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Preface to the Fourth Edition

Papers on convection in porous media continue to be published at a rate that is now
over 250 per year. This indication of the continued importance of the subject,
together with the wide acceptance of the first, second, and third editions of the
book, has encouraged us to prepare an expanded fourth edition. We have retained
the basic structure and most of the text of the third edition. We have not attempted
to be exhaustive in our choice of references, but nevertheless there are approxi-
mately 1,750 new citations to the literature! Again, we have made an effort to
highlight new conceptual developments and engineering applications.

We found that it was possible to fit most of the new material under the existing
section headings. However, we now have new sections on nanofluids, carbon
dioxide sequestration, and the reaction scenarios that arise in a geological context.

Once again we decided that, except for a brief mention, convection in unsatu-
rated media was beyond the scope of this book. Also, we are aware that there are
some topics in the area of hydrology that could be regarded as coming under the
umbrella of the title of our book but are not treated here.

We are grateful to a large number of people for their comments on the material in
previous editions. Other colleagues have continued to improve our understanding of
the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke
University, for their ongoing support.

Once again we relied on the expertise and hard work of Deborah Fraze for the
preparation of our manuscript.

Auckland, New Zealand Donald A. Nield
Durham, USA Adrian Bejan
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Preface to the Third Edition

Papers on convection in porous media continue to be published at the rate what is
now over 200 per year. The indication of the continued importance of the subject,
together with the wide acceptance of the first and second editions of this volume,
has encouraged us to prepare an expanded third edition. We have retained the basic
structure and most of the text of the second edition. We have been somewhat
selective in our choice of references, but nevertheless there are over 1,400 new
references. Again, we have made an effort to highlight new conceptual
developments and engineering applications.

We found that it was possible to fit a lot of the new material under the existing
section headings. However, we now have new sections on bidisperse porous media,
local thermal nonequilibrium, electrodiffusion, transverse heterogeneity in
channels, thermal development of forced convection, effects of temperature-
dependent viscosity, constructal multiscale flow structures, optimal spacings for
plates separated by porous structures, control of convection using vertical vibration,
and bioconvection.

Once again we decided that, except for a brief mention, convection in unsatu-
rated media had to be beyond the scope of this book. Also, we are aware that there
are some topics in the area of hydrology that could be regarded as coming under the
umbrella of the title of our book but are not treated here.

We are grateful to a large number of people who provided us, prior to publica-
tion, with copies of their chapters of books that survey research on various topics.
Other colleagues have continued to improve our understanding of the subject of this
book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke Univer-
sity, for their ongoing support.

Once again we relied on the expertise and hard work of Linda Hayes and
Deborah Fraze for the preparation of the electronic version of our manuscript.

Auckland, New Zealand Donald A. Nield
Durham, USA Adrian Bejan
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Preface to the Second Edition

Papers on convection in porous media continue to be published at the rate of over
100 per year. This indication of the continued importance of the subject, together
with the wide acceptance of the first edition, has encouraged us to prepare an
expanded second edition. We have retained the basic structure and most of the
text of the first edition. With space considerations in mind, we have been selective
in our choice of references, but nevertheless there are over 600 new references. We
also made an effort to highlight new conceptual developments and engineering
applications.

In the introductory material, we judged that Chaps. 2 and 3 needed little
alteration (though there is a new Sect. 2.6 on other approaches to the topic), but
our improved understanding of the basic modeling of flow through a porous
medium has led to a number of changes in Chap. 1, both within the old sections
and by the addition of a section on turbulence in porous media and a section on
fractured media, deformable media, and complex porous structures.

In Chap. 4, on forced convection, we have added major new sections on compact
heat exchangers, on heatlines for visualizing convection, and on constructal tree
networks for the geometric minimization of the resistance to volume-to-point flows
in heterogeneous porous media.

In Chap. 5 (external natural convection) there is a substantial amount of new
material inserted in the existing sections. In Chaps. 6 and 7, on internal natural
convection, we now have included descriptions of the effects of a magnetic field
and rotation, and there are new sections on periodic heating and on sources in
confined or partly confined regions; the latter is a reflection of the current interest in
the problem of nuclear waste disposal. In Chap. 8, on mixed convection, there are
no new sections, but in a new subsection we have given some prominence to the
unified theory that has been developed for boundary layer situations. In Chap. 9, on
double-diffusive convection (heat and mass transfer) there is a new section on
convection produced by inclined gradients, a topic that has also been given wider
coverage in the related section in Chap. 7.

In Chap. 10, which deals with convection with change of phase, we have a new
subsection on the solidification of binary alloys, a research area that has blossomed

Xi



Xii Preface to the Second Edition

in the last decade. We also have a new section on spaces filled with fluid and fibers
coated with a phase-change material. In the first edition we had little to say about
two-phase flow, despite its importance in geothermal and other contexts. We
now have included a substantial discussion on this topic, which we have placed
at the end of Chap. 11 (geophysical aspects). Once again we decided that, except
for a brief mention, convection in unsaturated media had to be beyond the scope of
this book.

D.A.N. again enjoyed the hospitality of the Department of Mechanical Engi-
neering and Materials Science at Duke University while on Research and Study
Leave from the University of Auckland, and both of those institutions again
provided financial support.

We are grateful for comments from Graham Weir and Roger Young on a draft of
Sect. 11.9, a topic on which we had much to learn. We also are grateful to a large
number of people who provided us with preprints of their papers prior to publica-
tion. Other colleagues have improved our understanding of the subject of this book
in ways too numerous to mention here.

Once again we relied on the expertise and hard work of Linda Hayes for the
preparation of the electronic version of our manuscript, and again the staff at
the Engineering Library of Duke University made our search of the literature an
enjoyable experience.

Auckland, New Zealand Donald A. Nield
Durham, USA Adrian Bejan



Preface to the First Edition

In this book we have tried to provide a user-friendly introduction to the topic of
convection in porous media. We have assumed that the reader is conversant with the
basic elements of fluid mechanics and heat transfer, but otherwise the book is self-
contained. Only routine classic mathematics is employed. We hope that the book
will be useful both as a review (for reference) and as a tutorial work (suitable as a
textbook in a graduate course or seminar).

This book brings into perspective the voluminous research that has been
performed during the last two decades. The field recently has exploded because
of worldwide concern with issues such as energy self-sufficiency and pollution of
the environment. Areas of application include the insulation of buildings and
equipment, energy storage and recovery, geothermal reservoirs, nuclear waste
disposal, chemical reactor engineering, and the storage of heat-generating materials
such as grain and coal. Geophysical applications range from the flow of groundwa-
ter around hot intrusions to the stability of snow against avalanches.

We believe that this book is timely because the subject is now mature in the
sense that there is a corpus of material that is unlikely to require major revision in
the future. As the reader will find, the relations for heat transfer coefficients and
flow parameters for the case of saturated media are now known well enough for
engineering design purposes. There is a sound basis of underlying theory that has
been validated by experiment. At the same time there are outstanding problems in
the cases of unsaturated media and multiphase flow in heterogeneous media, which
are relevant to such topics as the drying of porous materials and enhanced oil
recovery.

The sheer bulk of the available material has limited the scope of this book. It has
forced us to omit a discussion of convection in unsaturated media and also of
geothermal reservoir modeling; references to reviews of these topics are given. We
also have excluded mention of several hundred additional papers, including some of
our own. We have emphasized reports of experimental work, which are in relatively
short supply (and in some areas are still lacking). We also have emphasized simple
analysis where this illuminates the physics involved. The excluded material
includes some good early work, which has now been superseded, and some recent
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Xiv Preface to the First Edition

numerical work involving complex geometry. Also excluded are papers involving
the additional effects of rotation or magnetic fields; we know of no reported
experimental work or significant applications of these extensions. We regret that
our survey could not be exhaustive, but we believe that this book gives a good
picture of the current state of research in this field.

The first three chapters provide the background for the rest of the book. Chapters
4 through 8 form the core material on thermal convection. Our original plan, which
was to separate foundational material from applications, proved to be impractical,
and these chapters are organized according to geometry and the form of heating.
Chapter 9 deals with combined heat and mass transfer and Chap. 10 with convec-
tion coupled with change of phase. Geophysical themes involve additional physical
processes and have given rise to additional theoretical investigations; these are
discussed in Chap. 11.

This book was written while D.A.N. was enjoying the hospitality of the Depart-
ment of Mechanical Engineering and Materials Science at Duke University, while
on Research and Study Leave from the University of Auckland. Financial support
for this leave was provided by the University of Auckland, Duke University, and the
United States—New Zealand Cooperative Science Program. We are particularly
grateful to Dean Earl H. Dowell and Prof. Robert M. Hochmuth, both of Duke
University, for their help in making this book project possible.

Linda Hayes did all the work of converting our rough handwritten notes into the
current high-quality version on computer disk. She did this most efficiently and
with tremendous understanding (i.e., patience!) for the many instances in which we
changed our minds and modified the manuscript.

At various stages in the preparation of the manuscript and the figures we were
assisted by Linda Hayes, Kathy Vickers, Jong S. Lim, Jose L. Lage, and Laurens
Howle. Eric Smith and his team at the Engineering Library of Duke University went
to great lengths to make our literature search easier. We are very grateful for all the
assistance we have received.

Auckland, New Zealand Donald A. Nield
Durham, USA Adrian Bejan
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Chapter 1
Mechanics of Fluid Flow Through
a Porous Medium

1.1 Introduction

By a porous medium, we mean a material consisting of a solid matrix with an
interconnected void. We suppose that the solid matrix is either rigid (the usual
situation) or it undergoes small deformation. The interconnectedness of the void
(the pores) allows the flow of one or more fluids through the material. In the
simplest situation (“single-phase flow”), the void is saturated by a single fluid. In
“two-phase flow,” a liquid and a gas share the void space.

In a natural porous medium, the distribution of pores with respect to shape and
size is irregular. Examples of natural porous media are beach sand, sandstone,
limestone, rye bread, wood, and the human lung (Fig. 1.1 and Table 1.1). Man-
made porous media include ceramics, composite materials, and high-porosity
metallic foams. On the pore scale (the microscopic scale), the flow quantities
(velocity, pressure, etc.) will be clearly irregular. But in typical experiments, the
quantities of interest are measured over areas that cross many pores, and such
space-averaged (macroscopic) quantities change in a regular manner with respect to
space and time, and hence are amenable to theoretical treatment.

How we treat a flow through a porous structure is largely a question of
distance—the distance between the problem solver and the actual flow structure
(Bejan 2004a, b). When the distance is short, the observer sees only one or two
channels, or one or two open or closed cavities. In this case, it is possible to use
conventional fluid mechanics and convective heat transfer to describe what happens
at every point of the fluid- and solid-filled spaces. When the distance is large so that
there are many channels and cavities in the problem solver’s field of vision, the
complications of the flow paths rule out the conventional approach. In this limit,
volume-averaging and global measurements (e.g., permeability, conductivity) are
useful in describing the flow and in simplifying the description. As engineers focus
more and more on designed porous media at decreasing pore scales, the problems
tend to fall between the extremes noted above. In this intermediate range, the
challenge is not only to describe coarse porous structures, but also to optimize

D.A. Nield and A. Bejan, Convection in Porous Media, 1
DOI 10.1007/978-1-4614-5541-7_1, © Springer Science+Business Media New York 2013
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Fig. 1.1 Top: Examples of natural porous materials: (a) beach sand, (b) sandstone, (c¢) limestone,
(d) rye bread, (e) wood, and (f) human lung (Collins 1961, with permission from Van Nostrand
Reinhold). Bottom: Granular porous materials used in the construction industry, 0.5-cm-diameter
Liapor® spheres (left) and 1-cm-size crushed limestone (right) (Bejan 1984)

flow elements, and to assemble them. The resulting flow structures are designed
porous media (see Bejan et al. 2004; Bejan 2004b).

The usual way of deriving the laws governing the macroscopic variables is to
begin with the standard equations obeyed by the fluid and to obtain the macroscopic
equations by averaging over volumes or areas containing many pores. There are
two ways to do the averaging: spatial and statistical. In the spatial approach, a
macroscopic variable is defined as an appropriate mean over a sufficiently large
representative elementary volume (r.e.v.); this operation yields the value of that
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Table 1.1 Properties of common porous materials (based on data compiled by Scheidegger 1974;
Bejan and Lage 1991)

Porosity Surface per unit
Material © Permeability K (sz) volume (cm_l)
Agar-agar 2 x 1001044 x 107
Black slate powder 0.57-0.66 4.9 x 10'%t0 1.2 x 107° 7 x 10°t08.9 x 10°
Brick 0.12-0.34 4.8 x 107" t02.2 x 107
Catalyst (Fischer-Tropsch, 0.45 5.6 x 10°
granules only)
Cigarette 1.1 x 107
Cigarette filters 0.17-0.49
Coal 0.02-0.12
Concrete (ordinary mixes) 0.1
Concrete (bituminous) 1x10°t023 x 107
Copper powder (hot- 0.09-0.34 3.3 x 10°t0 1.5 x 107
compacted)
Cork board 24 x 107 t05.1 x 1077
Fiberglass 0.88-0.93 560-770
Granular crushed rock 0.45
Hair (on mammals) 0.95-0.99
Hair felt 83 x 10%t0 1.2 x 107
Leather 0.56-0.59 9.5 x 107"%t0 1.2 x 107 12 x 10* to
1.6 x 10*
Limestone (dolomite) 0.04-0.10 2 x 107" t04.5 x 107'°
Sand 0.37-0.50 2 x 107 to 1.8 x 107° 150-220
Sandstone (“oil sand”) 0.08-0.38 5 x 10203 x 107®
Silica grains 0.65
Silica powder 0.37-049 1.3 x 101051 x 107" 6.8 x 10°to
8.9 x 10°
Soil 0.43-0.54 2.9 x 10°1t0 1.4 x 107
Spherical packings (well 0.36-0.43
shaken)
Wire crimps 0.68-0.76 3.8 x 10°t01 x 107 29-40

variable at the centroid of the r.e.v. It is assumed that the result is independent of the
size of the representative elementary volume. The length scale of the r.e.v. is much
larger than the pore scale, but considerably smaller than the length scale of the
macroscopic flow domain (Fig. 1.2).

In the statistical approach, the averaging is over an ensemble of possible pore
structures that are macroscopically equivalent. A difficulty is that usually the
statistical information about the ensemble has to be based on a single sample, and
this is possible only if statistical homogeneity (stationarity) is assumed.

If one is concerned only with deriving relationships between the space-averaged
quantities and is not concerned about their fluctuation, then the results obtained by
using the two approaches are essentially the same. Thus, in this situation, one might
as well use the simpler approach, namely, the one based on the r.e.v. An example of
its use is given in Sect. 3.5. This approach is discussed at length by Bear and



