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   Preface 

   This book presents some recent systems engineering and mathematical tools for 
health care along with their real-world applications by health care practitioners and 
engineers. Advanced approaches, tools, and algorithms used in operating room 
scheduling and patient  fl ow are covered. State-of-the-art results from applications 
of data mining, business process modeling, and simulation in health care, together 
with optimization methods, form the core of the book. It illustrates the increased 
need of partnership between engineers and health care professionals. 

 In what follows, we present a brief outline of the contributed papers in this vol-
ume, which are collected in an alphabetical order of the contributors. 

 In Chap.   1    , Dionne M. Aleman, Hamid R. Ghaffari, Velibor V. Miš ic, Michael B. 
Sharpe, Mark Ruschin, and David A. Jaffray present a semi-in fi nite linear program-
ming approach to solve high-resolution, convex quadratic optimization treatment 
problems in a reasonable amount of time. They also devise several computational 
improvements to the commonly used projected gradient algorithm that provide 
signi fi cant time savings when optimizations must be performed iteratively. Their 
approaches allow previously unwieldy treatment planning problems to be solved in 
a clinically viable amount of time. 

 In Chap.   2    , Nebil Buyurgan and Nabil Lehlou present a study on the analysis of 
portable asset management strategies in hospitals. The problem addressed here is 
the unavailability of the portable assets when they are needed due to lost or hoard-
ing, which lead to signi fi cant amount of staff time for search and underutilization of 
the assets. A simulation-based decision support tool is constructed to analyze the 
different processes and the impact of Radio Frequency Identi fi cation (RFID) tech-
nology on the widely adopted portable asset management models. The results sug-
gest that the substantial gain could be realized by implementing RFID systems. 

 In Chap.   3    , Camilo Mancilla and Robert H. Storer presents several data mining 
tools that can be used to investigate health outcomes, and provides a sample analysis 
of health care data to demonstrate their use. The tools include market basket analy-
sis, text analysis, and predictive modeling. These tools can investigate also cancer 
treatments. The need to analyze real data is particularly necessary with the increased 
prominence of comparative effectiveness analysis. 

http://dx.doi.org/10.1007/978-1-4614-5094-8_1
http://dx.doi.org/10.1007/978-1-4614-5094-8_2
http://dx.doi.org/10.1007/978-1-4614-5094-8_3
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 In Chap.   4    , Anastasius Moumtzoglou and Anastasia Kastania review different 
ways that stochastic integer programming has been used to improve ef fi ciency and 
ef fi cacy in health care delivery. For the purpose of this study health care delivery is 
divided in two areas: resource allocation and operations. In each area the stochastic 
components are identi fi ed and the algorithms and solution techniques that have been 
proposed in the literature are described. Current challenges and open questions are 
stated. 

 In Chap.   5    , Neng Fan, Syed Mujahid, Jicong Zhang, Pando Georgiev, Petraq 
Papajorgji, Ingrida Steponavice, Britta Neugaard, and Panos M. Pardalos present a 
survey on e-health management. Changes in health care delivery have become so 
widespread and numerous that the idea of e-health has become one of excitement 
and prediction rather than intervention. On the other hand, the endorsement of 
e-health is spreading slowly. Few companies focus on population-oriented e-health 
tools partly because of perceptions about the viability and capacity of the market. 
Moreover, developers of e-health resources are a highly diverse group with differing 
skills and resources while a common problem for developers is  fi nding the balance 
between risk and outcome. On the other hand, e-health presents risks to patient 
health information that involve not only appropriate protocols but also laws, regula-
tions, and appropriate safety culture. Breaches of network security and international 
viruses have elevated the public awareness of online information and computer 
security, although the overwhelming majority of security breaches do not directly 
involve health-related data. Finally, as we believe in the implications of the genetic 
components of disease, we expect a signi fi cant increase in the genetic information 
of clinical records. The future vision is mobile personalized e-health in a patient-
centered and patient-safety context. 

 In Chap.   6    , Patricia Cerrito. We use a binary integer programming model to 
formulate and solve a nurse scheduling problem (NSP) which maximally satisfi es 
nurse preferences. In a practical application of a VA hospital, besides considering 
the scheduling of two types of nurses (registered nurses and licensed practical 
nurses), two other types of employees (nursing assistants and health care techs), 
one nurse manager and a clinical nurse leader are also included in our model. 
Most of these employees are working full-time. In addition, we distinguish the 
schedule of weekdays and weekends with different requirements and different 
preferences for employees. Besides the requirements for each shift, we consider 
requirements for specifi c employees in some shifts in practical situations. The 
seven shifts do not necessarily have the same length in our model. Vacation time 
of employees is also considered in our model. Thus, the requirements for nurse 
scheduling are complicated and the objective is to maximize the satisfaction of 
preferred schedules of all these employees, including both nurses and other staffs. 
The presented model is complex, but effi ciently solvable, satisfying the set of 
requirements in a particular application in a VA hospital. 

 In Chap.   7    , Jennifer A. Pazour and Russell D. Meller study the pharmaceutical 
supply chain from a pharmaceutical distributor to a patient. The authors make 

http://dx.doi.org/10.1007/978-1-4614-5094-8_4
http://dx.doi.org/10.1007/978-1-4614-5094-8_5
http://dx.doi.org/10.1007/978-1-4614-5094-8_6
http://dx.doi.org/10.1007/978-1-4614-5094-8_7
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comparisons between a traditional distribution center and a hospital pharmacy and 
discuss the technologies used in both facilities, with special emphasis on the order-
ful fi llment process. The authors review analytical models for order-ful fi llment tech-
nologies prevalent in pharmaceutical distribution, including models for A-Frame 
systems, carousel systems, picking machines, unit-dose repackaging technologies, 
and automated dispensing cabinets. Finally, the authors provide conclusions and 
future research directions. 

 In Chap.   8    , Elina Rönnberg, Torbjörn Larsson, and Ann Bertilsson describe 
automatic scheduling of nurses. The intention of this chapter is to provide a piece of 
practical experience that can help bridge the gap between advanced method devel-
opment and the use of automatic nurse scheduling in practice. The approach 
described here is to take account of a real-life problem with all its details, and to use 
a straightforward meta-heuristic in order to deliver automatically generated schedules. 
The contribution of this chapter is based on the result of two case studies, which will 
provide insights into real-world examples, including evaluation and feedback from 
the wards. 

 We wish to express our deepest appreciation to the above-named authors who 
contributed their papers for publication in this volume. In addition, we are also very 
thankful to Springer Publishing Company for their generous support for this 
publication. 

   Gainesville , FL,  USA      Panos   M.   Pardalos   
   Gainesville, FL, USA Pando   G.   Georgiev   
   Tirana, Albania Petraq   Papajorgji   
   Tampa, FL, USA Britta   Neugaard            

http://dx.doi.org/10.1007/978-1-4614-5094-8_8
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       1   Introduction 

 Mathematical models have been widely applied to the problem of designing highly 
customized radiotherapy treatment plans  [  1  ] , but these previous approaches have 
almost exclusively focused on relatively moderate-sized treatments. The treatments 
previously studied include site-speci fi c (e.g., head-and-neck, breast, prostate)  inten-
sity modulated radiation therapy  (IMRT)—a treatment modality that allows for 
each beam in the treatment to have a unique distribution of radiation in order to 
deliver highly accurate dose—and Gamma Knife ®  treatments for small targets in the 
brain. For large-scale treatments, such as  total body irradiation  or very high-resolu-
tion Gamma Knife ®  Perfexion™ treatments, the optimization methods previously 
employed are no longer viable. 

      Optimization Methods for Large-Scale 
Radiotherapy Problems       

         Dionne   M.   Aleman      ,    Hamid   R.   Ghaffari      ,    Velibor   V.   Miš ić      , 
   Michael   B.   Sharpe,          Mark   Ruschin         , and David   A.   Jaffray            

    D.  M.   Aleman   (*) •     H.  R.   Ghaffari   •     V.  V.   Miš ić  
     Department of Mechanical and Industrial Engineering ,  University of Toronto ,
  5 King’s College Road ,  Toronto ,  ON   Canada M5S 3G8    
e-mail:  aleman@mie.utoronto.ca  ;   ghaffari@mie.utoronto.ca  ;   velibor.misic@utoronto.ca  

     M.  B.   Sharpe   •     D.  A.   Jaffray  
     Department of Radiation Oncology ,  Princess Margaret Hospital, University of Toronto ,
  610 University of Avenue ,  Toronto ,  ON   Canada M5G 2M9    
e-mail:  michael.sharpe@rmp.uhn.on.ca  ;   david.jaffray@rmp.uhn.on.ca  

     M.   Ruschin  
     Department of Radiation Oncology ,  Odette Cancer Centre, University of Toronto ,
  2075 Bayview Ave ,  Toronto ,  ON   Canada M4N 3M5    
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 We investigate optimization methods to address the computational dif fi culties 
present in large-scale radiation therapy treatment optimization. We speci fi cally 
focus on improving total body irradiation using IMRT and applying IMRT opti-
mization mathematical models to Gamma Knife ®  Perfexion™. We consider the 
radiotherapy optimization process to consist of two sub-problems, a common 
approach in IMRT literature (e.g.,  [  2–  6  ] ). These problems must be solved 
sequentially rather than simultaneously in large-scale treatment problems due to 
the massive data requirements in storing the effects of radiation delivery 
con fi gurations on the patient’s tissues. The  fi rst problem is to determine the 
relative positions of the radiation beams with respect to the patient’s body. Once 
those beam orientations are obtained, the general radiotherapy optimization 
model is formulated as

     

=
≥

minimize ( ) (RT - OPT)

subject to   ( )d

z

z x

x 0

f

   

where  x  represents the radiation intensity of the variables within our control;  d ( x ) is 
a function relating radiation intensities  x  to delivered dose  z ; and  f ( z ) is a quantita-
tive measure of treatment plan quality, where smaller values correspond to better 
treatments. 

 De fi ne  z  
 js 
  as the dose delivered to voxel  j  in structure  s  Î  S , which has  v  

 s 
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A voxel is a cube used to discretize the patient’s body. In our approach,  f ( z ) is com-
prised of convex quadratic penalties  F  
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each voxel  j  in structure  s  Î  S . Letting (·) 
+
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where  w  
 s 
  is the weight assigned to penalize any dose received under  T  

 s 
 , and     sw   is the 

weight assigned to penalize any dose received over     sT   . In previous approaches using 
penalty-based objectives (e.g.,  [  2,   3,   6  ] ), the thresholds at which over- and under-
dosing are the same. Our formulation allows for unique values at which to penalize 
overdose and underdose, and therefore yields increased  fl exibility by providing for 
“sweet spots” of radiation for structures at which no penalty is assigned. Graphically, 
the penalty can be represented as shown in Fig.  1  for a given structure, where T-u 
and T-o indicate the under- and overdosage thresholds, respectively. The RT-OPT 
objective is then to minimize the total penalty: 
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    2   Total Marrow Irradiation 

 Prior to receiving a bone marrow transplant, the patient’s existing bone marrow must 
be eradicated in order to allow the donated stem cell transplant to successfully integrate 
with the body. One method of eliminating the bone marrow is through total body irra-
diation. Failure to destroy all the bone marrow will result in a transplant failure, so it is 
crucial to deliver enough radiation that the bone marrow is suf fi ciently eradicated. 

 The necessity of delivering high dose levels comes with more frequent and more 
severe toxic effects in healthy tissue  [  7  ] , which can lead to a lower chance of a suc-
cessful transplant. Further complications to the patient’s health are caused by the 
method of radiation delivery. Because such a large area must be treated, clinicians 
typically place the patient far away from the isocenter—the central focus point of 
the beams of radiation—so that the area covered by each beam is large. The uncer-
tainty in delivered dose results in the need to deliver high levels of radiation to 
ensure the bone marrow receives appropriate dose. It also prevents the use of con-
formal treatments that target just the bone marrow while sparing healthy organs. 

  Fig. 1    Convex quadratic dose penalty with un-penalized sweet spot       
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  Total marrow irradiation  (TMI), a treatment that irradiates only the bone marrow 
while avoiding healthy tissues, can be achieved using IMRT. There has been limited 
research into the application of IMRT to TMI, mainly due to the computational 
issues present in designing complex treatments for such a large area. Using standard 
commercial planning systems, large reductions in dose to some organs can poten-
tially be achieved  [  8 ,  9  ] . However, important organs such as the spinal cord are not 
considered. TMI has been considered using tomotherapy, and similarly shows that 
the dose organs can be signi fi cantly reduced  [  10 ,  11  ] . In contrast to these studies, we 
consider the TMI problem within the mathematical framework RT-OPT that we 
have successfully applied to TMI  [  12,   13  ] ; we also consider non-coplanar beams 
(beams obtained from the movement of more than one linear accelerator compo-
nent), which are necessary to deliver radiation to the patient at a standard 100 cm 
isocenter distance  [  14  ]  so that analytical dose approximations are valid. 

 The two major subproblems in TMI are  beam orientation optimization  (BOO) 
and   fl uence map optimization  (FMO). BOO determines the optimal beams from 
which to deliver radiation. Once these beams are obtained, FMO determines the 
optimal distribution of radiation for each beam. The distribution of radiation in each 
beam is delivered by considering each beam as being comprised of many smaller 
beamlets, each of which can deliver a radiation dose, called a   fl uence , independent 
of the other beamlets. The  fl uences for a set of beams are called a   fl uence map . 

    2.1   Beam Orientation Optimization 

 Beam orientation optimization has been well studied in the literature using a variety 
of approaches from genetic and evolutionary algorithms (e.g.,  [  15–  18  ] ) to simulated 
annealing (e.g.,  [  19–  24  ] ) to beam’s-eye-view techniques (e.g.,  [  21,   22,   25–  29  ] ) and 
more. Despite the large amount of research done in BOO, only a relatively small 
number of studies (e.g.,  [  2,   3,   16,   18,   30–  32  ] ) have used the optimal  fl uence maps 
resulting from a set of beams to inform the selection beam orientations to use in the 
treatment plan. This simpli fi cation is largely due to the computational dif fi culties 
associated with having the FMO problem as the objective function of the BOO 
problem. These dif fi culties are highlighted by the fact that mixed integer approaches 
to combined BOO and FMO can only be performed if the beam solution space is 
restricted to a very small candidate set  [  33,   34  ] . 

 The computational dif fi culties in addressing BOO and FMO simultaneously are 
even more evident in TMI, where the patient is on the order of 10 times larger than 
in the previously studied site-speci fi c treatments, and 10 times more beams with 
100 times more beamlets per beam are required to deliver an accurate treatment. 
Further, the patient size requires the use of non-coplanar beams, which increases the 
beam solution space to the point where little previous research has been able to 
consider non-coplanar beams  [  3,   21,   23,   30,   35–  37  ] . Of these, all but  [  3  ]  considered 
only a handful of non-coplanar beams. 
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 Because it is widely accepted that the optimal solution to the FMO problem 
presents the most relevant measure of a beam set’s quality  [  17–  20,   23,   24,   33,   34, 
  36–  46  ] , and because it is essential to deliver a high quality treatment plan in TMI 
(more so than in traditional site-speci fi c treatments), we seek to combine BOO and 
FMO. However, the TMI treatment planning problem is more dif fi cult to solve due 
to the large patient size and beam solution space, so an algorithm that can move 
quickly through the solution space is desirable. 

 Thus, in order to solve the BOO problem, we employ the Add/Drop neighbor-
hood search approach developed by  [  2  ]  for coplanar beam selection. We extend the 
Add/Drop method to address the non-coplanar beam space necessary for TMI as 
described in  [  13  ] . In the Add/Drop method, each beam is analyzed in turn and 
replaced with an improving neighboring beam. Our enhancement rede fi nes a beam’s 
neighborhood as not simply a collection of all beams within a certain proximity, but 
only as nearby beams obtained from moving a single linear accelerator component. 
Therefore, each beam has multiple neighborhoods. The neighborhood examined in 
an iteration depends on historical improvements of that beam-component pair and 
probabilistic expectations of treatment plan improvement. Further details about the 
non-coplanar Add/Drop method are provided in  [  13  ] . 

 Because each iteration of the Add/Drop method requires enumeration of the 
FMO solutions for each neighbor in the selected neighborhood, the computation 
time of the algorithm is dependent on the speed of the FMO optimization. Thus, we 
focus our efforts on improving the speed of the FMO optimization.  

    2.2   Fluence Map Optimization 

 As previously stated, IMRT optimization for TMI is more dif fi cult than site-speci fi c 
treatments due to the size of the patient. While a typical head-and-neck treatment 
contains  » 80,000 voxels, a TMI treatment contains  » 760,000 voxels. Empirically, 
our work has indicated that 30 beams are necessary to deliver a clinically accept-
able TMI treatment, and each beam typically has  » 3,000 active beamlets. This 
results in 90,000 beamlet intensities that must be optimized in the  fl uence map 
optimization. The number of decision variables makes the use of Hessian-based 
algorithms, such as interior point methods that have been shown to yield optimal 
high-quality IMRT treatments  [  47  ] , prohibitively expensive in terms of time and 
potentially numerically unstable. 

 We therefore apply a standard projected gradient algorithm with an Armijo line 
search  [  48,   49  ]  to solve the FMO problem. Although projected gradient methods 
cannot guarantee an optimal solution, such methods are known to be fast and 
empirically return good solutions. Because the FMO formulation given in RT-OPT 
is a convex quadratic with only nonnegativity constraints, the local optimum 
approached by the projected method is the globally optimal solution. In practice, 
projected gradient methods have been shown to return quality treatment plans in 
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IMRT optimization  [  2,   3  ] , even applied to TMI  [  12,   13  ] . However, while these 
solutions are obtained very quickly for site-speci fi c treatments  [  47  ] , about 45 min 
is required to return a solution for TMI. 

 Because the FMO must be performed for each neighbor in the Add/Drop algo-
rithm used to select beam orientations, lengthy FMO computations signi fi cantly 
impact the solution space that can be searched in the  fi xed 12-h treatment planning 
limit imposed by clinicians. To speed up the projected gradient algorithm, we exam-
ine alternate line search techniques and a warm start approach. 

    2.2.1   Alternate Line Search Techniques 

 The projected gradient algorithm starts from a near-zero solution (in this case, a 
solution with all beamlets delivering almost zero intensity) and then picks a direc-
tion to move to obtain the maximum improvement in the objective function. This 
direction is the gradient of the objective function; speci fi cally, since our FMO is a 
minimization problem, the direction is the negative gradient. Once this descent 
direction is obtained, the algorithm moves from the current point some distance in 
this direction. The determination of this distance is called a line search because the 
algorithm must search the descent direction for a distance to move, called a step 
length, so that the new solution yields at least some minimum amount of improve-
ment in the objective function. 

 Most commonly, the majority of computation time spent in projected gradi-
ent methods is searching the descent direction for an appropriate distance to 
move the current solution. We explore three methods of performing the line 
search to determine which technique most improves the computation time of the 
algorithm. 

 First, we employ a traditional backtracking method  [  48  ] . In backtracking, we 
select some initial step length Δ, and if the solution located at that point provides 
insuf fi cient objective function improvement, we decrease the step length by a factor 
  d   and examine the resulting solution. This process is repeated until an appropriate 
step length is found. 

 After examining the step lengths taken by the traditional backtracking line search, 
we observed that for our speci fi c optimization model, the  fi nal step lengths taken in 
the  fi rst few iterations were far larger than in most subsequent iterations. We there-
fore designed a modi fi ed backtracking line search where the initial step length is 
drastically reduced after a  fi xed number of iterations. 

 We also observed that the  fi nal step lengths taken in most iterations were gen-
erally very small. Yet, the backtracking algorithm was started with a fairly large 
value of Δ. So, the third line search method we attempted was a simple forward 
line search operating in the same manner as the backtracking line search, with the 
exception that we start with a very small step length and increase the step length 
by a factor of   d   until a solution with suf fi cient objective function improvement is 
found.  
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    2.2.2   Warm Start Approaches 

 Although projected gradient methods start at near-zero solutions, the iterative pro-
cess taken by the Add/Drop method supplies useful information about  fl uences of 
each beam in each iteration. Rather than start at a near-zero solution, we can use this 
information to start a near-optimal solution, which will signi fi cantly reduce the 
number of iterations needed to converge to a solution. 

 From one iteration to the next, only one beam changes in the Add/Drop method, 
meaning that only a subset of beamlet variables are new. Figure  2a  illustrates beam-
lets values for some solution, which then become the values shown in Fig.  2b  when 
one set of beamlets is replaced by new variables. The beam that changes is moved 
to a neighboring beam, which is near to the original beam. Therefore, it is likely that 
the  fl uences of the other beams in the solutions will be similar in the new solution 
to their values in the previous solutions.  

 Rather than discard this intuitive knowledge about the beamlet values from 
one iteration to the next, we use the previous optimal beamlet values as a warm 
start to the projected gradient algorithm. The beamlets from the old beam are 
replaced by new beamlets from the new beam, but, because these beamlets are 
new, we devise two methods of assigning their values in the initial projected 
gradient solution. 

 First, we initialize each of the new beamlets to have the average value of the 
beamlets of the old beam (Fig.  2c ). This averaging is a computationally inexpensive 
method of exploiting the fact that the old beam and new beam will likely have simi-
lar overall intensity. Second, we initialize the values of the new beamlets to values 
that will most closely approximate the dose delivered by the original beamlets 
(Fig.  2d ). This approximation is done using a least squares optimization. 

 If the new beam is the  k th beam in the solution (    θk   ) and the set of beamlets in 
this beam is     θk

B   with intensities     �ix   , then the least squares optimization is given by
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  Fig. 2    Warm start illustration. ( a ) Initial solution. ( b ) Old beam replaced with new beamlets. 
( c ) Average  fl uence initialization. ( d ) Least-squares  fl uence initialization       
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where     ( )� k
jsz   is the dose delivered by the new beamlets to voxel  j  in structure  s  and     ( )k

jsz
  is the dose delivered by the previous beamlets to voxel  j  in structure  s . Although using 
a least squares optimization to initialize the new  fl uence values is potentially compu-
tationally intensive, it is possible that the reduction in the number of iterations per-
formed by the projected gradient algorithm will still result in a faster solution.   

    2.3   Results 

 The algorithms were tested on a single TMI patient from The Princess Margaret 
Hospital (Toronto, ON, Canada). Each type of projected gradient method was exe-
cuted on a Dell Intel Core 2 Duo with a 2.4 GHz CPU and 8 GB of RAM. Because 
the Add/Drop algorithm returns a locally optimal solution, the quality of the solu-
tion may be affected by the starting point. For robustness, we test the algorithms 
using 10 different randomly generated 30-beam solutions. The initial  fl uences of all 
of the beams were set to 0.3 Gy. Each variant of the projected gradient method ter-
minated when successive iterations resulted in a relative objective function improve-
ment of less than 0.01. For the reduced step projected gradient implementation, the 
step length was reduced after three iterations. For both the backtracking and reduced 
step implementations, the initial step length was 50 and   d   = 0.25. For the forward 
line search implementation, the initial step length was 3 and   d   = 10. 

 Table  1  illustrates the performance of each of the line search methods. In terms 
of the number of iterations and computation time, the reduced step variant per-
formed the best, while the forward line search performed the worst. The poor com-
putational speed of the forward line search results from the fact that, despite the 
small step size in a majority of iterations, the line searches with large step sizes 
required more computation time than what was gained by the small step sizes.  

 Somewhat surprisingly, the reduced step method resulted in the worst objective 
function values when used in the Add/Drop algorithm. One possibility for poor 
solution quality is that from our observations of the backtracking method, after the 

   Table 1    Comparison of the line search methods   

 Backtracking  Reduced step  Forward 

 Add/drop iterations  Mean  16  13.7  16.1 
 St. dev.  2.94  6.52  5.47 
 Minimum  12  7  8 
 Maximum  20  23  23 

 Time (min)  Mean  43.74  30.94  47.85 
 St. dev.  9.04  15.87  16.41 
 Minimum  31.70  13.40  22.70 
 Maximum  57.30  51.70  68.10 

 FMO obj.fn. value  Mean  13,298.29  17,458.25  14,695.36 
 St. dev.  2,062.89  4,657.02  2,750.92 
 Minimum  11,822.90  12,230.20  11,724.50 
 Maximum  18,492.00  23,452.30  19,184.00 


