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Dedicated to Academician1 Leonid
Ivanovich Sedov

1 The title Academician denotes a Full Member of an art, literary, or scientific academy. In this

case, it refers to the Academy of Sciences of the USSR.





God the Almighty on the throne with a threateningly raised hand:
—Noli turba circulos meos!2

Underneath there are myriads of stars, worlds moving over spheres. And Prome-
theus stretching his muscles to break the circle of human being. And someone who
fell from the circle and is plunging into chaos.
And the threatening, warning Finger of the Almighty:

—Noli turba circulos meos!

From the book by Leonid Andreev S.O.S.

In mechanics, the meaning of the modeling of real bodies and
phenomena using objects and processes invented in science is
clear to everybody and we all understand well the meaning of
our actions in these cases. It is inappropriate to say that “science
discovered” an ideal incompressible fluid, or a perfectly rigid
body, or a perfectly elastic body. We understand that these objects
are absolutely necessary and useful scientific inventions.

From the book by L.I. Sedov
“Reflections on Science and Scientists”.

Turbulent motion appears as a very complex motion in open
systems emerging from a less ordered motion—“physical
chaos”. . . The transition from a laminar state to a turbulent
one may be considered to be an example of self-organization in
a nonlinear open system.

From the book by Yu.L. Klimontovich
“An Introduction to the Physics of Open Systems”.

2 “Don’t disturb my circles”—Archimedes’ dictum.





Preface

There are notable words in the book of the renowned French scientist David Ruelle

“Hasard et Chaos” (chance and chaos), “Mechanics was born from the desire

to explain the world”. The validity of this utterance, which refers to the history

of science, acquires a new deep meaning at the present stage of the development of

natural sciences, where not only the symbiosis and close intertwining of various

disciplines occur but also the fundamentals of the cognition of natural laws are

revealed, whose carrier is traditionally served by mechanics, along with its individ-

ual branches and numerous applications. The classical conservation laws and

the differential equations of motion, including the motion of celestial bodies, the

equations of continuum mechanics, dynamics of rarefied multicomponent gases,

and physical kinetics formulated on their basis constitute the foundation for devel-

oping various physical, geophysical, and astrophysical models that are designed not

only to explain the surrounding world, but also to understand the origins of its birth

and evolution. The avalanche-like accumulation of knowledge about the Universe

(or in modern notion, Multiverse) based on enormous observational data sets

and the continuously improving methods of mathematical modeling, which use

high-performance computing systems, open new vast horizons for the cognition

of nature.

The rapidly expanding views about the surrounding regions of space near the

Earth and far beyond, which is attributable primarily to enormous progress in

astronomy and space research, led to a deeper penetration into the physical essence

of the processes and phenomena in various natural and cosmic media in divers

states of their constituent matter. This inspired increasingly complicated mathemat-

ical models for these media, which were in turn made possible by immense

breakthroughs achieved in creating powerful computing systems � their architec-

ture, performance, and software. Truly boundless opportunities open up on this

path, because linked to this capacity of the computing systems is the prospect of

formulating and solving complex multidimensional nonstationary geo- and astro-

physical problems and analyzing evolutionary processes based on large-scale

numerical experiments.
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Turbulence is at the same time a very common and a complex natural phenom-

ena associated with the emergence and development of an enormous number of

vortices on all possible scales (organized vortex structures) under certain regimes

of fluid motion in an essentially nonlinear hydrodynamic system. When the stability

of a laminar flow defined by the critical Reynolds number is lost, an unsteady

fluctuating flow emerges in the hydrodynamic system. A continuous distribution of

the velocity fluctuations and other thermohydrodynamic parameters is produced in

this flow through the stretching of vortices in a range of smallest wavelengths,

determined by dissipative (viscous) forces, to the longest ones, determined by

the flow boundaries. The conditions for emerging vorticity and structuring of the

developed turbulence are influenced by the physical properties of the medium, such

as the molecular transport coefficients to which the energy dissipation processes in

a turbulent flow are related, as well as by the conditions at the boundary, where thin

boundary vortex layers are observed, whose instability manifests itself in the

generation of vortex tubes. Turbulization leads to a rapid mixing of particles in a

continuous medium and to an increase in the efficiency of mass, momentum, and

heat transfer; in multiphase multicomponent media, it also contributes to the

acceleration of phase transitions and chemical reactions. As the knowledge about

the various natural objects in which turbulence plays a significant and, in many

cases, crucial role is accumulated, modeling this phenomenon and related hydrody-

namic effects acquires a key significance. At the same time, a direct numerical

simulation of turbulent flows involves great mathematical difficulties, while

constructing a general theory of structured turbulence in a compressible fluid is

unlikely to be possible, because the mechanisms according to which different-scale

vortex structures interact are extremely complex.

This monograph is based on our studies of problems that arise in phenomeno-

logical modeling of developed turbulence in multicomponent mixtures of reacting

gases and heterogeneous gas-dust media. The first steps of these studies are

studying the natural environment and evolution mechanisms of the Earth and

planets in the Solar System, protoplanetary gas-dust accretion disks, and turbulent

heat and mass transport in the upper atmospheres of planets (the tenuous gaseous

envelopes of celestial bodies lying in the boundary regions between the dense

atmospheric layers and circumplanetary space). We are concerned here with

investigating turbulent flows in gas and gas-dust media with complicated

physical-chemical characteristics whose mathematical modeling requires taking

into account the flow compressibility, the variability of thermophysical properties,

heat and mass transfer, chemical reactions, and radiation, and the influence of

gravitational and electromagnetic forces. The additional mechanical effects that

emerge under these circumstances generally do not allow one to employ the results

obtained in terms of the traditional description of turbulent homogeneous incom-

pressible fluid flows that are used, for example, in meteorology. Therefore, to study

natural media of this type, we need to develop new approaches to model turbulence

that adequately describe the hydrodynamic motions of compressible mixtures,

transport processes, and chemical kinetics in a fluctuating multiphase multicompo-

nent continuum. Since the hydrodynamic and physical-chemical pattern of
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turbulent motion is complex, the theoretical approaches to solving this problem

must be “semiempirical” in character.

We focus on the thermodynamic construction of continuum models for

turbulized natural media in outer space, which are the basis for solving the forma-

tion and evolution problems of various astrophysical and geophysical objects.

These primarily include turbulent motion models of multicomponent chemically

active gases with diffusion, heat transfer, viscosity, and radiation processes; turbu-

lent motion models of gas suspensions and various types of heterogeneous media

with phase transitions; and models of structured turbulent flows as well as turbulent

flows interacting with an electromagnetic field.

The book is devoted to the topical problem of self-organization in developed

turbulent flows, which serves as a reflection of the most general concept of the

relationship between order and chaos in natural processes. Submitting our work for

the judgment of specialists in various areas of knowledge, we realize that the

approach we develop is in some aspects unusual for mechanicians guided by

“classical” yardsticks. For this reason, the history of a new understanding of

turbulence is of interest. The question about the relative degree of order of laminar

and turbulent motions was probably first discussed publicly during the “Synergetics

83” International Conference in the town of Pushchino near Moscow. In his report,

Yu. L. Klimontovich formulated a general criterion, the so-called “S-theorem” (to

which we will return later), which characterizes the relative degree of order of the

states for open dissipative systems. This criterion was used by the speaker for a

quantitative proof of the assertion that a turbulent motion is more ordered than

a laminar one. There were very few supporters of this viewpoint in the hall.

I. Prigogine, H. Haken, and B. Ebeling were among them. Curiously, the renowned

hydromechanician G.I. Barenblatt was openly indignant during this report, saying:

“All mechanicians know excellently well that a turbulent motion is more chaotic”.

Nevertheless, contrary to the traditional viewpoint of mechanicians on turbu-

lence, a large number of various vortex coherent structures (CSs) have been

discovered and their topological characteristics have been firmly established in

the last decade owing to the progressive development of the methods for a visual

observation of turbulized fluid flows. As examples, we can name Taylor vortices,

turbulent spots, vortex rings, vortex balls, hairpin-like vortices, burstings, vortex

spirals, streaks, Brawn-Thomas structures, mushroom-shaped vortices, etc. The

frequency of occurrence of a particular structure depends on the type of flow (a

boundary layer, a mixing layer, a jet, etc.), geometry, and the regime of turbulized

fluid motion. It is important to ascertain how these coherent structures can emerge.

Nonlinear nonequilibrium thermodynamics, whose principles are widely used in

the monograph, partly answers this question.

Basically, the distinctive feature of our studies consists of the proposed

stochastic-thermodynamic approach to constructing semiempirical turbulence

models in reacting multicomponent gases and gas-dust media and structured turbu-

lence in a homogeneous fluid. These studies are oriented mainly toward solving a

number of complex present-day problems in astrophysics and geophysics based on

the methods of continuum mechanics. The developed approaches have a direct

Preface xi



bearing on modeling the mechanisms that shape the properties of astrophysical and

geophysical objects at various stages of their evolution; on investigating the

problems of stellar and planetary cosmogony, including the formation of protoplan-

etary gas-dust accretion disks and the subsequent accumulation of planetary

systems; on the early evolutionary stages of planets; on the formation and evolution

of planetary and cometary atmospheres; and on the problems of ecology associated

with the diffusion of pollutants and natural environmental protection that attract

increasingly greater attention.

The book has nine chapters. Some questions are concretized in the appendix. We

have attempted to make the chapters of the book independent of one another, where

possible, although they are naturally unified by a common conceptual orientation.

In the first chapter, which is the introductory one, we briefly consider the

properties of turbulent flows, the elements of stochastic nonlinear dynamics, and

the relationship between order and chaos, including the synergetic aspects of the

formation of ordered structures. The basic views of turbulence as a dynamical

system are discussed. Since the emphasis in the monograph is on turbulent flows

in natural inhomogeneous media with a variable density, the problem of modeling

these media acquires entirely new facets. The classical views of turbulent motions

in an incompressible fluid are intertwined with other areas of mechanics that

combine a mixture of hydromechanics, thermodynamics, the theory of radiative

transfer, and the kinetics of chemical reactions. In addition to velocity, density, and

temperature fluctuations, the concentration of individual chemical mixture

components acquires a considerable significance. As a result, we face one of the

most complex problems in the mechanics of turbulized media, which requires

semiempirical modeling of interrelated hydrodynamic, physical-chemical, and

radiative processes and phenomena in a turbulent flow.

The possibility of emerging order in a cosmic medium and during the evolution

of cosmic objects is discussed from the standpoint of stochastic dynamics and the

theory of self-organization in open nonlinear dissipative systems. The questions of

dynamical astronomy, the dynamics of the Solar System, the nature of galaxies,

stars, planets, and small bodies in the Solar System, the questions of stellar-

planetary evolution, including the formation of protoplanetary accretion disks,

and some problems of the structure and evolution of the Universe are considered

as examples. This discussion goes far beyond the narrower problems of turbulence

that the monograph is devoted to. This serves, on the one hand, the purpose of

giving examples of order based on present views of the cosmos and the nature of its

inhabitants and, on the other hand, the purpose of reflecting the generality of the

concept of macromolecular structure formation in cosmic and other natural media.

The second chapter is devoted to formulating general mass, momentum, and

energy balance laws in a multicomponent chemically active gas mixture. It can be

also regarded as auxiliary and is used as the basis for a more detailed consideration

of the turbulence problems suggested in the subsequent chapters of the monograph.

As is well known, the most complete and rigorous mathematical description of a

multicomponent medium in a regular (laminar) flow can be given in terms of

the kinetic theory of multicomponent mixtures of polyatomic ionized gases.
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The system of generalized integro-differential Boltzmann equations for the distri-

bution functions of particles of each type in the mixture (with the right-hand parts

containing the collision and reaction integrals) supplemented by the radiative

transfer equation and the Maxwell equations for electromagnetic fields serves as

the basic one. This approach was developed in our monograph (Marov and

Kolesnichenko 1987), where a generalized Chapman-Enskog method was used to

derive the system of differential gas-kinetic equations for a reacting mixture. In

addition, from the viewpoint of macroscopic properties, such a multicomponent gas

mixture (e.g., the upper atmosphere of a planet) can be considered as a continuous

medium and the methods of continuum mechanics for mixtures can be used to

describe it adequately. Based on the principles of nonequilibrium thermodynamics,

these methods allow one to obtain the system of hydrodynamic equations with all

necessary closing relations. This phenomenological approach also allows semiem-

pirical models of turbulent flows in reacting gas media to be developed by using

extended irreversible thermodynamics.

The formalism of classical nonequilibrium thermodynamics is used to study the

mass, momentum, and energy transfer processes. As is well known, a wide class of

nonequilibrium transport processes in gases can be described by means of this

formalism fully in accord with the experimental data. In particular, the technique

for the thermodynamic derivation of generalized Stefan-Maxwell relations for

multicomponent diffusion proposed here allows one to obtain a number of algebraic

relations for the transport coefficients that relate, for example, the thermal diffusion

ratios to the thermal diffusion and multicomponent diffusion coefficients, the true

and partial thermal conductivities, and the multicomponent and binary diffusion

coefficients. All these hydrodynamically derived relations agree completely with

the results of the gas-kinetic theory for multicomponent mixtures of monatomic

gases obtained in the second approximation of the Chapman-Enskog method.

However, in contrast to this, the thermodynamic approach is not related to the

postulation of a specific microscopic model for the interaction of molecules in the

natural medium that is investigated, which is indicative of its universality.

In the third chapter, we derive a closed system of averaged hydrodynamic

equations for a turbulized multicomponent chemically active gas mixture designed

to describe a wide class of turbulent motions and physical-chemical processes in

natural media. We analyze the physical meaning of the individual terms in these

equations, including the energy transition rates between various energy balance

components. Here, we systematically use the weighted-mean Favre averaging,

which allows the form and analysis of the averaged equations of motion for

chemically active gases with variable thermophysical properties to be simplified

considerably, along with the traditional probability-theoretic averaging of

fluctuating thermohydrodynamic parameters. Assessing the status of the first-

order closure problem on the whole, it should be recognized that no general

phenomenological theory of turbulent heat conduction and turbulent diffusion for

multicomponent reacting mixtures has existed until now. Therefore, we consider in

this chapter a thermodynamic approach to the closure of the averaged hydrody-

namic equations for a mixture at the level of first-order turbulence models based on
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the methods of extended irreversible thermodynamics. Special attention is paid to

deriving closing gradient relations for the Reynolds turbulent stress tensor and the

turbulent heat and diffusion fluxes in a multicomponent mixture by thermodynamic

methods. The Onsager formalism allows one to obtain the most general structure of

these relations, including those in the form of generalized Stefan-Maxwell relations

for multicomponent turbulent diffusion. At the closure level under consideration,

these relations describe most comprehensively the turbulent heat and mass transport

in a multicomponent medium. The turbulent exchange coefficients are determined

with classical models dating back to Prandtl, Taylor, and Karman as well as with the

more recent second-order closure models that are based on the differential balance

equations for the turbulent energy and integral turbulence scale. For the conve-

nience of the reader, all calculations are performed comprehensively and can be

traced in all details.

In the fourth chapter, we consider the problem of constructing semiempirical

second-approximation turbulence models for a multicomponent chemically active

gas mixture with a variable density and variable thermophysical properties. We

derive closing differential transfer equations for the various one-point (one-time)

second-correlation moments of the fluctuating thermohydrodynamic parameters

that appear in the averaged hydrodynamic equations of mean motion for a reacting

mixture. The closure problem for a chemically active medium is generally highly

complicated because one needs to average the nonlinear “source terms” of sub-

stance production in chemical reactions with an exponential behavior. Therefore,

we propose an original procedure for averaging the rates of chemical reactions of

any order and outline a scheme for semiempirical modeling of these additional

correlations. Approximating expressions that contain universal empirical

coefficients that need not be chosen again for each new flow are used in modeling

the third-order correlations in the transfer equations. We emphasize that although

these additional equations are semiempirical, the invariant models of fully devel-

oped turbulence in chemically active gases based on them are fairly flexible.

In particular, they allow taking into account the influence of the mechanisms of

convection, diffusion, formation, redistribution, and dissipation of stochastic turbu-

lent characteristics for the field of fluctuating thermohydrodynamic parameters on

the spatiotemporal distribution of averaged thermohydrodynamic parameters for

the medium. Basically, the approach we developed is widely used in numerical

simulations of real reacting turbulized fluid flows with a significant influence of the

flow prehistory on the turbulence characteristics at a point. On the other hand, it is

used to derive more accurate algebraic relations for the turbulent transport

coefficients in multicomponent shear mixture flows (and as applied to the specific-

ity of modeling natural media), which is embodied in this chapter of the book.

The fifth chapter describes a phenomenological model for the developed turbu-

lence in a compressible homogeneous medium by taking into account nonlinear

cooperative processes. The primary concept is to represent a turbulized fluid motion

as a thermodynamic system consisting of two continua, the subsystem of averaged

motion and the subsystem of turbulent chaos. This in turn is considered as a

conglomerate of vortex structures of various spatiotemporal scales. We develop
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the ideas of a stationary nonequilibrium state of the dissipatively active subsystem

of turbulent chaos that emerges due to the influx of negentropy from the external

medium (the subsystem of averaged motion) and the appearance of relatively stable

coherent vortex structures in the system when the flow control parameters

are varied. This allows some of the turbulent field rearrangement processes to be

considered as self-organization processes in an open system. The methods of the

stochastic theory of irreversible processes and extended irreversible thermodynam-

ics are used to derive the defining relations for the turbulent fluxes and forces that

close the system of averaged hydrodynamic equations and describe the transport

and self-organization processes in the stationary nonequilibrium case with com-

pleteness sufficient for practice.

Our original approach to the stochastic-thermohydrodynamic modeling of the

subsystem of turbulent chaos is based on introducing a set of random variables into

the model—fluctuating internal coordinates (such as the turbulent energy dissipa-

tion rates, the intrinsic vorticities of the velocity field fluctuations that refer to

mesoscale vortex structures, etc.) that characterize the structure and temporal

evolution of the fluctuating field of hydrodynamic flow parameters. This makes it

possible to model the Richardson-Kolmogorov cascade process and to derive the

kinetic Fokker-Planck-Kolmogorov (FPK) equations, which describe the evolution

of the probability density function for small-scale turbulence characteristics with

thermodynamic methods. These equations are a basis for analyzing the Markovian

diffusion processes of the transition from one stationary-nonequilibrium state to

another in the space of internal coordinates through a successive loss of stability

(and increase in supercriticality) by the subsystem of turbulent chaos that is far from

complete chaos of thermodynamic equilibrium. These transitions can be described

as nonequilibrium “second-order phase transitions” in a vortex continuum, causing

the internal coordinates at bifurcation points to change abruptly.

We also consider an alternative approach to investigating the mechanisms of

such a transition. This is based on stochastic Langevin equations, which are closely

related to the derived kinetic FPK equations. We analyze a cardinal problem of the

approach being developed—the possibility that asymptotically stable stationary-

nonequilibrium states may occur in the subsystem of turbulent chaos. We propose a

nonequilibrium thermodynamic potential for the stochastic internal coordinates of

turbulent chaos that generalizes the well-known Boltzmann-Planck relation for

equilibrium states to stationary nonequilibrium states of the ensemble representing

chaos and show that this potential is the Lyapunov function for stationary nonequi-

librium states of the ensemble that corresponds to the subsystem of turbulent chaos.

The third section of Chap. 5 is devoted to the thermodynamic derivation of

generalized fractional FPK equations that describe based on fractional dynamics

how the internal coordinates of the subsystem of turbulent chaos evolve.

Introducing fractional time derivatives into the kinetic FPK equation allows one

to include the effects of intermittency in time in a unified mathematical formalism.

These effects are associated with turbulent bursts against the background of less

intense low-frequency background turbulence oscillations.
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In the sixth chapter, we prove the so-called H-theorem for the Kullback entropy.

This postulates that any initial probability distribution for the internal coordinates of

the subsystem of turbulent chaos under known assumptions asymptotically

approaches a certain stationary state after a sufficiently long time. Here, we demon-

strate that self-organization (i.e., the emergence of ordered dissipative structures with

a lower symmetry than that of the initial state) is in principle possible in the thermo-

dynamically open subsystem of turbulent chaos in due corse of the temporal evolution

of the quasi-equilibrium vortex system. This can happenwhen coherent structures can

be generated that are associated with the effect of multiplicative-noise-induced non-

equilibrium phase transitions in the subsystem of chaos. We show that if the multipli-

cative noise of chaos is intense enough, the extrema of the probability density that

describe the stationary behavior of a stochastic vortex system differ significantly in

both number and position from the stationary states that correspond to a deterministic

system. Moreover, multiplicative noise can generate new stationary states, thereby

changing the properties (in particular, the bifurcation diagrams) of the local stability of

chaos themselves: the transition points can be displaced under the influence of intense

noise in a turbulent fluid.

Based on the general concept of generating coherent vortex structures in the

thermodynamically open subsystem of turbulent chaos (due to nonequilibrium

phase transitions induced by the multiplicative noise of chaos), we also consider

in this Chap. one of the specific mechanisms for the formation and evolution of

mesoscale vortex structures. These are associated with the phase-frequency syn-

chronization of the self-oscillations of those internal coordinates that refer to the

coherent component of chaos. In addition, we study some of the scenarios for the

dynamical influence that the incoherent component (fine-grained fluctuating field)

of turbulent chaos has on the formation and evolution of vortex structures. These

transitions are shown to interrelate with the self-organization of clusters with a

lower symmetry than that of the initial state. We conclude that while the growth in

size of solid particles during collisions in classical turbulence is hampered, they can

coalesce and enlarge within such dissipative ordered structures. In other words, the

emergence of vortex clusters facilitates the solution of a key problem of the

evolution of accretion disks—the problem of solid particle enlargement through

collisions at relatively low velocities. This encounters obvious difficulties in

attempting to reproduce similar processes in laboratory experiments.

In the seventh chapter, our attention is focused on one of the fundamental

problems in astrophysics—the formation of protoplanetary accretion disks around

late-type stars, a special case of which is the origin of the Solar System. Particular

attention is given to developing a semiempirical approach to modeling heteroge-

neous turbulence in the accretion disk that surrounded the proto-Sun at the early

stage of its existence with the goal of reducing the number of assumptions in the

models used. We formulate a complete system of equations of two-phase multi-

component mechanics by taking into account the relative motion of the phases,

coagulation processes, phase transitions, chemical reactions, and radiation. Basi-

cally, it is designed for schematized formulations and numerical solution of specific

model problems on mutually consistent modeling of the structure, dynamics,
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thermal regime, and chemical composition of the circumsolar disk at various stages

of its evolution. The processes in the disk medium in the presence of the developed

turbulent motions of a coagulating gas suspension are addressed, which eventually

contribute to the formation of a dust subdisk near the equatorial plane of the proto-

Sun within the model under consideration. We also consider the emerging hydro-

dynamic and then gravitational instability in it followed by dust-cluster formation.

For an adequate phenomenological description of turbulent flows in a gas-dust

disk, we perform the probability-theoretic Favre averaging of the stochastic

equations of heterogeneous mechanics and derive the defining gradient relations

for the turbulent interphase diffusion and heat fluxes. We also derive the “relative”

and Reynolds stress tensors, which are needed to close the hydrodynamic equations

of mean motion. We investigate the influence of the inertial effects of dust particles

on the characteristics of turbulence in the disk, particularly on the additional

generation of turbulent energy by large particles. We propose a semiempirical

modeling method for the turbulent viscosity coefficient in a two-phase disk by

taking into account the inverse effects of dispersed phase and heat transport on the

development of turbulence with the goal of modeling the vertically inhomogeneous

thermohydrodynamic structure of the dust subdisk and the ambient gas.

For a steady motion when solid particles settle down to the central plane of the

disk under gravity, we investigate a parametric method of moments for solving the

Smoluchowski integro-differential coagulation equation for the particle size distri-

bution function. This states that a priori the sought-for distribution function belongs

to a certain parametric class of distributions. We also analyze to which degree fine

dust particle saturation can limit the subdisk atmosphere. This is responsible for

the intensification of various coagulation mechanisms in a turbulized medium. The

results of this chapter open new possibilities for constructing improved (and more

realistic) models of stellar-planetary cosmogony, thereby providing a new approach

to solving the fundamental problem of the origin and evolution of the Solar System

and planetary systems around other stars.

In the eighth chapter, the problem of hydrodynamic helicity and, in particular,

the influence of helicity on the evolution of disk turbulence is investigated.

We show that the relatively long decay of turbulence in the disk is associated

with the absence of reflection symmetry (relative to the equatorial plane) in the

anisotropic field of turbulent velocities. We formulate the concept of emerging

mesoscale coherent vortex structures with a large energy content in the thermody-

namically open subsystem of turbulent chaos related to the realization of an inverse

cascade of kinetic energy in mirror-asymmetric disk turbulence. We furthermore

show that the inverse cascade generates a hierarchical system of clumps with a

fractal density distribution that eventually initiate the triggering cluster-formation

mechanisms through energy release. In turn, the formation of vortex clusters leads

to an intensification of the mechanical and physical-chemical interactions between

matter particles. As a result, spontaneous emergence and growth of dust clusters,

stimulation of the condensation processes and phase transitions, the processes of

heat and mass exchange between various regions of a heterogeneous disk, and

significant modification of the spectrum of oscillations (density waves) are possible.
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We discuss the influence of helicity on the energy cascade in a rotating disk and

negative viscosity (generated by the cascade of helicity in disk turbulence when

inverse energy transfer from small vortices to larger ones takes place), which we

describe with a phenomenological approach. We also provide the relationships

between the shear and rotational viscosities in a turbulent disk.

Finally, in the concluding ninth chapter, we address the problem of

reconstructing an evolving protoplanetary gas-dust disk including electromagnetic

effects, which also applies mainly to the basic concepts of stellar-planetary cos-

mogony. A closed system of magnetohydrodynamic (MHD) equations of mean

motion designed to model shear and convective turbulent flows in electrically

conducting media in the presence of a magnetic field is derived in the approxima-

tion of single-fluid magnetohydrodynamics. These equations can be used to numer-

ically solve the problems of mutually consistent modeling of powerful turbulent

cosmic plasma flows in accretion disks and related coronas. There the magnetic

field significantly affects the dynamics of occurring astrophysical processes. We

also systematically used weighted Favre averaging in addition to the traditional

probability-theoretic averaging of the MHD equations to develop a model of a

conducting turbulized medium. Favre averaging considerably simplifies the form of

the averaged equations of motion for a compressible electrically conducting fluid

and the analysis of the mechanisms for the amplification of macroscopic fields by

turbulent flows. For a clear physical interpretation of the individual components of

the plasma-field energy balance, we derive various energy equations that allow us

to trace the possible transitions of energy from one form to another and, in

particular, to understand the transfer mechanisms of the gravitational and kinetic

energies of mean motion to magnetic energy.

In this context we focus on deriving the closing relations for the total (including

the magnetic field) kinetic turbulent stress tensor in an electrically conducting fluid

and the turbulent electromotive force (or the so-called magnetic Reynolds tensor)

within the framework of extended irreversible thermodynamics. This also allows us

to analyze the constraints imposed by the entropy growth condition on the turbulent

transport coefficients. We propose a technique for modeling the turbulent transport

coefficients, in particular, the kinematic turbulent viscosity, which makes it possi-

ble to take into account the influence of a magnetic field and the inverse effect of

heat transfer on developing turbulence in a differentially rotating electrically

conducting accretion disk.

It obviously follows from this brief discussion of the content that the monograph

is basically oriented toward solving problems that are traditionally related to

astrophysics and geophysics by the methods of mechanics. Leaving aside the

debatable question regarding the very artificial breakdown of science into

divisions and branches, we will only note that the merits and advantages of

our approach are justified if they ensure the most comprehensive modeling of

natural phenomena. This equally applies to cosmic objects that are inaccessible

to direct study or to an attempt to reconstruct the events responsible for their set-

up. The appearance and evolution of turbulized gas-dust accretion disks that

result in the formation of planetary systems is just an example of the modeling
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approach developed in the monograph. At the same time, the monograph content

in general may be considered as a theoretical basis for numerical simulations of

a wide class of phenomena in which the mechanics of inhomogeneous (multi-

component, multiphase) and structured turbulent media widespread in nature

plays a crucial role. An important constituent of these studies is the fundamen-

tally new stochastic-thermodynamic approach to modeling developed turbulent

flows and structured turbulence in astro- and geophysical systems considered

from the standpoint of stochastic dynamics of open dissipative systems, which

we have developed for many years. This is why we describe turbulent flows in

natural phenomena as a typical example of nonequilibrium nonlinear dynamics,

and this is the pivot around which the exposition in the monograph is built.

The book is the joint work of two authors. We gratefully point out that the

discussions of several key problems with L.I. Sedov had a profound influence on the

basic concepts underlying the content as well as on our own works on the mechan-

ics of cosmic and natural media. In this monograph, we have tried to reflect many of

L.I. Sedov’s ideas on model construction of continuous media with complicated

physical-chemical and thermal properties, in particular, on modeling multiphase

multicomponent hydromechanics and multicomponent turbulent media.

The materials of Chaps. 2–9 and partially of Chap. 1 are based entirely on

our original studies. The results of these studies are used in the numerical models

that we are developing in collaboration with our colleagues and students. Some of

the results have been published previously in the papers presented in the list

of references and in our monographs “An Introduction to Planetary Aeronomy”,

Nauka, Moscow, 1987; “Turbulence of Multicomponent Media”, Nauka-

Interperiodika, Moscow, 1998; “Mechanics of Turbulence of Multicomponent

Gases”, ASSL series, vol. 269, Kluwer Academic Publishers, Dordrecht/Boston/

London, 2001; and “Astrophysical Discs” (Ed. by A.M. Fridman, M.Ya. Marov,

and I.G. Kovalenko), ASSL series, vol. 337, Springer, 2006.

We are well aware that we have not managed to cover equally completely all

questions in the extensive subject matter that the monograph is concerned with.

This is primarily because, despite certain progress achieved in recent decades in

studying such a complex phenomenon as turbulence, especially the turbulence of

inhomogeneous media and structured turbulence, much still remains unclear and

the emerging mathematical difficulties often seem insurmountable. Another not

exhaustively studied area are the physical-chemical characteristics of a cosmic

medium, to which the observed peculiarity of accretion disks is directly related,

especially their structure-forming mechanisms and evolution, including the evolu-

tion of planetary systems and the formation of peculiar phenomena on the planets

and their satellites. In particular, developing the theory of structured turbulence will

play a key role in understanding the natural self-organization mechanisms. This is

an appeal to find answers to these challenging questions, or at least to place more

rigorous constraints on the developed models.

We are also aware that it is a desideratum to develop new original approaches that

would allow one to efficiently model turbulent dynamics when describing complex

natural phenomena, in particular, cosmic media. This is our goal in our studies.
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A. Buckingham from the Livermore Laboratory apparently completely agrees with

this concept. In his review of our book “Mechanics of Turbulence of Multicompo-

nent Gases” mentioned above, he noted that at this juncture, it is more useful to

develop “. . .a model that would allow one to calculate how turbulence affects the

accompanying physical processes than to concentrate on a deeper understanding of

the essence of turbulence � the goal that, while being academically attractive, is

fraught with potential disappointments ” (Appl. Mech. Rev, vol. 56, no.1. 2003).

We hope that our new book will be received with interest by a wide circle of

specialists in the fields of astrophysics, geophysics, mechanics, plasma physics, and

space research. Astrophysicists, geophysicists, and planetologists will find in it a

fairly deep justification of the theoretical approaches and methods for mathematical

modeling of turbulence used in describing various natural and cosmic media, in

particular, disk structures widespread in the cosmos, from the standpoint of

mechanics. In turn, mechanicians will find a new rapidly progressing area of

knowledge and the possibility of applying this fundamental science to the

fascinating prospects of penetrating into the deepest mysteries of nature.

Numerous discussions of the questions that are touched upon here with our

colleagues from various organizations contributed to writing the monograph and

to improving its content. We would like to express our gratitude primarily to

A.M. Fridman, E.M. Galimov, A.B. Makalkin, V.I. Maron, and I.S. Veselovskii.

We are also grateful to K.K. Manuilov and O.A. Devina for their technical

assistance in preparing the electronic version of the monograph and V. Astakhov

for translating it into English. The publication of the book in Russian became

possible owing to financial support by the Russian Foundation for Basic Research

(project no. 08-01-07033), for which we express our gratitude.

We are grateful to Springer for offering to publish the book in English. It is

worth to note that no specific advancement of the problems concerned was made

since it was published in Russian, except for some new factual data about the inner

planets of the Solar System and exoplanets, which do not impact, however, on our

basic knowledge about planetary systems described in Chap. 1. Most importantly,

we underline that the theoretical ground and principal concepts we deal with

correspond to the contemporary views on the problems of self-organization in

turbulent media and their application to accretion disk evolution.

Any critical remarks on the content of the book are welcome.

Mikhail Ya Marov

Moscow, Russia Aleksander V. Kolesnichenko
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Chapter 1

Turbulent Chaos and Self-Organization

in Cosmic Natural Media

Natural objects evolve from initial chaotic motions to order through a fascinating

internal self-organization, which is embedded in their structure. The dynamics of

this process is the focus of this work. They can be subjected to temporal and spatial

variations or retain their stability for a long time. Ordered structures surround us

ubiquitously on Earth; numerous examples of self-organization are observed in

space. Turbulent flows characterized by a great variety of dynamical processes are

widespread in the surrounding world. We mainly focus on the problems of macro-

scopic modeling these natural flows.

Turbulence is a widespread and extremely complex physical phenomenon

associated with the fluctuating motion of a fluid that is present in various engineer-

ing systems and natural media. The atmospheres of planets in the Solar System,

including the outer gaseous envelopes of these celestial bodies that lie in the

atmosphere-space boundary regions, are typical examples of turbulized cosmic

natural media. Developed turbulence also plays an important role in forming the

structure and properties of astrophysical objects � galaxies and stars at various

evolutionary stages as well as protoplanetary clouds and accretion disks that serve

as a basis for cosmogonic models. Numerous present-day experimental studies of

the peculiar features of turbulent motions of liquid and gaseous media and the key

mechanisms determining their nature create the necessary prerequisites for devel-

oping theoretical approaches aimed at constructing appropriate mathematical

models of this phenomenon.

Although the theory of hydrodynamic turbulence has been developed for more

than a century now, it is still far from complete. New advanced statistical and

phenomenological approaches continue to appear. There are increasingly more

various mathematical models developed for a better understanding of the formation

and evolution of turbulent motions of a homogeneous fluid (the classical theory of

turbulence) and fluids with complicated physical-chemical and thermal properties.

Numerous semiempirical (engineering) turbulence models designed to solve prac-

tical problems based on large-scale numerical simulations are developed based on

the concepts of turbulent exchange coefficients for various transferable substances.

Our objective here is to familiarize the reader with some important ideas that inspire
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