
Advances in Information Security 100

Moving Target 
Defense II

Sushil Jajodia · Anup K. Ghosh
V.S. Subrahmanian · Vipin Swarup
Cliff  Wang · X. Sean Wang Editors

Application of Game Theory 
and Adversarial Modeling



Moving Target Defense II



Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia@gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future
research in information security and, two, to serve as a central reference source for advanced
and timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

For further volumes:
http://www.springer.com/series/5576



Sushil Jajodia • Anup K. Ghosh • V.S. Subrahmanian
Vipin Swarup • Cliff Wang • X. Sean Wang
Editors

Moving Target Defense II

Application of Game Theory and Adversarial
Modeling

123



Editors
Sushil Jajodia
George Mason University
Fairfax, VA, USA

V.S. Subrahmanian
University of Maryland
College Park, MD, USA

Cliff Wang
U.S. Army Research Office
Triangle Park, NC, USA

Anup K. Ghosh
George Mason University
Fairfax, VA, USA

Vipin Swarup
The Mitre Corporation
McLean, VA, USA

X. Sean Wang
Fudan University
Shanghai, China

ISSN 1568-2633
ISBN 978-1-4614-5415-1 ISBN 978-1-4614-5416-8 (eBook)
DOI 10.1007/978-1-4614-5416-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2011935538

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

One of the most vexing problems in defending against computer intrusions is the
seemingly endless supply of exploitable software bugs that exist despite significant
progress in secure software development practices. At least once a month (e.g., on
Patch Tuesday), major software vendors publish patches that fix the vulnerabilities
in their deployed software code base that have been discovered. These patches are
often published after the vulnerabilities are known and have been exploited, in
some cases for months and years. In currently deployed systems, the attacker has
a static target to study and find vulnerabilities, and then a window of exposure to
exploit the vulnerability to gain privileged access on other people’s machines and
networks, until the exploit is noticed, vulnerability found, patch released, and then
applied widely. The dynamics of this process significantly favors the attacker over
the defender because the attacker needs to find only a single exploitable bug while
the defender must ensure none exist. The attacker has plenty of time to analyze
the software code, while the defender does not know when the attacker will strike.
And finally, the defender typically can only block the exploit once the exploit or
vulnerability is known, giving the attacker an automatic advantage in gaining access
with zero-day vulnerabilities.
Against this backdrop, the topic of moving target defenses (MTDs) was devel-

oped to level the playing field for defenders versus attackers. The basic concept
of MTD is to dynamically vary the attack surface of the system being defended,
thus taking away the adversary’s advantage of being able to study the target
system offline and find vulnerabilities that can be exploited at attack time. MTD
systems offer probabilistic protections despite exposed vulnerabilities, as long as the
vulnerabilities are not predictable by the adversary at the time of attack. MTD has
been identified as one of the four key areas of thrust in the White Houses strategic
plan for cyber security research and development.
In the first volume of MTD, we presented papers on MTD foundations, MTD

approaches based on software transformations and network and software stack
configurations. In this follow-on second volume of MTD, a group of leading
researchers describe game–theoretic, cyber maneuver, and software transformation
approaches for constructing and analyzing MTD systems.

v





Acknowledgments

We are extremely grateful to the numerous contributors to this book. In particular,
it is a pleasure to acknowledge the authors for their contributions. Special thanks
go to Susan Lagerstrom-Fife, senior publishing editor for Springer, and Courtney
Clark, editorial assistant at Springer for their support of this project. We also wish
to thank the Army Research Office for their financial support under the grant number
W911NF-10-1-0470.

Fairfax, VA Sushil Jajodia
Anup K. Ghosh

V. S. Subrahmanian
Vipin Swarup
Cliff Wang

X. Sean Wang

vii





About the Book

The chapters in this book present a range of MTD challenges and promising solution
paths based on game–theoretic approaches, network-based cyber maneuver, and
software transformations.
In Chap. 1, Manadhata explores the use of attack surface shifting in the moving

target defense approach. The chapter formalizes the notion of shifting a software
systems attack surface, introduces a method to quantify the shift, and presents a
game–theoretic approach to determine an optimal moving target defense strategy.
In Chap. 2, Jain et al. describe the challenging real-world problem of applying
game–theory for security and present key ideas and algorithms for solving and
understanding the characteristics of large-scale real-world security games, some
key open research challenges in this area, and exemplars of initial successes of
deployed systems. In Chap. 3, Bilar et al. present a detailed study of the coevolution
of the Conficker worm and associated defenses against it and a quantitative model
for explaining the coevolution. This study demonstrates, in a concrete manner, that
attackers and defenders present moving targets to each other since advances by one
side are countered by the other. In Chap. 4, Gonzalez summarizes the current state
of computational models of human behavior at the individual level, and it describes
the challenges and potentials for extending them to address predictions in 2-player
(i.e., defender and attacker) noncooperative dynamic cyber security situations.
The next two chapters explore cyber maneuver in network contexts. In Chap. 5,

Torrieri et al. identify the research issues and challenges from jamming and other
attacks by external sources and insiders. They propose a general framework based
on the notion of maneuver keys as spread-spectrum keys; these supplement higher-
level network cryptographic keys and provide the means to resist and respond to
external and insider attacks. In Chap. 6, Yackoski et al. describe an IPv6-based
network architecture that incorporates cryptographically strong dynamics to limit
an attacker’s ability to plan, spread, and communicate within the network.
The remaining chapters present MTD approaches based on software transfor-

mations. In Chap. 7, Le Goues et al. describe the Helix Metamorphic Shield that
continuously shifts a program’s attack surface in both the spatial and temporal
dimensions and reduces the program’s attack surface by applying novel evolutionary

ix



x About the Book

algorithms to automatically repair vulnerabilities. The interplay between shifting the
attack surface and reducing it results in the automated evolution of new program
variants whose quality improves over time. In Chap. 8, Jackson et al. review
their automated compiler-based code diversification technique, present an in-depth
performance analysis of the technique, and demonstrate its real-world applicability
by diversifying a full system stack. Finally, in Chap. 9, Pappas et al. describe in-
place code randomization, a software diversification technique that can be applied
directly on third-party software. They demonstrate how in-place code randomization
can harden inherently vulnerable Windows 7 applications and provide probabilistic
protection against return-oriented programming (ROP) attacks.



Contents

1 Game Theoretic Approaches to Attack Surface Shifting . . . . . . . . . . . . . . . . 1
Pratyusa K. Manadhata

2 Security Games Applied to Real-World: Research
Contributions and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Manish Jain, Bo An, and Milind Tambe

3 Adversarial Dynamics: The Conficker Case Study . . . . . . . . . . . . . . . . . . . . . . 41
Daniel Bilar, George Cybenko, and John Murphy

4 From Individual Decisions from Experience to Behavioral
Game Theory: Lessons for Cybersecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cleotilde Gonzalez

5 Cyber Maneuver Against External Adversaries
and Compromised Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Don Torrieri, Sencun Zhu, and Sushil Jajodia

6 Applying Self-Shielding Dynamics to the Network Architecture . . . . . . . 97
Justin Yackoski, Harry Bullen, Xiang Yu, and Jason Li

7 Moving Target Defenses in the Helix Self-Regenerative
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Claire Le Goues, Anh Nguyen-Tuong, Hao Chen, Jack W. Davidson,
Stephanie Forrest, Jason D. Hiser, John C. Knight,
and Matthew Van Gundy

8 Diversifying the Software Stack Using Randomized NOP Insertion . . . 151
Todd Jackson, Andrei Homescu, Stephen Crane, Per Larsen,
Stefan Brunthaler, and Michael Franz

xi



xii Contents

9 Practical Software Diversification Using In-Place Code
Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Chapter 1
Game Theoretic Approaches to Attack
Surface Shifting

Pratyusa K. Manadhata

Abstract A software system’s attack surface is the set of ways in which the system
can be attacked. In our prior work, we introduced an attack surface measurement
and reduction method to mitigate a software system’s security risk (Manadhata, An
attack surface metric, Ph.D. thesis, Carnegie Mellon University, 2008; Manadhata
andWing, IEEE Trans. Softw. Eng. 37:371–386, 2011). In this paper, we explore the
use of attack surface shifting in the moving target defense approach. We formalize
the notion of shifting the attack surface and introduce a method to quantify the
shift. We cast the moving target defense approach as a security-usability trade-off
and introduce a two-player stochastic game model to determine an optimal moving
target defense strategy. A system’s defender can use our game theoretic approach to
optimally shift and reduce the system’s attack surface.

1.1 Introduction

In our prior work, we formalized the notion of a software system’s attack surface
and proposed to use a system’s attack surface measurement as an indicator of the
system’s security [5, 6]. Intuitively, a system’s attack surface is the set of ways in
which an adversary can enter the system and potentially cause damage. Hence the
larger the attack surface, the more insecure the system; we can mitigate a system’s
security risk by reducing the system’s attack surface. We also introduced an attack
surface metric to measure a system’s attack surface in a systematic manner.
Our prior work focused on the uses of attack surface measurements in the

software development process. We introduced an attack surface reduction approach
that complements the software industry’s traditional code quality improvement
approach to mitigate security risk. The code quality improvement effort aims toward

P.K. Manadhata (�)
HP Labs, #301, 5 Vaughn Dr, Princeton, NJ 08854, USA
e-mail: manadhata@cmu.edu

S. Jajodia et al. (eds.), Moving Target Defense II: Application of Game Theory
and Adversarial Modeling, Advances in Information Security 100,
DOI 10.1007/978-1-4614-5416-8 1, © Springer Science+Business Media New York 2013

1



2 P.K. Manadhata

old 
surface

X
new 
surface

1

2

3

1

2

3

4

Fig. 1.1 If we shift a system’s attack surface, then attacks that worked in the past, e.g., attack 1,
may not work any more. The shifting, however, may enable new attacks, e.g. attack 4, on the system

reducing the number of security vulnerabilities in software. In practice, however,
building large and complex software devoid of security vulnerabilities remains
a very difficult task. Software vendors have to embrace the hard fact that their
software will ship with both known and future vulnerabilities in them and many of
those vulnerabilities will be discovered and exploited. They can, however, minimize
the risk associated with the exploitation of these vulnerabilities by reducing their
software’s attack surfaces. A smaller attack surface makes the vulnerabilities’
exploitation harder and lowers the damage of exploitation, and hence mitigates the
security risk.
In this paper, we focus on the uses of attack surface measurements in the

context of moving target defense. We consider a scenario where system defenders,
e.g., system administrators, are continuously trying to protect their systems from
attackers. Moving target defense is a novel protection mechanism where the
defenders continuously shift their systems’ attack surfaces to increase the attacker’s
effort in exploiting their systems’ vulnerabilities [1]. As shown in Fig. 1.1, if a
defender shifts a system’s attack surface, then old attacks that worked in the past,
e.g., attack 1, may not work any more. Hence the attacker has to spent more effort
to make past attacks work or find new attacks, e.g., attack 4. We view the interaction
between a defender and an attacker as a two-player game and hence explore the use
of game theory in shifting the attack surface.
The rest of the paper is organized as follows.We briefly discuss our attack surface

measurement approach in Sect. 1.2. In Sect. 1.3, we formalize the notion of shifting
the attack surface and discuss the uses of attack surface shifting in moving target
defense. In Sect. 1.4, we explore game theoretic approaches to attack surface shifting
to achieve an optimal balance between security and usability. We conclude with a
summary in Sect. 1.5.

1.2 Attack Surface Measurement

We know from the past that many attacks, e.g., exploiting a buffer overflow, on a
system take place by sending data from the system’s operating environment into
the system. Similarly, many other attacks, e.g., symlink attacks, on a system take



1 Game Theoretic Approaches to Attack Surface Shifting 3

place because the system sends data into its environment. In both these types of
attacks, an attacker connects to a system using the system’s channels (e.g., sockets),
invokes the system’s methods (e.g., API), and sends data items (e.g., input strings)
into the system or receives data items from the system. An attacker can also send
(receive) data indirectly into (from) a system by using shared persistent data items
(e.g., files). Hence an attacker uses a system’s methods, channels, and data items
present in the system’s environment to attack the system. We collectively refer to
a system’s methods, channels, and data items as the system’s resources and thus
define a system’s attack surface in terms of the system’s resources.

1.2.1 Attack Surface Definition

Not all resources, however, are part of the attack surface. A resource is part of
the attack surface if an attacker can use the resource in attacks on the system.
We introduced the entry point and exit point framework to identify these relevant
resources.

1.2.1.1 Entry Points

A system’s codebase has a set of methods, e.g., the system’s API. A method
receives arguments as input and returns results as output. A system’s methods that
receive data items from the system’s environment are the system’s entry points.
For example, a method that receives input from a user or a method that reads a
configuration file is an entry point. A method m of a system s is a direct entry point
if either (a) a user or a system in s’s environment invokesm and passes data items as
input to m, or (b) m reads from a persistent data item, or (c) m invokes the API of a
system in s’s environment and receives data items as the result returned. An indirect
entry point is a method that receives data items from a direct entry point.

1.2.1.2 Exit Points

A system’s methods that send data items to the system’s environment are the
system’s exit points. For example, a method that writes to a log file is an exit point.
A method m of a system s is a direct exit point if either (a) a user or a system in
s’s environment invokes m and receives data items as results returned from m, or
(b) m writes to a persistent data item, or (c) m invokes the API of a system in s’s
environment and passes data items as input to the API. An indirect exit point is a
method that sends data to a direct exit point.



4 P.K. Manadhata

1.2.1.3 Channels

Each system also has a set of channels; the channels are the means by which users
or other systems in the environment communicate with the system, e.g., TCP/UDP
sockets, RPC end points, and named pipes. An attacker uses a system’s channels to
connect to the system and invoke the system’s methods. Hence the channels act as
another basis for attacks on the system.

1.2.1.4 Untrusted Data Items

An attacker uses persistent data items either to send data indirectly into the system
or to receive data indirectly from the system. Examples of persistent data items are
files, cookies, database records, and registry entries. A system might read from a
file after an attacker writes into the file. Similarly, the attacker might read from a file
after the system writes into the file. Hence the persistent data items act as another
basis for attacks on a system.

1.2.1.5 Attack Surface Definition

A system’s attack surface is the subset of the system’s resources that an attacker can
use to attack the system. By definition, an attacker can use the set,M, of entry points
and exit points, the set,C, of channels, and the set, I, of untrusted data items to send
(receive) data into (from) the system to attack the system. HenceM,C, and I are the
relevant subset of resources that are part of the attack surface and given a system, s,
and its environment, we define s’s attack surface as the triple, 〈M,C, I〉.

1.2.2 Attack Surface Measurement Method

A naive way of measuring a system’s attack surface is to count the number of
resources that contribute to the attack surface. This naive method that gives equal
weight to all resources is misleading since all resources are not equally likely to
be used by an attacker. We estimate a resource’s contribution to a system’s attack
surface as a damage potential-effort ratio where damage potential is the level of
harm the attacker can cause to the system in using the resource in an attack and
effort is the amount of work done by the attacker to acquire the necessary access
rights to be able to use the resource in an attack.
In practice, we estimate a resource’s damage potential and effort in terms of

the resource’s attributes. For example, we estimate a method’s damage potential in
terms of the method’s privilege. An attacker gains the same privilege as a method
by using a method in an attack, e.g., the attacker gains root privilege by exploiting
a buffer overflow in a method running as root. The attacker can cause damage to



1 Game Theoretic Approaches to Attack Surface Shifting 5

the system after gaining root privilege. The attacker uses a system’s channels to
connect to a system and send (receive) data to (from) a system. A channel’s protocol
imposes restrictions on the data exchange allowed using the channel, e.g., a TCP
socket allows raw bytes to be exchanged whereas an RPC endpoint does not.
Hence we estimate a channel’s damage potential in terms of the channel’s protocol.
The attacker uses persistent data items to send (receive) data indirectly into (from) a
system. A persistent data item’s type imposes restrictions on the data exchange, e.g.,
a file can contain executable code whereas a registry entry can not. The
attacker can send executable code into the system by using a file in an attack, but
the attacker can not do the same using a registry entry. Hence we estimate a
data item’s damage potential in terms of the data item’s type. The attacker can use
a resource in an attack if the attacker has the required access rights. The attacker
spends effort to acquire these access rights. Hence for the three kinds of resources,
i.e., method, channel, and data, we estimate attacker effort to use a resource in an
attack in terms of the resource’s access rights.
We assume a function, der, that maps a resource to its damage potential-effort

ratio. In practice, however, we assign numeric values to a resource’s attributes to
compute the ratio, e.g., we compute a method’s damage potential-effort ratio from
the numeric values assigned to the method’s privilege and access rights. We impose
a total order among the values of the attributes and assign numeric values according
to the total order. For example, we assume that an attacker can cause more damage
to a system by using a method running with root privilege than a method running
with non-root privilege; hence we assign a higher number to the root privilege
level than the non-root privilege level. The exact choice of numeric values is
subjective and depends on a system and its environment.
We quantify a system’s attack surface measurement along three dimensions:

methods, channels, and data. We estimate the total contribution of the methods,
the total contribution of the channels, and the total contribution of the data items
to the attack surface. Given the attack surface, 〈M,C, I〉, of a system, s, s’s attack
surface measurement is the triple 〈 ∑

m∈M
der(m), ∑

c∈C
der(c), ∑

d∈I
der(d)〉.

1.3 Moving Target Defense

In this section, we discuss the uses of attack surface measurements in moving target
defense. Moving target defense is a protection approach where a system’s defender
continuously shifts the system’s attack surface. Intuitively, the defender may modify
the attack surface by changing the resources that are part of the attack surface and/or
by modifying the contributions of the resources. Not all modifications, however,
shift the attack surface. The defender shifts the attack surface by removing at least
one resource from the attack surface and/or by reducing at least one resource’s
damage potential-effort ratio. Everything else being equal, attacks that worked in the
past may not work in the future if the attacks depended on the removed (modified)



6 P.K. Manadhata

resource. The shifting process, however, might have enabled new attacks on the
system by adding new resources to the attack surface. Hence the attacker has to
spend more effort to make past attacks work or to identify new attacks.

1.3.1 Shifting the Attack Surface

We formalize the notion of shifting the attack surface in this section and introduce a
method to quantify the shift. We introduced an I/O automata model of a system and
its environment in our prior work; we use the model to define and quantify the shift
in the attack surface.
Consider a set, S, of systems, an attacker, U , and a data store, D. For a system,

s ∈ S, we define s’s environment, Es = 〈U, D, T 〉, to be a three-tuple where T =
S\{s} is the set of systems excluding s.U represents the adversary who attacks the
systems in S. The data store D allows data sharing among the systems in S andU .
We model a system and the entities present in its environment as I/O automata

[4]. An I/O automaton, A = 〈sig(A), states(A), start(A), steps(A)〉, is a four tuple
consisting of an action signature, sig(A), that partitions a set, acts(A), of actions into
three disjoint sets, in(A), out(A), and int(A), of input, output and internal actions,
respectively, a set, states(A), of states, a non-empty set, start(A) ⊆ states(A), of
start states, and a transition relation, steps(A) ⊆ states(A) × acts(A) × states(A).
An execution of A is an alternating sequence of actions and states beginning with
a start state and a schedule of an execution is a subsequence of the execution
consisting only of the actions appearing in the execution.
Given a system, s, and its environment,E , s’s attack surface is the triple, 〈M,C, I〉,

where M is the set of entry points and exit points, C is the set of channels, and I is
the set of untrusted data items of s. We denote the set of resources belonging to
s’s attack surface as Rs = M ∪C∪ I. Also, given two resources, r1 and r2, of s, we
write r1 � r2 to express that r1 makes a larger contribution to the attack surface
than r2. If we modify s’s attack surface, Ro, to obtain a new attack surface, Rn, then
we denote a resource, r’s, contributions to Ro as ro and to Rn as rn. We define attack
surface shifting qualitatively as follows.

Definition 1.1. Given a system, s, its environment,E , s’s old attack surface, Ro, and
s’s new attack surface, Rn, s’s attack surface has shifted if there exists at least one
resource, r, such that (i) r ∈ (Ro \Rn) or (ii) (r ∈ Ro∩Rn) ∧ (ro � rn).

If we shift s’s attack surface, then attacks that worked on s’s old attack surface
may not work on s’s new attack surface. We model s’s interaction with its
environment as parallel composition, s||E , in our I/O automata model. Since an
attacker attacks a system either by sending data into the system or by receiving data
from the system, any schedule of the composition s||E that contains s’s input actions
or output actions is a potential attack on s. We denote the set of potential attacks
on s as attacks(s,R) where R is s’s attack surface. In our I/O automata model, if
we shift s’s attack surface from Ro to Rn, then with respect to the same attacker



1 Game Theoretic Approaches to Attack Surface Shifting 7

Old attacks New attacks

Ro Rn

Fig. 1.2 If we shift a
system’s attack surface from
Ro to Rn, then at least one
attack that worked on Ro will
not work any more on Rn

and the environment, a few potential attacks on Ro will cease be potential attacks
on Rn. Intuitively, if we remove a resource, r, from the attack surface or reduce r’s
contribution to the attack surface during shifting, then executions of s that contain r
will not be executions in the new attack surface. Hence the schedules derived from
these executionswill not be potential attacks on s in the new attack surface (Fig. 1.2).

Theorem 1.1. Given a system, s, and its environment, E, if we shift s’s attack
surface, Ro, to a new attack surface, Rn, then attacks(s,Ro)\attacks(s,Rn) 
= /0.

Proof (Sketch). If we shift s’s attack surface from Ro to Rn, then fromDefinition 1.1,
there is at least one resource, r, such that either (i) r ∈ (Ro \Rn) or (ii) (r ∈ Ro∩Rn)
∧ (ro � rn).
If r ∈ (Ro \Rn), then without loss of generality, we assume that Ro = Rn∪{r}.

Since r ∈ Ro ∧ r /∈ Rn, following arguments similar to the proof of Theorem 1 in
[5], there exists a method, m, such that m ∈ Ro ∧m /∈ Rn. Hence there exists a
schedule, β , of the composition sRo ||E containing m such that β is not a schedule
of the composition sRn ||E . Hence β ∈ attacks(s,Ro) ∧ β /∈ attacks(s,Rn), and
attacks(s,Ro)\attacks(s,Rn) 
= /0.
Similarly, if (r ∈ Ro ∩Rn) ∧ (ro � rn), then r makes a larger contribution to Ro

than Rn. Following arguments similar to the proof of Theorem 3 in [5], there exists
a method, m ∈ Ro ∩Rn, such that m has a stronger pre condition and/or a weaker
post condition in Ro than Rn. Hence there exists a schedule, β , of the composition
sRo ||E containing m such that β is not a schedule of the composition sRn ||E . Hence
β ∈ attacks(s,Ro)∧β /∈ attacks(s,Rn), and attacks(s,Ro)\attacks(s,Rn) 
= /0. ��
We introduced a qualitative notion of shifting the attack surface in previous

paragraphs. We quantify the shift in the attack surface as follows.

Definition 1.2. Given a system, s, its environment,E , s’s old attack surface, Ro, and
s’s new attack surface, Rn, the shift, ΔAS, in s’s attack surface is

|Ro \Rn|+ |{r : (r ∈ Ro∩Rn)∧ (ro � rn)}|

In Definition 1.2, the term |Ro \Rn| represents the number of resources that
were part of s’s old attack surface, but were removed from s’s new attack surface.
Similarly, the term

|{r : (r ∈ Ro∩Rn)∧ (ro � rn)}|



8 P.K. Manadhata

represents the number of resources that make larger contributions to s’s new attack
surface than the old attack surface. If ΔAS > 0, then we say that s’s attack surface
has shifted from Ro to Rn.
Our definition assumes that all resources contribute equally to the shift in the

attack surface. We may be able to quantify the shift better by considering the
resources’ attributes, e.g., a resource’s damage potential-effort ratio. We leave such
quantification approaches as future work.

1.3.2 Ways to Shift the Attack Surface

The defender may modify the attack surface in three different ways. But only
two of these three ways shift the attack surface. First, the defender may shift the
attack surface and also reduce the attack surface measurement by disabling and/or
modifying the system’s features (Scenario A). Disabling the features reduces the
number of entry points, exit points, channels, and data items, and hence reduces
the number of resources that are part of the attack surface. Modifying the features
reduces the damage potential-effort ratios of the resources that are part of the attack
surface, e.g., lowering a method’s privilege or increasing the method’s access rights,
and hence reduces the resources’ contributions to the attack surface measurement.
Second, the defender may shift the attack surface by enabling new features

and disabling existing features. Disabling the features removes resources from the
attack surface and hence shifts the attack surface. The attack surface measurement,
however, may decrease (Scenario B), remain the same (Scenario C), or increase
(Scenario D). The enabled features increase the attack surface measurement by
adding more resources to the attack surface and the disabled features decrease the
measurement by removing resources from the attack surface; the overall change
in the measurement may be negative, zero, or positive. Similarly, the defender
may shift the attack surface by modifying existing features such that the damage
potential-effort ratios of a set of resources decrease and the ratios of another set of
resources increase. The attack surface measurement may decrease, remain the same,
or increase.
Third, the defender may modify the attack surface by enabling new features. The

new features add new resources to the attack surface and hence increase the attack
surface measurement. The attack surface, however, doesn’t shift since the old attack
surface still exists and all attacks that worked in the past will still work (Scenario E).
The defender may also increase the attack surface measurement without shifting the
attack surface by increasing the damage potential-effort ratios of existing resources.
We summarize the scenarios in Table 1.1.
From a protection standpoint, the defender’s preference over the scenarios is

the following: A > B > C > D > E. Scenario A is preferred over scenario B
because scenario B adds new resources to the attack surface and the new resources
may enable new attacks on the system. Scenario D increases the attack surface
measurement; but it may be attractive in moving target defense, especially if the
increase in the measurement is low and the shift in the attack surface is large.


