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Preface

This volume is the most recent installment of the Progress in Motor Control series. It
contains contributions based on presentations by invited speakers at the Progress in
Motor Control VIII meeting held in Cincinnati, OH, USA in July, 2011. Progress in
Motor Control is the official scientific meeting of the International Society of Motor
Control (ISMC). There were 23 invited presentations at the meeting, which was
organized into eight themed symposia and included a special ISMC Past President’s
Address by Michael Turvey, along with 137 poster presentations.

The Progress in Motor Control VIII meeting, and consequently this volume, were
meant to provide a broad perspective on the latest research on motor control in
humans and other species. The invited talks at the meeting addressed topics such
as neural regeneration, the mirror neuron system, movement disorders, dynamical
systems models and analyses, cortical representation and control of movement, spinal
circuitry for movement control, neuromechanics, motor learning, computational
modeling, and interactions between cognitive and motor processes. Neuroscience,
psychology, physiology, kinesiology, biomechanics, engineering, neurology, physics
and applied mathematics are among the disciplines represented by the chapters and
their authors. The chapters also reflect a broad range of approaches and theoretical
points of view, including neural, computational, and dynamical systems perspectives.

This diversity of perspectives and approaches, while certainly not exhaustive or
even fully representative, provides a flavor of the complex and multi-faceted nature
of motor coordination and control. While it is clear that much progress has been
made—fueled in part, hopefully, by the eight Progress in Motor Control meetings
to date and the publications associated with them—it is nonetheless apparent that a
thorough and complete understanding of motor control is not yet within our grasp. It
will require a sustained effort to achieve this understanding, and continued efforts to
synthesize the results of studies that are accruing at what seems to be an exponentially
increasing rate. We hope that this volume contributes to these important goals in at
least some small way.

We would like to acknowledge the extremely valuable help of Jamie Miller and
the University Conferencing staff who helped us plan and execute Progress in Motor
Control VIII. Thanks are also due to the graduate students from the Perceptual-
Motor Dynamics Laboratory at the Center for Cognition, Action, and Perception in
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vi Preface

the University of Cincinnati Psychology Department who helped make the meet-
ing run smoothly—Dilip Athreya, Laura Bachus, Scott Bonnette, Tehran Davis,
Nikita Kuznetsov, MaryLauren Malone, Michael Tolston, Julie Weast-Knapp, and
Eli White. The meeting was supported financially by the National Institute of Neuro-
logical Disorders and Stroke (grant number 1R13NS073205-1). We also appreciate
the input from past and present ISMC officers and previous Progress in Motor Con-
trol organizers. Finally, we would like to thank Arthur Smilios at Springer for his
encouragement and assistance with putting together this volume.

Cincinnati, Ohio, USA Michael J. Richardson
April 2012 Michael A. Riley

Kevin Shockley
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Chapter 1
Model-Based and Model-Free Mechanisms
of Human Motor Learning

Adrian M. Haith and John W. Krakauer

Introduction

In laboratory settings, motor learning has typically been studied in the context of
adaptation paradigms in which subjects must learn to compensate for a systematic
perturbation—either some manipulation of visual feedback (Krakauer et al. 2000)
or a change in the dynamics of the motor apparatus, e.g., a force applied to the hand
(Shadmehr and Mussa-Ivaldi 1994), Coriolis forces induced by rotation of the body
(Lackner and Dizio 1994), or an inertial load attached to the arm (Krakauer et al.
1999). What is typically observed in these tasks is a monotonic improvement in per-
formance that is initially rapid, and then slows to an asymptote close to initial baseline
levels of performance. The progress of learning is well described by exponential fits,
implying that the amount of improvement on each trial is proportional to the error
(Thoroughman and Shadmehr 2000; Donchin et al. 2003). This kind of fast, trial-by-
trial reduction in systematic errors is typically referred to as adaptation. The term
adaptation has been used in some cases to imply a particular mechanism of learning;
however, we will adhere to a behavioral definition (as a gradual reduction in error
following an abrupt change in conditions) and describe potential underlying learning
mechanisms in more computational terms. As we will argue, learning in adaptation
paradigms is likely predominantly mediated by a specific learning mechanism that
is based on changing an internal forward model.

Not all motor learning falls under our behavioral definition of adaptation. Often
one learns to synthesize entirely novel movements even when there is no perturba-
tion, e.g., learning to swing a golf club, hit a tennis serve, balance a pole, or drive a
car. Although this kind of learning corresponds more closely to everyday usage of
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2 A. M. Haith and J. W. Krakauer

the term “motor learning,” it has hardly been studied in laboratory settings. The few
exceptions typically involve learning to manipulate an unfamiliar, possibly complex
virtual object (Carmena et al. 2003; Mosier et al. 2005; Nagengast et al. 2009; Ster-
nad et al. 2011). In these kinds of tasks, subjects progress from initial incompetence
to a high degree of proficiency, even approaching theoretically optimal behavior.
However, performance improvements are far slower than in adaptation paradigms:
while tens of trials are usually enough to reach asymptote after a systematic pertur-
bation is introduced, performance in these more complex tasks continues to improve
over hundreds of trials and even across days. This slow improvement is not entirely
due to the unfamiliarity of the task. Even in much more simple tasks that involve
maneuvering a cursor along a constrained path (Shmuelof et al. 2012) or through a
series of via points (Reis et al. 2009), overall variability in task performance reduces
substantially over days of practice, even though subjects immediately exhibit near-
perfect performance at slow speeds. It appears that a qualitatively different kind of
learning may be occurring in these tasks—one that is not reliant on compensating for
the highly salient errors that are present in adaptation settings, but instead is asso-
ciated with incrementally improving the quality of one’s movements with practice.
We define this long-term reduction in movement variability as skill learning. It is
not currently clear whether adaptation, skill, and learning to control external objects
draw upon identical, overlapping, or entirely different neural mechanisms.

In this review, we argue for the existence of two distinct mechanisms underlying
motor learning: (1) a model-based system in which improvements in motor perfor-
mance occur indirectly, guided by an internal forward model of the environment
which is updated based on prediction errors, and (2) a direct, model-free system
in which learning occurs directly at the level of the controller and is driven by re-
inforcement of successful actions. These distinct learning systems are each suited
to different tasks and as such are complementary to one another. Model-based pro-
cesses are likely to predominate in adaptation paradigms, and model-free processes
predominate in skill tasks. However, we argue that both can contribute to learning
in any given task.

Theory: Model-Based and Model-Free Approaches to Learning
Control Policies

We adopt a general definition of motor learning as the process of improvement
in execution of a task according to some chosen measure of performance such as
increased chance of success or decreased effort (or potentially a combination of the
two). Formally, we describe the state of learning in terms of a control policy π

mapping current states, stimuli and time to motor commands ut ,

ut = π (xt , st , t).

This general framework can encompass multiple levels of description. A control
policy could describe selection of a single action per trial or describe an ongoing
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stream of motor commands in continuous time according to the instantaneous state.
The motor commands ut could model a high-level decision such as which direction
to move the hand or a low-level decision such as which muscles to activate and when.
The stimulus st would typically correspond to an observed target location and the
state xt would reflect the state of the motor plant. Any systematic, experience-driven
change in this control policy can be described as motor learning. The quality of each
potential control policy can be quantified in terms of the expected outcome value,
i.e., the average performance that would be expected to be obtained when following
that control policy for a given task. In studying motor learning, we study the process
whereby individuals use experience to improve their control policy.

The optimal policy will depend on two specific things: (1) the structure of the
task, i.e., which states are associated with valuable or successful outcomes and what
costs may be associated with different states or actions and (2) the dynamics of the
motor apparatus and environment, i.e., how do motor commands affect the state. In
most motor control paradigms we would generally expect that the structure of the
task is unambiguous; however, in general it may be that neither the task structure
nor the dynamics dynamics is known precisely.

This general framework and the problem of determining suitable actions in an
uncertain environment based on ongoing observations is precisely the theoretical
problem studied, at a more abstract level, in the field of reinforcement learning
(Sutton and Barto 1998). At the heart of reinforcement learning theory is the notion
of the value function V (xt , t) which reflects, for a given control policy, the total future
reward that can be expected to be gained given the current state and time. The goal
of reinforcement learning is to determine the optimal value function—from which
the optimal policy follows straightforwardly.

Different variants of reinforcement learning differ in exactly what kind of value
function is represented and how this value function is updated based on experience. In
particular, two distinct computational strategies have emerged for using experience
to update estimated values and thereby determine optimal control policies. The first
approach is to use experience to build models of the dynamics of the motor apparatus
and environment and the structure of the task, and compute the value function based
on these models (Fig. 1.1a). This approach is termed model-based learning. Note that
model-based learning of this kind is very different from what most people understand
intuitively by the term ‘reinforcement learning.’

A second approach, which accords with most people’s informal or colloquial use
of the term ‘reinforcement learning,’ is to learn the value function directly through
a process of trial and error—explore the space of potential actions in each state
and keep track of which states and actions lead, either directly or indirectly, to
successful outcomes (Fig. 1.1b). This approach is often termed model-free, in contrast
to model-based approaches. Other learning strategies are clearly possible besides the
model-free and model-based approaches described here. However, these represent
the most common approaches.

While model-free strategies clearly work and can in certain cases be shown the-
oretically to be guaranteed to converge upon optimal behavior (Sutton and Barto
1998), learning by trial and error is typically very slow in terms of the number of
attempts necessary before a good policy can be acquired, even in relatively simple
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Fig. 1.1 Comparison of model-based and model-free strategies for updating a control policy based
on experience. a Model-based learning schematic. Changes to the control policy are brought about
indirectly through first updating a forward model of the motor apparatus and environment based
on sensory prediction errors, then using this knowledge to calculate an appropriate controller for
the current task. b Model-free learning schematic. The control policy is updated directly based on
reward prediction errors

environments. Model-based learning, by contrast, makes the best possible use of
all observations. Any information acquired about the outcome of a particular action
is retained and can influence planning of future movements, regardless of whether
that action led to success or not. Model-based methods also allow more principled
generalization. If the reward structure of the task changes in a known way (e.g., the
target moves to a new location), an appropriate new control policy can be computed
based on the model of the dynamics that was built in the context of the previous task.

The major disadvantage with a model-based approach is that although the value
of any state/action pair can in principle be computed exactly, it can be prohibitively
computationally intensive to do so. Existing methods for computing the optimal
policy typically involve either dynamic programming—a backward iteration through
time to exhaustively compare all possible paths to the target and identify the best
ones, or some iterative sequence of approximations to the value function or policy
that converge upon a local optimum. Details of these methods are beyond the scope
of this chapter (but for excellent introductions see Bertsekas 1996; Sutton and Barto
1998; Todorov 2007).

The complexity associated with computing optimal value functions and policies
need not preclude biological systems from utilizing some form of model-based con-
trol. In certain very simple scenarios, it can be trivial to compute the optimal policy
given a specification of the task and plant e.g., if the action on a given trial is sim-
ply the aiming direction for a particular movement, then a model-based solution to
a rotational perturbation simply amounts to subtracting an estimate of the rotation
angle from an observed target angle. The feasibility of the model-based approach
therefore largely depends on the nature of the task. Even if the computations are
simple, however, errors may still arise from accumulation of noise that inevitably
accompanies computations in biological systems (McGuire and Sabes 2009).
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Model-free approaches, by contrast, require only relatively trivial computations
because experiences lead directly to changes in the controller. Unlike a model-based
approach, there is no intermediate forward model representation and no calculation
required to transform a forward model into a control policy. In the long-run, model-
free approaches tend to deliver superior performance on a particular task because
they do not rely so heavily on noisy computations each and every time a movement
must be made. The disadvantage is that the scope of the learned control policy is
restricted to the task performed during learning. Even if the reward structure of the
task changes in a known way, one must start from scratch (or at least from some
previous but incorrect control policy). This is in sharp contrast to the flexibility
offered by model-based learning.

In summary, if one wants to learn a good control policy in an uncertain environ-
ment, a model-based learning strategy is, in principle, the most powerful and flexible
approach but requires unwieldy computations. Direct, model-free approaches rely
only on simple computations but can require far more training (exploration) before
they lead to a competitive policy. What learning strategy do animals use when placed
in a situation where they must learn what to do? The contrasting ways in which
model-based and model-free learning mechanisms should be expected to generalize
to novel scenarios can act as hallmarks that potentially allow us dissociate an animal’s
learning strategy based on observing its behavior.

Model-Based and Model-Free Learning in Operant
Conditioning Paradigms

In a situation where an animal must learn what actions will lead to reward, such as a
rat navigating through a maze to find food, it seems that animals adopt both model-
based and model-free learning mechanisms in parallel (Daw et al. 2005). Although
any given control policy could be arrived at by either model-based or model-free
strategies, these two modes of control can be dissociated by changing the reward
structure of the task. In rodents this is typically achieved by stimulus revaluation.
For instance, imagine examining the behavior of thirsty rats in a maze that they had
learned while they were hungry and seeking food. Under a model-free approach,
the thirsty rat will have no way of knowing how to obtain water and will likely
either behave like a naı̈ve rat, or rely on the same policy that led to reward while
hungry. A model-based approach, by contrast, will enable the rat to flexibly change
its behavior immediately in line with its new objective of finding water instead of
food (provided, of course that it had previously explored the maze sufficiently to
have found the location of the water). In practice, rewards are typically revalued
either by sating the animal prior to the task or, more drastically, pairing a familiar
food with a strongly aversive stimulus (e.g., poison).

Behavior in such devaluation paradigms has been studied extensively, leading to
a classical division between goal-directed behavior, in which animals are sensitive
to reward devaluation, and habitual behavior in which they are not (Killcross and
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Coutureau 2003; Balleine and O’Doherty 2010; van der Meer and Redish 2011).
Behavior tends to be goal-directed early in learning but becomes more habitual later
on (Balleine and O’Doherty 2010). These differences in behavior can be interpreted
in terms of reinforcement learning: goal-directed behavior can be understood as
model-based, while habitual behavior is model-free (Daw et al. 2005; Dayan 2009).
The transition from goal-directed to habitual with experience can even be explained
as an evolving, intelligent trade-off between the advantages of each strategy.

Remarkably, these alternative model-based and model-free strategies are neurally
dissociable. Lesions to distinct regions of prefrontal cortex can isolate one pattern
of behavior or another in hungry rats (Balleine and Dickinson 1998; Killcross and
Coutureau 2003). Sequential decision-making tasks in humans have revealed that
their behavior can similarly be decomposed into model-based and model-free com-
ponents (Fermin et al. 2010; Gläscher et al. 2010), while fMRI reveals that these
components have distinct underlying neural substrates (Gläscher et al. 2010).

The kinds of control tasks that we are primarily concerned with in this review are
quite different from the problem that a rat faces in a maze. In decision-making tasks
it is the high-level choice of which path to follow at a junction that is of interest. The
low-level movements that register this decision are considered incidental. In motor
control, however, it is precisely these low-level movements that are of interest. Criti-
cally, control of movements can be cast within the same broad theoretical framework
used to describe decision-making. The only differences are that movements of the
eyes and limbs occupy a space of potential states and actions that is continuous and
potentially high-dimensional, and decisions must be made in continuous time. Nev-
ertheless, the same considerations for solving the general problem apply as in more
discrete domains. In particular, both model-based and model-free learning strategies
are possible and have similar advantages and disadvantages as in discrete domains.
We will argue that, as in the case of rodent decision-making, both strategies are
employed by the motor system for continuous control of movement. The underlying
neurophysiology may, however, be quite different for the motor system as compared
with the discrete action selection paradigms studied in rodents.

Model-Based Motor Learning

Forward models—neural networks which generate predictions about future states
of the motor system given a current state and an outgoing motor command—have
long been posited to be utilized by the motor system (Wolpert and Miall 1996).
Model-based learning has become a dominant framework for understanding human
motor learning, with arguably the majority of theories of motor learning assuming
a model-based perspective (Shadmehr and Krakauer 2008; Shadmehr et al. 2010).
The proposed advantages of maintaining a forward model are twofold: (1) A forward
model allows for faster and more precise estimation of the state of the body and/or
environment, and (2) Forward models may aid in planning future movements by
directing changes in the controller itself, i.e. they may participate in model-based
control. While (1) has by now become a relatively uncontroversial claim, (2) is much
more difficult to establish.
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Before assessing the case for model-based learning in the motor system, we briefly
disambiguate model-based learning from learning involving inverse models. The
simplest kind of controller considered in motor learning theories is a static mapping
from a desired outcome to a single action. Such controllers have been referred to
as inverse models since they are the direct inverse of the forward model. However,
inverse model are not really “models” in the true sense of the word—they do not
provide an internal representation of any process occurring in the outside world. It
is more accurate to think of inverse models as simple control policies. An inverse
model control policy can be arrived at in a model-based manner by first learning
a forward model and then inverting it (Jordan 1992). Alternatively, changes to an
inverse model could be driven directly by task errors (Thoroughman and Shadmehr
2000). We would not describe such learning as model-based, however, since the
learning occurs directly at the level of the controller rather than via a forward model
representation of the task or plant. Learning of this kind is only really feasible in
simple, single-time step scenarios.

Theories based on the notion of inverse models are fairly limited in scope. More
generally, motor control is described in terms of time-dependent feedback control
policies (Todorov and Jordan 2002). In this context, there is no way to directly update
the control policy based on performance errors. By contrast, model-based learning
is a very general approach to obtaining a good control policy that is applicable to
any problem that can be framed as a Markov decision process. The only limitation to
model-based learning is being able to gather enough information to build the model.

Nothing is presently known about the neural computations that underlie the trans-
lation of knowledge about the environment in the form of a forward model into a
control policy. However, even though the potential mechanisms underlying model-
based control processes are poorly understood, this understanding is not necessary
to establish whether or not it occurs. Here, we focus on reviewing the evidence at the
behavioral level for the existence of forward models and their involvement in motor
learning.

The Cerebellum and Forward Models

The cerebellum has long been implicated in motor control and coordination and
has emerged as the most likely neural substrate of putative internal models (Bastian
2006; Shadmehr and Krakauer 2008; Wolpert et al. 1998). Patients with hereditary
cerebellar ataxia or lesions to the cerebellum have general difficulties in coordinating
movement and are grossly impaired in adaptation tasks (Martin et al. 1996; Maschke
et al. 2004; Smith and Shadmehr 2005; Tseng et al. 2007; Synofzik et al. 2008; Rabe
et al. 2009; Criscimagna-Hemminger et al. 2010; Donchin et al. 2011). There are
many potential roles for the cerebellum in learning that might give rise to such an
adaptation deficit in cerebellar ataxia. The cerebellum may, for instance, compute
an inverse model that directly maps desired outcomes to actions (Medina 2011). We
argue here, however, that the adaptation deficit following cerebellar damage stems
from an inability to learn forward models.
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Neurophysiological recordings from the cerebellum show that Purkinje cell sim-
ple spike activity reflects the kinematics of movement, and not the motor commands
required to achieve the kinematics (Pasalar et al. 2006). This finding clearly demon-
strates that the output of the cerebellum is not directly related to motor output, as
would be predicted if the cerebellum were computing an inverse model or otherwise
contributing directly to control. Furthermore, Purkinje cell activity during movement
precedes the actual kinematic state of the limb (Roitman et al. 2005). So this activity
in the cerebellum does not simply reflect a reporting of sensory feedback—instead
it appears that the cerebellum implements an internal forward model that predicts
the kinematic or sensory consequences of motor commands before that information
actually becomes available from the periphery.

Numerous studies have argued from a behavioral standpoint that an estimate
of state from a forward model underlies state-specific feedback corrections during
movement (Ariff et al. 2002; Chen-Harris et al. 2008; Wagner and Smith 2008;
Munuera et al. 2009). This process appears to be cerebellar-dependent (Miall et al.
2007; Xu-Wilson et al. 2009). Together with the above-mentioned neurophysio-
logical findings, these studies make a strong case that the cerebellum generates
predictions about future motor states on the basis of outgoing motor commands,
and that these predicted states are made available to an already-learned feedback
controller that guides ongoing execution of a movement. While this constitutes
model-based control of sorts (Mehta and Schaal 2002), in this article we are more
interested in the question of whether a forward model brings about changes in the
controller, rather than influencing control only through estimates of state. Never-
theless, if forward models exist and can be used to guide online feedback control,
it perhaps makes it more likely that the same forward models might participate in
planning feedforward control.

Evidence for Forward Model Involvement in Feedforward Control

An often-cited instance where predictions of a forward model are claimed to influence
feedforward control (as opposed to only feedback control) is in compensating for the
consequences of one effector’s actions on another—for instance stabilizing one hand
holding a load while removing that load with the other hand or increasing grip force
on an object to prevent slippage when accelerating it upward. It has often been argued
that such anticipatory control is possible because of a forward model that predicts
adverse consequences of an upcoming action before it has happened, enabling an
appropriate compensation to be planned and executed concomitantly (Wolpert and
Miall 1996; Flanagan and Wing 1997; Wolpert et al. 2011). Although the use of a for-
ward model could, in principle, enable this kind of anticipatory control, coordination
per se is no proof of the existence of forward models. Anticipatory control is simply
a feature of a good control policy and there is no way of knowing how this controller
may have been arrived at simply by observing it in action. Good coordination could
have been learned via model-free mechanisms through trial and error.
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Studies of anticipatory control in cerebellar ataxia patients offer some clues as
to the nature of anticipatory control. Interestingly, cerebellar ataxic patients demon-
strate intact coordination in manual unloading tasks (Diedrichsen et al. 2005) and
exhibit intact modulation of grip force with varying load forces (although baseline
grip forces are abnormal) (Rost et al. 2005), suggesting that forward models are not
at all a prerequisite for performing coordinated movement. Cerebellar patients do,
however, show impairment in learning novel anticipatory adjustments (Nowak et al.
2004; Diedrichsen et al. 2005). This suggests that initial acquisition of anticipatory
control is facilitated by a forward model that can predict the consequences of the ac-
tions of one effector on the goals of another but, with prolonged practice, coordinated
control eventually becomes independent of the forward model. To put it another way,
there may be a transition from model-based to model-free mechanisms.

The notion of model-based learning implies that improvements in performance
are driven by errors in the prediction of a forward model. One plausible alternative to
this idea is that adaptation is driven by the feedback corrections one makes to correct
errors, rather than by the errors themselves (Kawato and Gomi 1992). This does not
appear to be the case for reaching movements, however: learning rates in adaptation
tasks are identical whether or not feedback corrections are allowed during movement
(Tseng et al. 2007). Similarly, corrective saccades do not appear to be necessary to
adapt saccade amplitude (Wallman and Fuchs 1998).

Although not driven by corrective movements, adaptation may not necessarily
be driven by prediction errors of a forward model. If control is mediated by an
inverse model, changes to a control policy could be driven directly by task errors,
without any need for a forward model. In most cases, task errors and prediction errors
are closely aligned. In certain cases, however, performance errors and prediction
errors can be dissociated. For instance, saccades to visual targets usually tend to
fall slightly short of the target, but this shortfall does not lead to an increase in
saccadic gain as one would expect if it were induced through a target jump. In fact,
if the target is surreptitiously jumped mid-saccade such that the eye lands perfectly
on the target every time, then saccadic gain actually begins to decrease despite
the absence of performance errors (Wong and Shelhamer 2011). Indeed it is even
possible for adaptation to occur in the opposite direction from a task error. This
provides compelling evidence that prediction errors and not task errors are what
drive motor adaptation.

A similar, even more striking result can be found for reaching movements. In a
study by Mazzoni and Krakauer (2006) (Fig. 1.2a), subjects were exposed to a 45◦
rotation of visual feedback but were also provided an explicit strategy to counter
the rotation: simply aim to an adjacent target deliberately spaced at a 45◦ separation
from the true target. Initially, subjects were able to flawlessly implement the strategy
and hit the target. However, performance rapidly began to drift away from the target
in the direction of the perturbation despite the fact that the task was being performed
without errors. It therefore does not seem to be task error per se that drives adapta-
tion, but discrepancies between predicted and observed behavior. Interestingly, this
drift effect does not persist indefinitely—after prolonged exposure, subjects begin to
reduce their errors again, suggesting that there is some component of learning that
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Fig. 1.2 Motor learning is driven by sensory prediction errors. a Healthy subjects that are provided
with an explicit strategy to counter a 45◦ rotation initially counter the perturbation successfully, but
performance immediately drifts in the direction opposite the rotation. (Reproduced from Mazzoni
and Krakauer 2006). b This drift is attenuated in patients with cerebellar ataxia (note that rotation
direction is opposite as compared with panel a). (Reproduced from Taylor et al. 2010)

acts to close task errors rather than prediction errors (Taylor and Ivry 2011). When
patients with cerebellar ataxia are given an explicit strategy, they are able to success-
fully maintain performance without undergoing any drift in performance (Taylor
et al. 2010) (Fig. 1.2b). Thus the adaptation deficit in cerebellar ataxic patients is
due to a reduced sensitivity to prediction errors not task errors.

The idea that adaptation is mediated by changes in predictions about the con-
sequences of one’s actions can be tested more directly through paradigms that ask
subjects to estimate where they perceived their hand to have moved during a reach.
Although such assays inevitably contaminate forward model-based predictions with
actual visual and proprioceptive sensory experiences, a number of interesting results
have been obtained using this approach. Following exposure to rotated visual feed-
back, healthy subjects undergo a corresponding change in their perceived hand path
during movement (Synofzik et al. 2006). Cerebellar ataxic patients show no such
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perceptual changes (Synofzik et al. 2008; Izawa et al. 2011). These results support
the idea that changes in a forward model, which presumably lead to the changes in
predicted hand position, are a prerequisite for adaptation.

In summary, adaptation is driven by prediction errors and not by task errors or
online motor responses to correct those errors. Exposure to rotated visual feedback
leads to a shift in perceived hand location during movement. In patients with cerebel-
lar ataxia, sensory prediction errors do not result in changes in feedforward control
in future trials and do not lead to changes in perceived hand position. We believe that
the most parsimonious explanation for all of these results is that the cerebellum com-
putes an internal forward model that predicts the consequences of motor commands
and that this forward model influences feedforward control of future movements.

Generalization of Learning Across Tasks

A final thread of evidence that has been cited in support of model-based control
frameworks concerns generalization. Human subjects exhibit a high degree of gen-
eralization of learned compensation for a perturbation to a new movement (Shadmehr
and Mussa-Ivaldi 1994; Krakauer et al. 2000). While this generalization is consistent
with the idea of model-based control, it is important to bear in mind that model-free
learning will also be expected to exhibit some degree of generalization—only in this
case the generalization will be of a learned control policy, rather than of an internal
model. The amount of generalization across states will be entirely determined by the
underlying representation. There is no specific reason why one should expect model-
based learning to generalize more broadly across states than model-free. However,
subjects trained on a visuomotor rotation with full vector error (presumably engaging
primarily model-based mechanisms) do generalize more broadly than subjects who
learned to compensate the same perturbation but were given only binary feedback
about the success or failure of their movements (presumably relying on model-free
learning) (Izawa and Shadmehr 2011).

A more concrete dissociation between model-based and model-free learning
mechanisms is the extent to which learning should transfer across tasks within the
same workspace—for instance tracking a cursor along a curved path versus making
point-to-point reaches. This form of generalization across tasks is directly analogous
to the reward devaluation protocols that dissociate model-based from model-free
action selection processes in rodents (Daw et al. 2005)—in both cases the reward
structure of the task is altered but the consequences of actions remain the same. A
number of studies have examined generalization of learning from a redundant task,
in which the perturbation is task-irrelevant, to a nonredundant task. For example,
Schaefer et al. (2012) had subjects make reaching movements to a point anywhere
on a circular arc while imposing a rotation of visual feedback. This rotation did
not compromise task performance, since subjects still easily landed on the arc as
required. The rotation, however, did lead to sensory prediction errors. In subsequent
catch trials toward a single target, subjects showed significant aftereffects, support-
ing the idea that learning was driven by sensory prediction errors rather than by task


