the neighbor being Democrat.

Bayesian Statistics

In the previous section we explored Bayes Theorem. In that discussion we had prior
information P(A) and sought posterior probabilities of A given that B occurred.
In general, Bayesian statistics follows this core:

Prior Probabilities, e.g. P(A) 4+ New Information,
e.g. appossed to invading Iraq P(B) = Posterior
Probability P(A|B).

The above example dealt with specific events. However, Bayesian statistics also
can be generalized to situations where we wish to develop a posterior distribution
by combining a prior distribution with a distribution of new information. The Beta
distribution is often used for prior and posterior distributions. This text will not
attempt to cover Bayesian statistics. The reader is encouraged to find text books
specific to this topic.

Maximum Liklihood (Adapted from S. Purcell, http://statgen.iop.
kcl.ac.uk/bgim/mle/sslike_1.html)

Model-Fitting
If the probability of an event X dependent on model parameters p is written

P (X |p)


http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_1.html
http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_1.html

