Donald A. Nield Adrian Bejan

Convection in Porous Media

4th Edition

Convection in Porous Media

Donald A. Nield • Adrian Bejan

Convection in Porous Media

Fourth Edition

Donald A. Nield Department of Engineering Science University of Auckland Auckland, 1142, New Zealand d.nield@auckland.ac.nz Adrian Bejan
Department of Mechanical Engineering
and Materials Science
Duke University
Durham, NC 27708, USA
abejan@duke.edu

ISBN 978-1-4614-5540-0 ISBN 978-1-4614-5541-7 (eBook) DOI 10.1007/978-1-4614-5541-7 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951652

© Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our wives
Rachel Nield and Mary Bejan
Our children
Cherry, Alexandra, and Peter Nield
Cristina, Teresa, and William Bejan
Our grandchildren
Michael and Rachel van der Mark

Charlotte and Susan Nield Elizabeth and John Hayman

Preface to the Fourth Edition

Papers on convection in porous media continue to be published at a rate that is now over 250 per year. This indication of the continued importance of the subject, together with the wide acceptance of the first, second, and third editions of the book, has encouraged us to prepare an expanded fourth edition. We have retained the basic structure and most of the text of the third edition. We have not attempted to be exhaustive in our choice of references, but nevertheless there are approximately 1,750 new citations to the literature! Again, we have made an effort to highlight new conceptual developments and engineering applications.

We found that it was possible to fit most of the new material under the existing section headings. However, we now have new sections on nanofluids, carbon dioxide sequestration, and the reaction scenarios that arise in a geological context.

Once again we decided that, except for a brief mention, convection in unsaturated media was beyond the scope of this book. Also, we are aware that there are some topics in the area of hydrology that could be regarded as coming under the umbrella of the title of our book but are not treated here.

We are grateful to a large number of people for their comments on the material in previous editions. Other colleagues have continued to improve our understanding of the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke University, for their ongoing support.

Once again we relied on the expertise and hard work of Deborah Fraze for the preparation of our manuscript.

Auckland, New Zealand Durham, USA Donald A. Nield Adrian Bejan

Preface to the Third Edition

Papers on convection in porous media continue to be published at the rate what is now over 200 per year. The indication of the continued importance of the subject, together with the wide acceptance of the first and second editions of this volume, has encouraged us to prepare an expanded third edition. We have retained the basic structure and most of the text of the second edition. We have been somewhat selective in our choice of references, but nevertheless there are over 1,400 new references. Again, we have made an effort to highlight new conceptual developments and engineering applications.

We found that it was possible to fit a lot of the new material under the existing section headings. However, we now have new sections on bidisperse porous media, local thermal nonequilibrium, electrodiffusion, transverse heterogeneity in channels, thermal development of forced convection, effects of temperature-dependent viscosity, constructal multiscale flow structures, optimal spacings for plates separated by porous structures, control of convection using vertical vibration, and bioconvection.

Once again we decided that, except for a brief mention, convection in unsaturated media had to be beyond the scope of this book. Also, we are aware that there are some topics in the area of hydrology that could be regarded as coming under the umbrella of the title of our book but are not treated here.

We are grateful to a large number of people who provided us, prior to publication, with copies of their chapters of books that survey research on various topics. Other colleagues have continued to improve our understanding of the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke University, for their ongoing support.

Once again we relied on the expertise and hard work of Linda Hayes and Deborah Fraze for the preparation of the electronic version of our manuscript.

Auckland, New Zealand Durham, USA Donald A. Nield Adrian Bejan

Preface to the Second Edition

Papers on convection in porous media continue to be published at the rate of over 100 per year. This indication of the continued importance of the subject, together with the wide acceptance of the first edition, has encouraged us to prepare an expanded second edition. We have retained the basic structure and most of the text of the first edition. With space considerations in mind, we have been selective in our choice of references, but nevertheless there are over 600 new references. We also made an effort to highlight new conceptual developments and engineering applications.

In the introductory material, we judged that Chaps. 2 and 3 needed little alteration (though there is a new Sect. 2.6 on other approaches to the topic), but our improved understanding of the basic modeling of flow through a porous medium has led to a number of changes in Chap. 1, both within the old sections and by the addition of a section on turbulence in porous media and a section on fractured media, deformable media, and complex porous structures.

In Chap. 4, on forced convection, we have added major new sections on compact heat exchangers, on heatlines for visualizing convection, and on constructal tree networks for the geometric minimization of the resistance to volume-to-point flows in heterogeneous porous media.

In Chap. 5 (external natural convection) there is a substantial amount of new material inserted in the existing sections. In Chaps. 6 and 7, on internal natural convection, we now have included descriptions of the effects of a magnetic field and rotation, and there are new sections on periodic heating and on sources in confined or partly confined regions; the latter is a reflection of the current interest in the problem of nuclear waste disposal. In Chap. 8, on mixed convection, there are no new sections, but in a new subsection we have given some prominence to the unified theory that has been developed for boundary layer situations. In Chap. 9, on double-diffusive convection (heat and mass transfer) there is a new section on convection produced by inclined gradients, a topic that has also been given wider coverage in the related section in Chap. 7.

In Chap. 10, which deals with convection with change of phase, we have a new subsection on the solidification of binary alloys, a research area that has blossomed

in the last decade. We also have a new section on spaces filled with fluid and fibers coated with a phase-change material. In the first edition we had little to say about two-phase flow, despite its importance in geothermal and other contexts. We now have included a substantial discussion on this topic, which we have placed at the end of Chap. 11 (geophysical aspects). Once again we decided that, except for a brief mention, convection in unsaturated media had to be beyond the scope of this book.

D.A.N. again enjoyed the hospitality of the Department of Mechanical Engineering and Materials Science at Duke University while on Research and Study Leave from the University of Auckland, and both of those institutions again provided financial support.

We are grateful for comments from Graham Weir and Roger Young on a draft of Sect. 11.9, a topic on which we had much to learn. We also are grateful to a large number of people who provided us with preprints of their papers prior to publication. Other colleagues have improved our understanding of the subject of this book in ways too numerous to mention here.

Once again we relied on the expertise and hard work of Linda Hayes for the preparation of the electronic version of our manuscript, and again the staff at the Engineering Library of Duke University made our search of the literature an enjoyable experience.

Auckland, New Zealand Durham, USA

Donald A. Nield Adrian Bejan

Preface to the First Edition

In this book we have tried to provide a user-friendly introduction to the topic of convection in porous media. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. Only routine classic mathematics is employed. We hope that the book will be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar).

This book brings into perspective the voluminous research that has been performed during the last two decades. The field recently has exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment. Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches.

We believe that this book is timely because the subject is now mature in the sense that there is a corpus of material that is unlikely to require major revision in the future. As the reader will find, the relations for heat transfer coefficients and flow parameters for the case of saturated media are now known well enough for engineering design purposes. There is a sound basis of underlying theory that has been validated by experiment. At the same time there are outstanding problems in the cases of unsaturated media and multiphase flow in heterogeneous media, which are relevant to such topics as the drying of porous materials and enhanced oil recovery.

The sheer bulk of the available material has limited the scope of this book. It has forced us to omit a discussion of convection in unsaturated media and also of geothermal reservoir modeling; references to reviews of these topics are given. We also have excluded mention of several hundred additional papers, including some of our own. We have emphasized reports of experimental work, which are in relatively short supply (and in some areas are still lacking). We also have emphasized simple analysis where this illuminates the physics involved. The excluded material includes some good early work, which has now been superseded, and some recent

numerical work involving complex geometry. Also excluded are papers involving the additional effects of rotation or magnetic fields; we know of no reported experimental work or significant applications of these extensions. We regret that our survey could not be exhaustive, but we believe that this book gives a good picture of the current state of research in this field.

The first three chapters provide the background for the rest of the book. Chapters 4 through 8 form the core material on thermal convection. Our original plan, which was to separate foundational material from applications, proved to be impractical, and these chapters are organized according to geometry and the form of heating. Chapter 9 deals with combined heat and mass transfer and Chap. 10 with convection coupled with change of phase. Geophysical themes involve additional physical processes and have given rise to additional theoretical investigations; these are discussed in Chap. 11.

This book was written while D.A.N. was enjoying the hospitality of the Department of Mechanical Engineering and Materials Science at Duke University, while on Research and Study Leave from the University of Auckland. Financial support for this leave was provided by the University of Auckland, Duke University, and the United States—New Zealand Cooperative Science Program. We are particularly grateful to Dean Earl H. Dowell and Prof. Robert M. Hochmuth, both of Duke University, for their help in making this book project possible.

Linda Hayes did all the work of converting our rough handwritten notes into the current high-quality version on computer disk. She did this most efficiently and with tremendous understanding (i.e., patience!) for the many instances in which we changed our minds and modified the manuscript.

At various stages in the preparation of the manuscript and the figures we were assisted by Linda Hayes, Kathy Vickers, Jong S. Lim, Jose L. Lage, and Laurens Howle. Eric Smith and his team at the Engineering Library of Duke University went to great lengths to make our literature search easier. We are very grateful for all the assistance we have received.

Auckland, New Zealand Durham, USA Donald A. Nield Adrian Bejan

Contents

1	Mec	hanics	of Fluid Flow Through a Porous Medium	1
	1.1	Introd	uction	1
	1.2	Porosi	ty	4
	1.3	Seepag	ge Velocity and the Equation of Continuity	5
	1.4	Mome	entum Equation: Darcy's Law	5
		1.4.1	Darcy's Law: Permeability	5
		1.4.2	Deterministic Models Leading to Darcy's Law	6
		1.4.3	Statistical Models Leading to Darcy's Law	7
	1.5	Extens	sions of Darcy's Law	8
		1.5.1	Acceleration and Other Inertial Effects	8
		1.5.2	Quadratic Drag: Forchheimer's Equation	10
		1.5.3	Brinkman's Equation	15
		1.5.4	Non-Newtonian Fluid	18
	1.6		dynamic Boundary Conditions	18
	1.7		s of Porosity Variation	25
	1.8		lence in Porous Media	26
	1.9		red Media, Deformable Media, and	
		Comp	lex Porous Structures	28
2	Hea	t Trans	sfer Through a Porous Medium	31
	2.1	Energy	y Equation: Simple Case	31
	2.2	Energy	y Equation: Extensions to More	
		Comp	lex Situations	32
		2.2.1	Overall Thermal Conductivity of a Porous	
			Medium	32
		2.2.2	Effects of Pressure Changes and Viscous	
			Dissipation	34
		2.2.3	Absence of Local Thermal Equilibrium	36
		2.2.4	Thermal Dispersion	39
		2.2.5	Cellular Porous Media	42
	2.3	Oberb	eck-Boussinesq Approximation	42

xvi Contents

	2.4	Thermal Boundary Conditions	43
	2.5	Hele-Shaw Analogy	44
	2.6	Bioheat Transfer and Other Approaches	45
3	Mass	Transfer in a Porous Medium: Multicomponent	
		Multiphase Flows	47
	3.1	Multicomponent Flow: Basic Concepts	47
	3.2	Mass Conservation in a Mixture	49
	3.3	Combined Heat and Mass Transfer	51
	3.4	Effects of a Chemical Reaction	53
	3.5	Multiphase Flow	54
		3.5.1 Conservation of Mass	56
		3.5.2 Conservation of Momentum	57
		3.5.3 Conservation of Energy	59
		3.5.4 Summary: Relative Permeabilities	61
	3.6	Unsaturated Porous Media	64
	3.7	Electrodiffusion Through Porous Media	65
	3.8	Nanofluids	67
4	Force	ed Convection	69
-	4.1	Plane Wall with Prescribed Temperature	69
	4.2	Plane Wall with Constant Heat Flux	72
	4.3	Sphere and Cylinder: Boundary Layers	73
	4.4	Point Source and Line Source: Thermal Wakes	77
	4.5	Confined Flow	79
	4.6	Transient Effects	81
		4.6.1 Scale Analysis	82
		4.6.2 Wall with Constant Temperature	83
		4.6.3 Wall with Constant Heat Flux	86
		4.6.4 Other Configurations	87
	4.7	Effects of Inertia and Thermal Dispersion: External Flow	88
	4.8	Effects of Boundary Friction and Porosity Variation:	
		Exterior Flow	90
	4.9	Effects of Boundary Friction, Inertia, Porosity Variation,	
		Thermal Dispersion, and Axial Conduction: Confined Flow	95
	4.10	Local Thermal Nonequilibrium	103
	4.11	Partly Porous Configurations	104
	4.12	Transversely Heterogeneous Channels and Pipes	107
	4.13	Thermal Development	109
	4.14	Surfaces Covered with Porous Layers	110
	4.15	Designed Porous Media	114
	4.16	Other Configurations or Effects	117
		4.16.1 Effect of Temperature-Dependent Viscosity	117
		4.16.2 Oscillatory Flows, Counterflows	118
		4.16.3 Non-Newtonian Fluids	119

Contents xvii

		4.16.4 Bidisperse Porous Media	19
		4.16.5 Other Flows, Other Effects	22
	4.17	Heatlines for Visualizing Convection	23
	4.18	Constructal Tree Networks: Flow Access	
		in Volume-to-Point Flow	26
		4.18.1 The Fundamental Volume-to-Point	
		Flow Problem	27
		4.18.2 The Elemental Volume	28
		4.18.3 The First Construct	31
		4.18.4 Higher-Order Constructs	32
		4.18.5 The Constructal Law of Design	
		and Evolution in Nature	34
	4.19	Constructal Multiscale Flow Structures:	
		Vascular Design	37
	4.20	Optimal Spacings for Plates Separated by Porous	
		Structures	41
5	Extor	rnal Natural Convection	45
3	5.1		43 45
	3.1		43 47
			47 49
			49 50
			50 52
			52 55
		3 E	58
		5.1.7 Effects of Boundary Friction, Inertia,	20
		· · · · · · · · · · · · · · · · · · ·	59
		1	59 66
			69
	5.2		75
	5.3		79
	5.4		79 81
	5.5	•	85
	5.5	•	85
			87
	5.6		89
	5.0	1	89
			91
		, _C	91 93
	5.7		93
	5.8	•	95 95
	5.8 5.9		93 98
	5.10	· · · · · · · · · · · · · · · · · · ·	90 00
	5.10		.00
			.05
		5.10.2 Plow at Low Rayleigh Number	w

xviii Contents

	5.11	Point Heat Source	208
		5.11.1 Flow at High Rayleigh Number	208
		5.11.2 Flow at Low Rayleigh Number	210
		5.11.3 Flow at Intermediate Rayleigh Number	214
	5.12	Other Configurations	216
		5.12.1 Fins Projecting from a Heated Base	216
		5.12.2 Flows in Regions Bounded by Two Planes	217
		5.12.3 Other Situations	218
	5.13	Surfaces Covered with Hair	219
6	Inter	nal Natural Convection: Heating from Below	221
	6.1	Horton-Rogers-Lapwood Problem	221
	6.2	Linear Stability Analysis	222
	6.3	Weak Nonlinear Theory: Energy and Heat	
		Transfer Results	227
	6.4	Weak Nonlinear Theory: Further Results	231
	6.5	Effects of Solid–Fluid Heat Transfer	238
	6.6	Non-Darcy, Dispersion, and Viscous	
		Dissipation Effects	240
	6.7	Non-Boussinesq Effects	243
	6.8	Finite-Amplitude Convection: Numerical Computation	
		and Higher-Order Transitions	245
	6.9	Experimental Observations	248
		6.9.1 Observations of Flow Patterns and	
		Heat Transfer	248
		6.9.2 Correlations of the Heat Transfer Data	251
		6.9.3 Further Experimental Observations	256
	6.10	Effect of Net Mass Flow	257
		6.10.1 Horizontal Throughflow	257
	C 11	6.10.2 Vertical Throughflow	258
	6.11	Effect of Nonlinear Basic Temperature Profiles	261
		6.11.1 General Theory	261
		6.11.2 Internal Heating	262
		6.11.3 Time-Dependent Heating	265
	6 10	6.11.4 Penetrative Convection, Icy Water	271 272
	6.12 6.13	Effects of Anisotropy	272
	0.13	Effects of Heterogeneity	275
		6.13.2 Layered Porous Media	276
		6.13.3 Analogy Between Layering and Anisotropy	278
		6.13.4 Heterogeneity in the Horizontal Direction	279
		6.13.5 Heterogeneity in Both Horizontal	219
		and Vertical Directions	283
		6.13.6 Strong Heterogeneity	283
	6.14	Effects of Nonuniform Heating	284
	U		

Contents xix

	6.15	Rectangular Box or Channel	286
		6.15.1 Linear Stability Analysis, Bifurcation Theory,	200
		and Numerical Studies	286
		6.15.2 Thin Box or Slot	291
		6.15.3 Additional Effects	292
	6.16	Cylinder or Annulus	294
		6.16.1 Vertical Cylinder or Annulus	294
		6.16.2 Horizontal Cylinder or Annulus	296
	6.17	Internal Heating in Other Geometries	297
	6.18	Localized Heating	299
	6.19	Superposed Fluid and Porous Layers, Partly	
		Porous Configurations	303
		6.19.1 Onset of Convection	304
		6.19.2 Flow Patterns and Heat Transfer	311
		6.19.3 Other Configurations and Effects	312
	6.20	Layer Saturated with Water Near 4°C	313
	6.21	Effects of a Magnetic Field or Electric Field,	
		Ferromagnetic Fluid	314
	6.22	Effects of Rotation	315
	6.23	Non-Newtonian and Other Types of Fluids	318
	6.24	Effects of Vertical Vibration and Variable Gravity	319
	6.25	Bioconvection	321
	6.26	Constructal Theory of Bénard Convection	322
	0.20	6.26.1 The Many Counterflows Regime	323
		6.26.2 The Few Plumes Regime	325
		6.26.3 The Intersection of Asymptotes	328
	6.27		320
	0.27	Bidisperse Porous Media and Cellular	220
		Porous Media	329
7	Inter	nal Natural Convection: Heating from the Side	331
	7.1	Darcy Flow Between Isothermal Sidewalls	331
		7.1.1 Heat Transfer Regimes	331
		7.1.2 Boundary Layer Regime	336
		7.1.3 Shallow Layer	342
		7.1.4 Stability of Flow	346
		7.1.5 Conjugate Convection	347
		7.1.6 Non-Newtonian Fluid	347
		7.1.7 Other Situations	348
	7.2	Sidewalls with Uniform Flux and Other Thermal	540
	1.2	Conditions	349
	7.3	Other Configurations and Effects of Property Variation	350
	1.5	7.3.1 Internal Partitions	350
			352
		7.3.3 Cylindrical or Annular Enclosure	355
		7.3.4 Spherical Enclosure	360

xx Contents

		7.3.5		
			Near 4°C	361
		7.3.6	Triangular Enclosure	363
		7.3.7	Other Enclosures	364
		7.3.8	Internal Heating	365
		7.3.9	Bidisperse Porous Media	366
	7.4	Pene	trative Convection	366
		7.4.1	Lateral Penetration	367
		7.4.2	Vertical Penetration	368
		7.4.3	Other Penetrative Flows	370
	7.5	Tran	sient Effects	371
	7.6	Depa	arture from Darcy Flow	375
		7.6.1	Inertial Effects	375
		7.6.2	Boundary Friction, Variable Porosity, Local Thermal	
			Nonequilibrium, Viscous Dissipation, and Thermal	
			Dispersion Effects	378
	7.7	Fluid	and Porous Regions	380
	7.8	Slopi	ing Porous Layer or Enclosure	383
	7.9	Incli	ned Temperature Gradient	389
	7.10	Perio	odic Heating	392
	7.11	Sour	ces in Confined or Partly Confined Regions	393
	7.12	Effec	ets of Rotation	395
8	Miv	ad Con	vection	397
O	8.1		nal Flow	397
	0.1	8.1.1	Inclined or Vertical Plane Wall	397
		8.1.2	Horizontal Wall	403
		8.1.3	Cylinder or Sphere	404
		8.1.4	Other Geometries	408
		8.1.5	Unified Theory	409
		8.1.6	Other Aspects of External Flow	414
	8.2		al Flow: Horizontal Channel	414
	0.2	8.2.1	Horizontal Layer: Uniform Heating	414
		8.2.2	Horizontal Layer: Localized Heating	416
		8.2.3	Horizontal Annulus	417
		8.2.4	Horizontal Layer: Lateral Heating	418
	8.3		al Flow: Vertical Channel	418
	0.3	8.3.1	Vertical Layer: Uniform Heating	418
			Vertical Layer: Comolin Heating	419
		8.3.2 8.3.3	Vertical Annulus: Uniform Heating	419
		8.3.4	Vertical Annulus: Localized Heating	420
	Q A		Geometries and Other Effects	421
	8.4	8.4.1		423
			Partly Porous Configurations	423
		8.4.2 8.4.3	Jet Impingement	423
		0.4)	Office Aspects	444.3

Contents xxi

9	Doub	ole-Diffu	sive Convection	425
	9.1	Vertica	l Heat and Mass Transfer	425
		9.1.1	Horton–Rogers–Lapwood Problem	425
		9.1.2	Nonlinear Initial Profiles	429
		9.1.3	Finite-Amplitude Effects	430
		9.1.4	Soret and Dufour Cross-Diffusion Effects	433
		9.1.5	Flow at High Rayleigh Number	436
			Other Effects	438
	9.2	Horizon	ntal Heat and Mass Transfer	443
		9.2.1	Boundary Layer Flow and External Natural	
			Convection	443
		9.2.2	Enclosed Porous Medium	449
		9.2.3	Transient Effects	456
		9.2.4	Stability of Flow	458
	9.3	Concen	ntrated Heat and Mass Sources	459
		9.3.1	Point Source	459
		9.3.2	Horizontal Line Source	462
	9.4	Other C	Configurations	462
	9.5	Inclined	d and Crossed Gradients	465
	9.6	Mixed	Double-Diffusive Convection	466
		9.6.1	Mixed External Convection	466
		9.6.2	Mixed Internal Convection	467
	9.7	Nanoflu	uids	467
10	Conv	ection w	vith Change of Phase	469
	10.1		g	469
		10.1.1		469
		10.1.2	Scale Analysis	475
		10.1.3	Effect of Liquid Superheating	477
		10.1.4	Horizontal Liquid Layer	485
		10.1.5	Vertical Melting Front in an Infinite	
			Porous Medium	488
		10.1.6	A More General Model	489
		10.1.7	Further Studies	492
	10.2	Freezin	ng and Solidification	495
		10.2.1	Cooling from the Side	495
		10.2.2	Cooling from Above	498
		10.2.3	Solidification of Binary Alloys	499
	10.3	Boiling	g and Evaporation	506
		10.3.1	Boiling and Evaporation Produced	
			by Heating from Below	506
		10.3.2	Film Boiling and Evaporation	512
	10.4		nsation	518
	10.5		Filled with Fluid and Fibers Coated	
		-	Phase-Change Material	520

xxii Contents

11	Geoph	ysical As _l	pects	523
	11.1	Snow		523
	11.2	Patternec	d Ground	525
	11.3	Thawing	Subsea Permafrost	527
	11.4	Magma I	Production and Magma Chambers	529
	11.5	Diagenet	tic Processes	530
	11.6	Oceanic	Crust	532
		11.6.1	Heat Flux Distribution	532
		11.6.2	Topographical Forcing	532
	11.7	Geothern	nal Reservoirs: Injection and Withdrawal	534
	11.8	Other As	spects of Single-Phase Flow	535
	11.9	Two-Pha	se Flow	539
		11.9.1	Vapor–Liquid Counterflow	539
		11.9.2	Heat Pipes	544
		11.9.3	Other Aspects	546
	11.10	Cracks in	n Shrinking Solids	546
	11.11	Carbon I	Dioxide Sequestration	549
	11.12	Reaction	Scenarios	550
		11.12.1	Reaction Fronts	551
		11.12.2	Gradient Reactions	552
		11.12.3	Mixing Zones	553
Ref	ferences			555
Ind	ex			773

Nomenclature

В

D	Transition number for electrodiffusion, Eq. (3.93)		
Be	Bejan number, Eq. (4.145)		
Br	Brinkman number, Sect. 2.2.2		
C	Concentration		
c	Specific heat		
$c_{\mathbf{a}}$	Acceleration coefficient		
$c_{ m F}$	Forchheimer coefficient		
$c_{\mathbf{P}}$	Specific heat at constant pressure		
D	Diameter		
D	d/dz		
$D_{ m m}$	Solute diffusivity		
D_{CT}	Thermodiffusion coefficient (Soret coefficient times $D_{\rm m}$)		
Da	Darcy number		
$d_{\rm p}$	Particle diameter		
Ec	Eckert number, Sect. 2.2.2		
g	Gravitational acceleration		
Ge	Gebhart number, Sect. 2.2.2		
H	Vertical dimension		
i, j, k	Unit vectors		
Ja	Jakob number		
K	Permeability		
k	Thermal conductivity		
$k_{\rm m}$	Thermal conductivity of the porous medium		
L	Horizontal dimension		
Le	Lewis number		
N	Buoyancy ratio		
Nu	Nusselt number		
P	Pressure		
Pe	Péclet number		
Pr	Prandtl number		

Transition number for electrodiffusion, Eq. (3.95)

xxiv Nomenclature

q', q'', q'''	Heat transfer rate per unit length, area, volume, respectively
r. e. v	Representative elementary volume
Ra	Thermal Rayleigh (Rayleigh-Darcy) number
$Ra_{ m D}$	Solutal Rayleigh number
Re	Reynolds number
r	Radial coordinate
Sc, Sh	Jakob numbers
Ste	Stefan number
S	Time constant
T	Temperature
t	Time
\mathbf{V}	Intrinsic velocity
v	(u, v, w), seepage velocity
x, y, z	Position coordinates
α	Nondimensional wavenumber
$\alpha_{\mathrm{B}J}$	Beavers-Joseph coefficient
α_m	Thermal diffusivity of the porous medium
β	Thermal expansion coefficient
$\beta_{ m C}$	Concentration expansion coefficient
δ	Boundary layer thickness
ζ	Inter-phase momentum transfer coefficient
η	Similarity variable
θ	Angle
θ	Temperature perturbation amplitude
λ	Exponent in power law variation
μ	Dynamic viscosity
$ ilde{\mu}$	Effective viscosity (Brinkman)
ν	Kinematic viscosity
ρ	Density
σ	Heat capacity ratio, $\sigma = \varphi + (1 - \varphi)(\rho c)_s/(\rho c_P)_f$
τ	Nondimensional time
φ	Porosity
φ	Angle
ψ	Streamfunction
ω	Frequency
χ	$c_F K^{1/2}$

Subscripts

- b Basic state
- b Bulk
- C Concentration
- c Critical

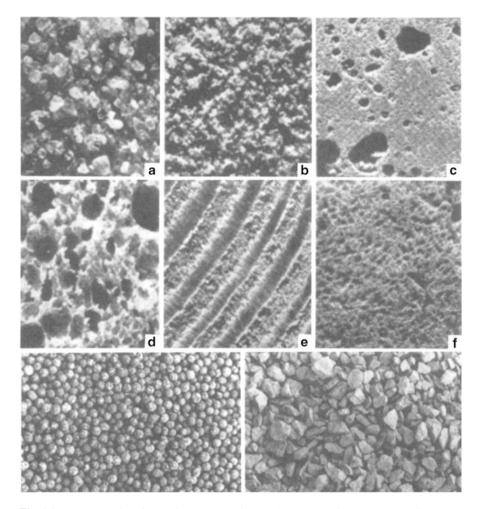
Nomenclature xxv

- D Parameter based on length D
- e Effective
- eff Effective
- f Fluid
- g Gas
- *H* Horizontal
- L Parameter based on length L
- l Liquid
- m Porous medium
- p Particle
- ref Reference
- s Solid
- V Vertical
- w Wall
- x Parameter based on length x
- 0 Reference
- ∞ Far field

Superscripts

' Perturbation

Chapter 1 Mechanics of Fluid Flow Through a Porous Medium


1.1 Introduction

By a porous medium, we mean a material consisting of a solid matrix with an interconnected void. We suppose that the solid matrix is either rigid (the usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation ("single-phase flow"), the void is saturated by a single fluid. In "two-phase flow," a liquid and a gas share the void space.

In a natural porous medium, the distribution of pores with respect to shape and size is irregular. Examples of natural porous media are beach sand, sandstone, limestone, rye bread, wood, and the human lung (Fig. 1.1 and Table 1.1). Manmade porous media include ceramics, composite materials, and high-porosity metallic foams. On the pore scale (the microscopic scale), the flow quantities (velocity, pressure, etc.) will be clearly irregular. But in typical experiments, the quantities of interest are measured over areas that cross many pores, and such space-averaged (macroscopic) quantities change in a regular manner with respect to space and time, and hence are amenable to theoretical treatment.

How we treat a flow through a porous structure is largely a question of distance—the distance between the problem solver and the actual flow structure (Bejan 2004a, b). When the distance is short, the observer sees only one or two channels, or one or two open or closed cavities. In this case, it is possible to use conventional fluid mechanics and convective heat transfer to describe what happens at every point of the fluid- and solid-filled spaces. When the distance is large so that there are many channels and cavities in the problem solver's field of vision, the complications of the flow paths rule out the conventional approach. In this limit, volume-averaging and global measurements (e.g., permeability, conductivity) are useful in describing the flow and in simplifying the description. As engineers focus more and more on designed porous media at decreasing pore scales, the problems tend to fall between the extremes noted above. In this intermediate range, the challenge is not only to describe *coarse* porous structures, but also to *optimize*

1

Fig. 1.1 *Top*: Examples of natural porous materials: (a) beach sand, (b) sandstone, (c) limestone, (d) rye bread, (e) wood, and (f) human lung (Collins 1961, with permission from Van Nostrand Reinhold). *Bottom*: Granular porous materials used in the construction industry, 0.5-cm-diameter Liapor® spheres (*left*) and 1-cm-size crushed limestone (*right*) (Bejan 1984)

flow elements, and to *assemble* them. The resulting flow structures are *designed* porous media (see Bejan et al. 2004; Bejan 2004b).

The usual way of deriving the laws governing the macroscopic variables is to begin with the standard equations obeyed by the fluid and to obtain the macroscopic equations by averaging over volumes or areas containing many pores. There are two ways to do the averaging: spatial and statistical. In the spatial approach, a macroscopic variable is defined as an appropriate mean over a sufficiently large representative elementary volume (r.e.v.); this operation yields the value of that

1.1 Introduction 3

Table 1.1 Properties of common porous materials (based on data compiled by Scheidegger 1974; Bejan and Lage 1991)

	Porosity	_	Surface per unit
Material	φ	Permeability K (cm ²)	volume (cm ⁻¹)
Agar-agar		2×10^{-10} to 4.4×10^{-9}	
Black slate powder	0.57-0.66	4.9×10^{-10} to 1.2×10^{-9}	$7 \times 10^3 \text{ to } 8.9 \times 10^3$
Brick	0.12-0.34	$4.8 \times 10^{-11} \text{ to } 2.2 \times 10^{-9}$	
Catalyst (Fischer-Tropsch, granules only)	0.45		5.6×10^5
Cigarette		1.1×10^{-5}	
Cigarette filters	0.17-0.49		
Coal	0.02 – 0.12		
Concrete (ordinary mixes)	0.1		
Concrete (bituminous)		1×10^{-9} to 2.3×10^{-7}	
Copper powder (hot- compacted)	0.09-0.34	$3.3 \times 10^{-6} \text{ to } 1.5 \times 10^{-5}$	
Cork board		2.4×10^{-7} to 5.1×10^{-7}	
Fiberglass	0.88-0.93		560-770
Granular crushed rock	0.45		
Hair (on mammals)	0.95-0.99		
Hair felt		$8.3 \times 10^{-6} \text{ to } 1.2 \times 10^{-5}$	
Leather	0.56-0.59	$9.5 \times 10^{-10} \text{ to } 1.2 \times 10^{-9}$	$1.2 \times 10^4 \text{ to}$ 1.6×10^4
Limestone (dolomite)	0.04-0.10	2×10^{-11} to 4.5×10^{-10}	
Sand	0.37-0.50	2×10^{-7} to 1.8×10^{-6}	150-220
Sandstone ("oil sand")	0.08-0.38	$5 \times 10^{-12} \text{ to } 3 \times 10^{-8}$	
Silica grains	0.65		
Silica powder	0.37-0.49	1.3×10^{-10} to 5.1×10^{-10}	$6.8 \times 10^3 \text{ to} $ 8.9×10^3
Soil	0.43-0.54	2.9×10^{-9} to 1.4×10^{-7}	
Spherical packings (well shaken)	0.36-0.43		
Wire crimps	0.68-0.76	$3.8 \times 10^{-5} \text{ to } 1 \times 10^{-4}$	29-40

variable at the centroid of the r.e.v. It is assumed that the result is independent of the size of the representative elementary volume. The length scale of the r.e.v. is much larger than the pore scale, but considerably smaller than the length scale of the macroscopic flow domain (Fig. 1.2).

In the statistical approach, the averaging is over an ensemble of possible pore structures that are macroscopically equivalent. A difficulty is that usually the statistical information about the ensemble has to be based on a single sample, and this is possible only if statistical homogeneity (stationarity) is assumed.

If one is concerned only with deriving relationships between the space-averaged quantities and is not concerned about their fluctuation, then the results obtained by using the two approaches are essentially the same. Thus, in this situation, one might as well use the simpler approach, namely, the one based on the r.e.v. An example of its use is given in Sect. 3.5. This approach is discussed at length by Bear and