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Preface to the First Edition

Thirty years have passed since the pioneering work of Kimeldorf andWahba
(1970a, 1970b, 1971) and Good and Gaskins (1971), and during this time,
a rich body of literature has been developed on smoothing methods with
roughness penalties. There have been two books solely devoted to the sub-
ject prior to this one, of which Wahba (1990) compiled an excellent synthe-
sis for work up to that date, and Green and Silverman (1994) provided a
mathematically gentler introduction to the field through regression models
that are largely univariate.
Much has happened in the past decade, and more has been done with

the penalty method than just regression. In this book, I have tried to as-
semble a comprehensive treatment of penalty smoothing under a unified
framework. Treated are (i) regression with Gaussian and non-Gaussian re-
sponses as well as with censored lifetime data, (ii) density and conditional
density estimation under a variety of sampling schemes, and (iii) hazard
rate estimation with censored lifetime data and covariates. The unifying
themes are the general penalized likelihood method and the construction
of multivariate models with certain ANOVA decompositions built in. Ex-
tensive discussions are devoted to model (penalty) construction, smooth-
ing parameter selection, computation, and asymptotic convergence. There
are, however, many omissions, and the selection and treatment of topics
solely reflect my personal preferences and views. Most of the materials
have appeared in the literature, but a few items are new, as noted in the
bibliographic notes at the end of the chapters.
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viii Preface to the First Edition

An adequate treatment of model construction in the context requires
some elementary knowledge of reproducing kernel Hilbert spaces, of which
a self-contained introduction is included early in the book; the materials
should be accessible to a second-year graduate student with a good training
in calculus and linear algebra. Also assumed is a working knowledge of basic
statistical inference such as linear models, maximum likelihood estimates,
etc. To better understand materials on hazard estimation, prior knowledge
of basic survival analysis would also help.
Most of the computational and data analytical tools discussed in the

book are implemented in R, an open-source clone of the popular S/Splus
language. Code for regression is reasonably polished and user-friendly and
has been distributed in the R package gss available through CRAN, the
Comprehensive R Archive Network, with the master site at

http://cran.r-project.org

The use of gss facilities is illustrated in the book through simulated and
real-data examples.
Remaining on my wish list are (i) polished, user-friendly software tools

for density estimation and hazard estimation, (ii) fast computation via ap-
proximate solutions of penalized likelihood problems, and (iii) handling of
parametric random effects such as those appearing in longitudinal models
and hazard models with frailty. All of the above are under active develop-
ment and could be addressed in a later edition of the book or, sooner than
that, in later releases of gss.
The book was conceived in Spring 1996 when I was on leave at the

Department of Statistics, University of Michigan, which offered me the
opportunity to teach a course on the subject. Work on the book has been
on and off since then, with much of the progress being made in the 1997–
1998 academic year during my visit at the National Institute of Statistical
Sciences, and in Fall 2000 when I was teaching a course on the subject at
Purdue.
I am indebted to Grace Wahba, who taught me smoothing splines, and

to Doug Bates, who taught me statistical computing. Bill Studden carefully
read various drafts of Chaps. 1, 2, and 4; his questions alerted me to nu-
merous accounts of mathematical sloppiness in the text and his suggestions
led to much improved presentations. Detailed comments and suggestions
by Nancy Heckman on a late draft helped me to fix numerous problems
throughout the first five chapters and to shape the final organization of the
book (e.g., the inclusion of §1.4). For various ways in which they helped,
I would also like to thank Mary Ellen Bock, Jerry Davis, Nels Grevstad,
Wensheng Guo, Alan Karr, Youngju Kim, Ping Ma, Jerry Sacks, Jingyuan
Wang, Yuedong Wang, Jeff Wu, Dong Xiang, Liqing Yan, and the classes at
Michigan and Purdue. Last but not least, I would like to thank the R Core
Team, for creating a most enjoyable platform for statistical computing.

West Lafayette, Indiana Chong Gu
July 2001

http://cran.r-project.org


Preface

When the first edition was published a decade ago, I wrote in the Preface:

Remaining on my wish list are (i) polished, user-friendly soft-
ware tools for density estimation and hazard estimation, (ii) fast
computation via approximate solutions of penalized likelihood
problems, and (iii) handling of parametric random effects such
as those appearing in longitudinal models and hazard models
with frailty.

I am happy to report that the wishes have been fulfilled, plus some more,
and it is time to present an updated treatise on smoothing methods with
roughness penalties.
The developments of software tools embodied in an R package gss have

gone a long way in the past decade, with the user-interface polished, func-
tionality expanded, and/or numerical efficiency improved from release to
release. The primary objective of this new edition is to introduce extensive
software illustrations to complement the theoretical and methodological
discussions, so the reader not only can read about the methods but also
can use them in everyday data analysis.
Newly developed theoretical, methodological, and computational tech-

niques are integrated in a few new chapters and new sections, along with
some previously omitted entries; due modifications are made in related
chapters and sections to maintain coherence. Empirical studies are ex-
panded, reorganized, and mostly rerun using the latest software.
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x Preface

Two appendices are also added. One appendix outlines the overall design
of the R package gss. The other presents some conceptual critiques on a
few issues concerning smoothing methods at large, which are potentially
controversial.
Much of the new materials that went into this edition were taken from

or inspired by collaborations or communications with Pang Du, Anouschka
Foltz, Chun Han, Young-Ju Kim, Yi Lin, Ping Ma, Christophe Pouzat,
JingyuanWang, and Tonglin Zhang, to whom I owe thanks. I can not thank
enough the R Core Team, for creating and maintaining a most enjoyable
platform for statistical computing.

West Lafayette, Indiana Chong Gu
August 2011
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1
Introduction

Data and models are two sources of information in a statistical analysis.
Data carry noise but are “unbiased,” whereas models, effectively a set of
constraints, help to reduce noise but are responsible for “biases.” Repre-
senting the two extremes on the spectrum of “bias-variance” trade-off are
standard parametric models and constraint-free nonparametric “models”
such as the empirical distribution for a probability density. In between the
two extremes, there exist scores of nonparametric or semiparametric mod-
els, of which most are also known as smoothing methods. A family of such
nonparametric models in a variety of stochastic settings can be derived
through the penalized likelihood method, forming the subject of this book.
The general penalized likelihood method can be readily abstracted from

the cubic smoothing spline as the solution to a minimization problem, and
its applications in regression, density estimation, and hazard estimation
set out the subject of study (§1.1). Some general notation is set in §1.2.
Multivariate statistical models can often be characterized through func-
tion decompositions similar to the classical analysis of variance (ANOVA)
decomposition, which we discuss in §1.3. To illustrate the potential appli-
cations of the methodology, previews of selected case studies are presented
in §1.4. Brief summaries of the chapters to follow are given in §1.5.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 1,
© Springer Science+Business Media New York 2013
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2 1. Introduction

1.1 Estimation Problem and Method

The problem to be addressed in this book is flexible function estimation
based on stochastic data. To allow for flexibility in the estimation of η, say,
soft constraints of the form J(η) ≤ ρ are used in lieu of the rigid constraints
of parametric models, where J(η) quantifies the roughness of η and ρ sets

the allowance; an example of J(η) for η on [0, 1] is
∫ 1

0
(d2η/dx2)2dx. Solving

the constrained maximum likelihood problem by the Lagrange method, one
is led to the penalized likelihood method.
In what follows, a brief discussion of the cubic smoothing spline helps

to motivate the idea, and a simple simulation illustrates the role of ρ
through the Lagrange multiplier, better known as the smoothing parameter
in the context. Following a straightforward abstraction, the penalized like-
lihood method is exemplified in regression, density estimation, and hazard
estimation.

1.1.1 Cubic Smoothing Spline

Consider a regression problem Yi = η(xi) + εi, i = 1, . . . , n, where xi ∈
[0, 1] and εi ∼ N(0, σ2). In a classical parametric regression analysis, η
is assumed to be of form η(x,β), known up to the parameters β, which
are to be estimated from the data. When η(x,β) is linear in β, one has
a standard linear model. A parametric model characterizes a set of rigid
constraints on η. The dimension of the model space (i.e., the number of
unknown parameters) is typically much smaller than the sample size n.
To avoid possible model misspecification in a parametric analysis, oth-

erwise known as bias, an alternative approach to estimation is to allow η
to vary in a high-dimensional (possibly infinite) function space, leading to
various nonparametric or semiparametric estimation methods. A popular
approach to the nonparametric estimation of η is via the minimization of
a penalized least squares score,

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

η̈2dx, (1.1)

with η̈ = d2η/dx2, where the first term discourages the lack of fit of η to
the data, the second term penalizes the roughness of η, and the smoothing
parameter λ controls the trade-off between the two conflicting goals. The
minimization of (1.1) is implicitly over functions with square integrable
second derivatives. The minimizer ηλ of (1.1) is called a cubic smoothing
spline. As λ → 0, ηλ approaches the minimum curvature interpolant. As
λ → ∞, ηλ approaches the simple linear regression line. Note that the
linear polynomials

{
f : f = β0 + β1x

}
form the so-called null space of the

roughness penalty
∫ 1

0 f̈
2dx,

{
f :
∫ 1

0 f̈
2dx = 0

}
.
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FIGURE 1.1. Cubic smoothing splines. The test function is in the faded line
and the estimates are in the solid, dashed, and long-dashed lines. The data are
superimposed as circles.

To illustrate, consider a simple simulation with xi = (i− 0.5)/50, i = 1,
. . . , 50, η(x) = 1 + 3 sin(2πx − π), and σ2 = 1. The estimate ηλ was cal-
culated at log10 nλ = 0,−3,−6. Plotted in Fig. 1.1 are the test function
(faded line), the estimates (solid, dashed, and long-dashed lines), and the
data (circles). The rough fit corresponds to log10 nλ = −6, the near straight
line to log10 nλ = 0, and the close fit to log10 nλ = −3.
An alternative derivation of the cubic smoothing spline is through a

constrained least squares problem, which solves

min
1

n

n∑

i=1

(
Yi − η(xi)

)2
, subject to

∫ 1

0

η̈2dx ≤ ρ, (1.2)

for some ρ ≥ 0. The solution to (1.2) usually falls on the boundary of the

permissible region,
∫ 1

0
η̈2dx = ρ, and by the Lagrange method, it can be

calculated as the minimizer of (1.1) with an appropriate Lagrange multi-
plier λ. Thus, up to the choices of λ and ρ, a penalized least squares problem

with a penalty proportional to
∫ 1

0 η̈
2dx is equivalent to a constrained least

squares problem subject to a soft constraint of the form
∫ 1

0
η̈2dx ≤ ρ; see,

e.g., Schoenberg (1964). See also §2.6.2.
Defined as the solution to a penalized optimization problem, a smoothing

spline is also known as a natural spline in the numerical analysis literature.
The minimizer ηλ of (1.1) is called a cubic spline because it is a piecewise
cubic polynomial. It is three times differentiable, with the third derivative
jumping at the knots ξ1 < ξ2 < · · · < ξq, the ordered distinctive sampling
points xi, and it is linear beyond the first knot ξ1 and the last knot ξq. See
Schumaker (1981, Chap. 8) for a comprehensive treatment of smoothing
splines from a numerical analytical perspective. See also de Boor (1978).
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1.1.2 Penalized Likelihood Method

The cubic smoothing spline of (1.1) is a specialization of the general
penalized likelihood method in univariate Gaussian regression. To estimate
a function of interest η on a generic domain X using stochastic data, one
may use the minimizer of

L(η|data) + λ

2
J(η), (1.3)

where L(η|data) is usually taken as the minus log likelihood of the data
and J(f) is a quadratic roughness functional with a null space NJ =

{
f :

J(f) = 0
}
of low dimension; see §2.1.1 for the definition of quadratic func-

tional. The solution of (1.3) is the maximum likelihood estimate in a model
space Mρ =

{
f : J(f) ≤ ρ

}
for some ρ ≥ 0, and the smoothing parameter

λ in (1.3) is the Lagrange multiplier. See §2.6.2 for a detailed discussion of
the role of λ as a Lagrange multiplier.
A few examples of penalized likelihood estimation follow.

Example 1.1 (Response data regression) Assume

Y |x ∼ exp
{(
yη(x)− b(η(x))

)
/a(φ) + c(y, φ)

}
,

an exponential family density with a modeling parameter η and a possibly
unknown nuisance parameter φ. Observing independent data (xi, Yi), i =
1, . . . , n, the method estimates η via the minimization of

− 1

n

n∑

i=1

{
Yiη(xi)− b(η(xi))

}
+
λ

2
J(η). (1.4)

When the density is Gaussian, (1.4) reduces to a penalized least squares
problem; see Problem 1.1. Penalized least squares regression for Gaussian-
type responses is the subject of Chap. 3. Penalized likelihood regression for
non-Gaussian responses will be studied in Chap. 5. �

Example 1.2 (Density estimation) Observing independent and identi-
cally distributed samples Xi, i = 1, . . . , n from a probability density f(x)
supported on a bounded domain X , the method estimates f by eη/

∫
X e

ηdx,
where η minimizes

− 1

n

n∑

i=1

{

η(Xi)− log

∫

X
eη(x)dx

}

+
λ

2
J(η). (1.5)

A side condition, say
∫
X η dx = 0, shall be imposed on η for a one-to-one

transform f ↔ eη/
∫
X e

ηdx. Penalized likelihood density estimation is the
subject of Chap. 7. �
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Example 1.3 (Hazard estimation) Let T be the lifetime of an item
with survival function S(t|u) = P (T > t|u), possibly dependent on a co-
variate U . The hazard function is defined as eη(t,u) = −∂ logS(t|u)/∂t. Let
Z be the left-truncation time and C be the right-censoring time, indepen-
dent of T and of each other. Observing (Ui, Zi, Xi, δi), i = 1, . . . , n, where
X = min(T,C), δ = I[T≤C], and Z < X , the method estimates the log
hazard η via the minimization of

− 1

n

n∑

i=1

{

δiη(Xi, Ui)−
∫ Xi

Zi

eη(t,Ui)dt

}

+
λ

2
J(η); (1.6)

see Problem 1.2 for the derivation of the likelihood. Penalized likelihood
hazard estimation will be studied in Chap. 8. �

The two basic components of a statistical model, the deterministic part
and the stochastic part, are well separated in (1.3). The structure of the
deterministic part is determined by the construction of J(η) for η on a
domain X , of which a comprehensive treatment is presented in Chap. 2.
The stochastic part is reflected in the likelihood L(η|data) and determines,
among other things, the natural measures with which the performance of
the estimate is to be assessed. The minimizer of (1.3) with a varying λ
defines a family of estimates, and from the cubic spline simulation shown
in Fig. 1.1, we have seen how differently the family members may behave.
Data-driven procedures for the proper selection of the smoothing parameter
are crucial to the practicability of penalized likelihood estimation, to which
extensive discussion will be devoted in the settings of regression, density
estimation, and hazard estimation in their respective chapters.

1.2 Notation

Listed below is some general notation used in this book. Context-specific
or subject-specific notation may differ from that listed here, in which case
every effort will be made to avoid possible confusion.
Domains are usually denoted by X , Y, Z, etc., or subscripted as X1, X2,

etc. Points on domains are usually denoted by x ∈ X , y ∈ Y, or x1, x2, y ∈
X . Points on product domains are denoted by x1, x2, y ∈ X = X1 × X2,
with x1〈1〉, x2〈1〉, y〈1〉 ∈ X1 and x1〈2〉, x2〈2〉, y〈2〉 ∈ X2, or by z = (x, y) ∈ Z =
X × Y, with x ∈ X and y ∈ Y. Ordinary subscripts are used to denote
multiple points on a domain, but not coordinates of a point on a product
domain.
Function spaces are usually denoted by H, G, etc. Functions in function

spaces are usually denoted by f, g, h ∈ H, η, φ, ξ ∈ H, etc. Derivatives
of a univariate function f(x) are denoted by ḟ = df/dx, f̈ = d2f/dx2,
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or by the general notation f (m) = dmf/dxm. Derivatives of multivariate
functions f(x〈1〉, x〈2〉) on X1 × X2 or g(x, y) on X × Y are denoted by

f
(3)
〈112〉 = ∂3f/∂x2〈1〉∂x〈2〉, g̈〈xy〉 = ∂2g/∂x∂y, etc.
Matrices are denoted by the standard notation of uppercase letters.

Vectors, however, are often not denoted by boldface letters in this book. For
a point on a product domain X =

∏Γ
γ=1 Xγ , we write x = (x〈1〉, . . . , x〈Γ〉).

For a function on domain X =
{
1, . . . ,K

}
, we write f =

(
f(1), . . . , f(K)

)T
,

which may be used as a vector in standard matrix arithmetic. Boldface
vectors are used where confusion may result otherwise. For example, 1 =
(1, . . . , 1)T is used to denote a vector of all one’s, and c = (c1, . . . , cn)

T is
used to encapsulate subscripted coefficients. In formulas concerning matrix
computation, vectors are always set in boldface.
The standard Op, op notation is used in the asymptotic analyses of §§3.2,

4.2.3, 5.2, 6.2, 6.3, Chap. 9, §§10.2, and 10.5. If P
(
|X | > KY

)
→ 0 for

some constant K <∞, we write X = Op(Y ), and when P
(
|X | > εY

)
→ 0,

∀ε > 0, we denote X = op(Y ).

1.3 Decomposition of Multivariate Functions

An important aspect of statistical modeling, which distinguishes it from
mere function approximation, is the interpretability of the results. Of great
utility are decomposition of multivariate functions similar to the classical
analysis of variance (ANOVA) decomposition and the associated notions
of main effect and interaction. Higher-order interactions are often excluded
in practical estimation to control model complexity; the exclusion of all
interactions yields the popular additive models. Selective exclusion of cer-
tain interactions also characterizes many interesting statistical models in a
variety of stochastic settings.
Casting the classical one-way ANOVA decomposition as the decomposi-

tion of functions on a discrete domain, a simple averaging operator is in-
troduced to facilitate the generalization of the notion to arbitrary domains.
Multiway ANOVA decomposition is then defined, with the identifiability
of the terms assured by side conditions specified through the averaging op-
erators. Examples are given and a proposition is proved concerning certain
intrinsic structures that are independent of the side conditions. The utility
and implication of selective term trimming in an ANOVA decomposition
are then briefly discussed in the context of regression, density estimation,
and hazard estimation.

1.3.1 ANOVA Decomposition and Averaging Operator

Consider a standard one-way ANOVA model, Yij = μi + εij , where μi

are the treatment means at treatment levels i = 1, . . . ,K and εij are
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independent normal errors. Writing μi = μ + αi, one has the “overall
mean” μ and the treatment effect αi. The identifiability of μ and αi are
assured through a side condition, of which common choices include α1 = 0
with level 1 treated as the control and

∑K
i=1 αi = 0 with all levels treated

symmetrically.
The one-way ANOVA model can be recast as Yj = f(xj)+εj, where f(x)

is defined on the discrete domain X =
{
1, . . . ,K

}
; the treatment levels are

now coded by x and the subscript j labels the observations. The ANOVA
decomposition μi = μ+αi in the standard ANOVA model notation can be
written as

f(x) = Af + (I −A)f = f∅ + fx,

where A is an averaging operator that “averages out” the argument x to
return a constant function and I is the identity operator. For example,
with Af = f(1), one has f(x) = f(1) +

{
f(x) − f(1)

}
, corresponding to

α1 = 0. With Af =
∑K

x=1 f(x)/K = f̄ , one has f(x) = f̄ +
(
f(x) − f̄

)
,

corresponding to
∑K

i=1 αi = 0. Note that applying A to a constant function
returns that constant, hence the name “averaging.” It follows that A(Af) =
Af , ∀f , or, simply, A2 = A. The constant term f∅ = Af is the “overall
mean” and the term fx = (I − A)f is the treatment effect, or “contrast,”
that satisfies the side condition Afx = 0.
On a continuous domain, say X = [a, b], one may similarly define an

ANOVA decomposition f(x) = Af + (I − A)f = f∅ + fx through an ap-
propriately defined averaging operator A, where fx satisfies the side con-
dition Afx = 0. For example, with Af = f(a), one has f(x) = f(a) +
{
f(x) − f(a)

}
. Similarly, with Af =

∫ b

a
fdx/(b − a), one has f(x) =

∫ b

a fdx/(b− a) +
{
f(x)−

∫ b

a fdx/(b− a)
}
.

1.3.2 Multiway ANOVA Decomposition

Now consider a function f(x) = f(x〈1〉, . . . , x〈Γ〉) on a product domain

X =
∏Γ

γ=1 Xγ , where x〈γ〉 ∈ Xγ denotes the γth coordinate of x ∈ X . Let
Aγ be an averaging operator on Xγ that averages out x〈γ〉 from the active
argument list and satisfies A2

γ = Aγ ; Aγf is constant on the Xγ axis but
not necessarily an overall constant function. An ANOVA decomposition of
f can be defined as

f =

{ Γ∏

γ=1

(I−Aγ +Aγ)

}

f =
∑

S

{∏

γ∈S
(I−Aγ)

∏

γ �∈S
Aγ

}

f =
∑

S
fS , (1.7)

where S ⊆
{
1, . . . ,Γ

}
enlists the active arguments in fS and the summation

is over all of the 2Γ subsets of
{
1, . . . ,Γ

}
. The term f∅ =

∏
Aγf is a

constant, the term fγ = f{γ} = (I −Aγ)
∏

α�=γ Aαf is the x〈γ〉 main effect,
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the term fγ,δ = f{γ,δ} = (I − Aγ)(I − Aδ)
∏

α�=γ,δ Aαf is the x〈γ〉-x〈δ〉
interaction, and so forth. The terms of such a decomposition satisfy the
side conditions AγfS = 0, ∀S � γ. The choices of Aγ , or the side conditions
on each axes, are open to specification.
The domains Xγ are generic in the above discussion; in particular, they

can be product domains themselves. As a matter of fact, the ANOVA de-
composition of (1.7) can also be defined recursively through a series of
nested constructions with Γ = 2; see, e.g., Problem 1.3.
The ANOVA decomposition can be built into penalized likelihood esti-

mation through the proper construction of the roughness functional J(f);
details are to be found in §2.4.

Example 1.4 When Γ = 2, X1 =
{
1, . . . ,K1

}
, and X2 =

{
1, . . . ,K2

}
,

the decomposition reduces to a standard two-way ANOVA decomposition.
With averaging operators A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 1), one has

f∅ = A1A2f = f(1, 1),

f1 = (I −A1)A2f = f(x〈1〉, 1)− f(1, 1),

f2 = A1(I −A2)f = f(1, x〈2〉)− f(1, 1),

f1,2 = (I −A1)(I −A2)f

= f(x〈1〉, x〈2〉)− f(x〈1〉, 1)− f(1, x〈2〉) + f(1, 1).

With Aγf =
∑Kγ

x〈γ〉=1 f(x〈1〉, x〈2〉)/Kγ , γ = 1, 2, one similarly has

f∅ = A1A2f = f··,
f1 = (I −A1)A2f = fx〈1〉· − f··,

f2 = A1(I −A2)f = f·x〈2〉 − f··,

f1,2 = (I −A1)(I −A2)f

= f(x〈1〉, x〈2〉)− fx〈1〉· − f·x〈2〉 + f··,

where f·· =
∑

x〈1〉,x〈2〉 f(x〈1〉, x〈2〉)/K1K2, fx〈1〉· =
∑

x〈2〉 f(x〈1〉, x〈2〉)/K2,

and f·x〈2〉 =
∑

x〈1〉 f(x〈1〉, x〈2〉)/K1. One may also use different averaging

operators on different axes; see Problem 1.4. �

Example 1.5 Consider Γ = 2 and X1 = X2 = [0, 1]. With A1f = f(0, x〈2〉)
and A2f = f(x〈1〉, 0), one has

f∅ = A1A2f = f(0, 0),

f1 = (I − A1)A2f = f(x〈1〉, 0)− f(0, 0),

f2 = A1(I −A2)f = f(0, x〈2〉)− f(0, 0),

f1,2 = (I − A1)(I −A2)f

= f(x〈1〉, x〈2〉)− f(x〈1〉, 0)− f(0, x〈2〉) + f(0, 0).
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With Aγf =
∫ 1

0
fdx〈γ〉, γ = 1, 2, one has

f∅ = A1A2f =
∫ 1

0

∫ 1

0
fdx〈1〉dx〈2〉,

f1 = (I − A1)A2f =
∫ 1

0
(f −

∫ 1

0
fdx〈1〉)dx〈2〉,

f2 = A1(I −A2)f =
∫ 1

0
(f −

∫ 1

0
fdx〈2〉)dx〈1〉,

f1,2 = (I − A1)(I −A2)f

= f −
∫ 1

0
fdx〈2〉 −

∫ 1

0
fdx〈1〉 +

∫ 1

0

∫ 1

0
fdx〈1〉dx〈2〉.

Similar results with different averaging operators on different axes are also
straightforward; see Problem 1.5. �

In standard ANOVA models, higher-order terms are frequently elim-
inated, whereas main effects and lower-order interactions are estimated
from the data. One learns not to drop the x〈1〉 and x〈2〉 main effects if the
x〈1〉-x〈2〉 interaction is considered, however, and not to drop the x〈1〉-x〈2〉
interaction when the x〈1〉-x〈2〉-x〈3〉 interaction is included. Although the
ANOVA decomposition as defined in (1.7) obviously depends on the av-
eraging operators Aγ , certain structures are independent of the particular
choices of Aγ . Specifically, for any index set I, if fS = 0, ∀S ⊇ I with a
particular set of Aγ , then the structure also holds for any other choices of
Aγ , as the following proposition asserts.

Proposition 1.1 For any two sets of averaging operators Aγ and Ãγ sat-

isfying A2
γ = Aγ and Ã2

γ = Ãγ ,
∏

γ∈I(I − Aγ)f = 0 if and only if
∏

γ∈I(I − Ãγ)f = 0, where I is any index set.

Note that the condition
∏

γ∈I(I−Aγ)f = 0 means that fS = 0, ∀S ⊇ I.
For example, (I−A1)f = 0 implies that all terms involving x〈1〉 vanish, and
(I − A1)(I − A2)f = 0 means that all terms involving both x〈1〉 and x〈2〉
disappear. Model structures that can be characterized through constraints
of the form

∏
γ∈I(I − Aγ)f = 0 permit a term fS only when all of its

“subset terms,” fS′ for S ′ ⊂ S, are permitted. A simple corollary of the
proposition is the obvious fact that an additive model remains an additive
model regardless of the side conditions.
Proof of Proposition 1.1: It is easy to see that (I − Ãγ)Aγ = 0. Suppose∏
γ∈I(I − Aγ)f = 0 and define the ANOVA decomposition in (1.7) using

Aγ . Now, for any nonzero term fS in (1.7), one has S �⊇ I, so there exists

γ ∈ I but γ �∈ S, hence fS = [· · ·Aγ · · · ]f . The corresponding (I − Ãγ) in∏
γ∈I(I−Ãγ) then annihilates the term. It follows that all nonzero ANOVA

terms in (1.7) are annihilated by
∏

γ∈I(I − Ãγ), so
∏

γ∈I(I − Ãγ)f = 0.
The converse is true by symmetry. �
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1.3.3 Multivariate Statistical Models

Many multivariate statistical models can be characterized by selective term
elimination in an ANOVA decomposition. Some of such models are
discussed below.

Curse of Dimensionality and Additive Models

Recall the classical ANOVA models with Xγ discrete. In practical data
analysis, one usually includes only the main effects, with the possible ad-
dition of a few lower-order interactions. Higher-order interactions are less
interpretable yet more difficult to estimate, as they usually consume many
more degrees of freedom than the lower-order terms. Models with only main
effects included are called additive models.
The difficulty associated with function estimation in high-dimensional

spaces may be perceived through the sparsity of the space. Take Xγ = [0, 1],
for example, a k-dimensional cube with each side of length 0.5 has volume
0.5k. Assume a uniform distribution of the data and consider a piecewise
constant function with jumps only possible at x〈γ〉 = 0.5. To estimate such
a function in 1 dimension with two pieces, one has information from 50%
of the data per piece, in 2 dimensions with four pieces, 25% per piece,
in 3 dimensions with eight pieces, 12.5% per piece, etc. The lack of data
due to the sparsity of high-dimensional spaces is often referred to as the
curse of dimensionality. Alternatively, the curse of dimensionality may also
be characterized by the explosive increase in the number of parameters,
or the degrees of freedom, that one would need to approximate a function
well in a high-dimensional space. To achieve the flexibility of a five-piece
piecewise polynomial in 1 dimension, for example, one would end up with
125 pieces in 3 dimensions by taking products of the pieces in 1 dimension.
To combat the curse of dimensionality in multivariate function estima-

tion, one needs to eliminate higher-order interactions to control model
complexity. As with classical ANOVA models, additive models with the
possible addition of second-order interactions are among the most popular
models used in practice.

Conditional Independence and Graphical Models

To simplify notation, the marginal domains will be denoted by X , Y, Z,
etc., in the rest of the section instead of the subscripted X used in (1.7).
Consider a probability density f(x) of a random variable X on a

domain X . Writing

f(x) =
eη(x)

∫
X e

η(x)dx
, (1.8)

known as the logistic density transform, the log density η(x) is free of the
positivity and unity constraints, f(x) > 0 and

∫
X f(x)dx = 1, that f(x)
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must satisfy. The transform is not one-to-one, though, as eη(x)/
∫
X e

η(x)dx=

eC+η(x)/
∫
X e

C+η(x)dx for any constant C. The transform can be made one-
to-one, however, by imposing a side condition Axη = 0 for some averaging
operator Ax on X ; this can be achieved by eliminating the constant term
in a one-way ANOVA decomposition η = Axη + (I −Ax)η = η∅ + ηx.
For a joint density f(x, y) of random variables (X,Y ) on a product

domain X × Y, one may write

f(x, y) =
eη(x,y)

∫
X dx

∫
Y e

η(x,y)dy
=

eηx+ηy+ηx,y

∫
X dx

∫
Y e

ηx+ηy+ηx,ydy
,

where ηx, ηy, and ηx,y are the main effects and interaction of η(x, y) in
an ANOVA decomposition; the constant is eliminated in the rightmost
expression for a one-to-one transform. The conditional distribution of Y
given X has a density

f(y|x) = eη(x,y)
∫
Y e

η(x,y)dy
=

eηy+ηx,y

∫
Y e

ηy+ηx,ydy
, (1.9)

where the logistic conditional density transform is one-to-one only for the
rightmost expression with the side conditions Ay(ηy + ηx,y) = 0, ∀x ∈ X ,
where Ay is the averaging operator on Y that help to define the ANOVA
decomposition. The independence of X and Y , denoted by X⊥Y , is char-
acterized by ηx,y = 0, or (I −Ax)(I −Ay)η = 0.
The domains X and Y are generic in (1.9); in particular, they can be

product domains themselves. Substituting (y, z) for y in (1.9), one has

f(y, z|x) = eηy+ηz+ηy,z+ηx,y+ηx,z+ηx,y,z

∫
Y dy

∫
Z e

ηy+ηz+ηy,z+ηx,y+ηx,z+ηx,y,zdz
,

where η(y,z) is expanded out as ηy + ηz + ηy,z and ηx,(y,z) is expanded out
as ηx,y + ηx,z + ηx,y,z; see Problem 1.3. The conditional independence of Y
and Z given X , denoted by (Y⊥Z)

∣
∣X , is characterized by ηy,z+ηx,y,z = 0,

or (I −Ay)(I − Az)η = 0.
Now, consider the joint density of four random variables (U, V, Y, Z), with

(U⊥V )
∣
∣(Y, Z) and (Y⊥Z)

∣
∣(U, V ). It can be shown that such a structure is

characterized by ηu,v + ηy,z + ηu,v,y + ηu,v,z + ηu,y,z + ηv,y,z + ηu,v,y,z = 0 in
an ANOVA decomposition, or (I −Au)(I −Av)η = (I −Ay)(I −Az)η = 0;
see Problem 1.7.
As noted above, the ANOVA decompositions in the log density η that

characterize conditional independence structures are all of the type covered
in Proposition 1.1. The elimination of lower-order terms in (1.8) and (1.9)
for one-to-one transforms only serve to remove technical redundancies
introduced by the “overparameterization” of f(x) or f(y|x) by the cor-
responding unrestricted η.


