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Preface

Originated from steam engines, in thermodynamics the energy exchange is

formulated traditionally for homogeneous states of materials. Applying to

condensed matters however, laws of thermodynamics have to be used with respect

to the structural detail. Following Kirkwood’s Chemical Thermodynamics, this
book is written for lattice dynamics in crystalline states under the laws of thermo-

dynamics. It is noted that lattice symmetry remains implicit in thermodynamic

functions of crystalline states, if assumed as homogeneous. In contrast, deformed

crystals with disrupted symmetry are not stable and inhomogeneous, exhibiting

mesoscopic properties, for which the lattice dynamics should be redefined under

thermodynamic principles. I have selected the topics of structural changes, mag-

netic crystals, and superconducting transitions in this book to discuss these basic

thermodynamic processes in crystalline states.

Born and Huang have laid ground for thermodynamics of crystalline states in

their book Dynamical Theory of Crystal Lattices. However, they considered that

order–disorder phenomena was independent from the lattice dynamics, and so

excluded it from their book. On the other hand, today new evidence indicates that

the problem should be treated otherwise; in fact, the lattice plays a vital role in

ordering processes. Accordingly, I was motivated to write about the physics of

crystal lattice in the light of Born-Huang’s principles, which constitutes my primary

objective in this book.

In modern experiments, mesoscopic objects in crystals can be investigated

within the timescale of observation, yielding results that appear somewhat unusual,

if compared with macroscopic experiments. It is important that thermodynamic

relations in mesoscopic states should be described with respect to the timescale of

observation. Also significant is that mesoscopic quantities in crystals are driven by

internal interactions in nonlinear character. I have therefore discussed thermody-

namic quantities with regard to the timescale of observation, including elementary

accounts of nonlinear physics to deal with long-range correlations. For the conve-

nience of readers who are not particularly familiar with nonlinear dynamics,

Appendix is attached for some useful formula of elliptic functions.
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I have rewritten this second edition for advanced students in physics and

material science, assuming basic knowledge of traditional thermodynamics

and quantum theories. This book is designed for serving as a useful textbook for

classroom and seminar discussions. I hope that it will stimulate advanced studies of

condensed matter.

I should mention with my sincere appreciation that I have benefited for my

writing from numerous discussions with and comments from my colleagues

and students. Finally, I thank my wife Haruko for her continuous support and

encouragements.

Mississauga, Ontario Minoru Fujimoto
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Chapter 1

Introduction

The role played by the lattice for symmetry changes in a crystal is a basic subject for

discussion in this book. On the other hand, as related to lattice excitations, the
concept of order variables needs to be established in thermodynamics of crystalline

states. Normally inactive at elevated temperatures, order variables at lattice sites

should be responsive to a symmetry change at a critical temperature. Exhibiting a

singular behavior, an adiabatic potential should also emerge with order variables in

finite magnitude with lowering temperature. Well documented experimentally,

we should analyze their properties under thermodynamic principles.

In reviewing thermodynamic principles, the present thermodynamics of crystal-

line states is overviewed in this chapter, emphasizing dynamic roles played by the

lattice structure.

1.1 Crystalline Phases

Originated from early studies on steam engines, thermodynamics today is a

well-established discipline of physics for thermal properties of matter. Specified

by a uniform density, a thermodynamic state of a crystal can be described by state

functions of temperature and pressure of the surroundings. In contrast, chara-

cterized by symmetry of the lattice structure, properties of a single crystal are
attributed to masses and other physical properties of constituents at lattice points,

while symmetry per se cannot be responsible for the physical properties. We realize

that structural changes cannot be described by uniform state functions, unless these

functions are defined as related with the structural detail. The structural transition

is generally discontinuous at a critical temperature Tc , below which even a

chemically pure crystal becomes heterogeneous, composed of substructures in

smaller volume, for example, domains in thermal equilibrium. Nevertheless, an

external force or field can transform domains from one type to another while

M. Fujimoto, Thermodynamics of Crystalline States,
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maintaining structural stability. In addition, there are inhomogeneous crystals

among various types, which are signified by a sinusoidal density, representing
modulated structure. Following Kirkwood [1] in Chemical Thermodynamics we

can consider state functions of continuous internal variables in crystalline states in

equilibrium with the surroundings.

In Dynamical Theory of Crystal Lattices, Born and Huang [2] proposed the

principle for lattice stability, laying the foundation of thermodynamics of crystal-

line states. However, their principle was not quite verified with experimental

results, which were not fully analyzed at that time. Today, in spite of many

supporting results, their theory is still not considered as sufficiently substantiated.

A crystalline state is very different from a gaseous state of a large number of free
independent particles. A crystal structure packed with identical constituents is

characterized by distinct symmetry; in contrast, fast molecular motion prevails in

gaseous states. The internal energy of a gas is primarily kinetic energies of

constituent particles in free motion, whereas for a crystal, it is intermolecular

potential energies in the packed structure. The structural transformation in crystals

is a dynamic process, whereas a gas is normally in a single phase, except in

condensation process. In addition, a gas confined to a container has a finite volume,

whereas external conditions determine a crystal volume. Simplifying by a mathe-

matical conjecture, we can say that surfaces have a little contribution to bulk

properties of a sizable crystal. However, a small volume change is inevitable in

practical crystals under structural changes.

In thermodynamics, a crystal must always be in contact with the surroundings.

Assuming no chemical activity, surfaces are in physical contact with the surround-

ings, exchanging heat between them. Joule demonstrated that heat is nothing but

energy, although it is of unique type microscopically. Boltzmann considered that

heat originates from randomly distributed microscopic energies in the surround-

ings. On the other hand, excitations in a crystal are primarily lattice vibrations at a

given temperature, which are quantum mechanically expressed as phonons in

random motion. The phonon spectrum is virtually continuous; the internal energy
of lattice is given by a statistical average of distributed phonon energies. In this

context, the lattice symmetry is implicit in thermodynamic functions, as specified

by a uniform density in a constant volume.

Equilibrium between two bodies in thermal contact, as characterized by a

common temperature T, signifies that there is no net flow of heat across the

surfaces. For a combined system of a crystal and its surroundings, the total

fluctuating heat is always dissipative, so that DQ is expressed as negative, that is,

DQ� 0, implying that any thermal process is fundamentally irreversible in nature,

as stated by the second-law of thermodynamics. Depending on the nature of heat

dissipation, such DQ cannot generally be expressed by a function of temperature

and pressure; namely, the heat quantity Q is not a state function. Instead, a function

S, defined by
DQ
T ¼ DS , can be employed as a state function if the integrating

denominator T can be found for an infinitesimal S to be a total differential,
representing a reversible contact between the crystal and surroundings. Clausius

generalized this argument in integral form
H
C
Q
T � 0 or

H
C dS� 0 around a closed
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curve C in a phase diagram, where the equality sign indicates an idealized case of

reversible process. Thermal equilibrium can thus be determined by maximizing the

state function S, which is known as the entropy.
Boltzmann interpreted the entropy S in terms of thermodynamic probability gðTÞ

at constant pressure to represent a thermal average of randomly distributed micro-

scopic energies in the surroundings, for which he wrote the relation

S ¼ kB ln gðTÞ; (1.1)

where kB is the Boltzmann constant. For crystalline states in equilibrium at

temperature T, such a probability is a valid concept if random phonon energies

are responsible for the statistical description under a constant volume V. However,
if a small volume change DV is considered at constant T and p, a process at a

constant crystal volume V is not an acceptable assumption for a crystal under

constant p. Hence, Boltzmann’s statistical theory is valid only if V is constant;

otherwise, the dynamical system in a crystal is statistically non-ergodic.
In thermodynamics, physical properties of a crystal can be represented by the

internal energy U p; Tð Þ, which is varied not only by heat DQ but also by external

work W, as stated by the first law of thermodynamics. Namely,

DU ¼ DQþW: (1.2)

A mechanical work W can change the volume V, where a structural modification

may be induced, for example, by an electric or magnetic field, straining crystals by

their forcesX. Considering that such variablessm respond to appliedX, theworkW can

be expressed as W ¼ �P
m
smX . It is noted that such X can be associated with

internal interactions with sn at different sites n, signifying correlations between

internal variables sm and sn. Such internal correlations can occur adiabatically in a
crystal, independent of temperature.However, they areweakly temperature dependent

in practice, via interactions with phonons. In contrast, the heat energyQ depends only

on the temperature of the surroundings, flowing in and out of a crystal at a constant V.
Correlated sm is generally in collective motion at long wavelength, propagating

through an excited lattice. Such motion in a crystal should occur when driven by an

adiabatic potential DUm at the lattice point m, as will be discussed in Chap. 7. In a

modulated structure, the propagation can be detected in a standing wave whose

period is not necessarily the same as in the lattice. On the other hand, if the

correlation energy in short range is expressed in a form � Jmnsmsn, where Jmn is
a function of the distance between sm and sn, we can write

�
X
n

Jmnsmsn ¼ �smXm (1.3)

which allows us to define the internal fieldXm ¼P
n
Jmnsn at a site m. AveragingXm

and sm over all lattice sites, we can define the mean-field average Xmh i and smh i,
respectively. For a nonzero smh i, the expression (1.3) can be interpreted as work
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performed by a field Xmh i on the smh iin mean-field accuracy. On the other hand, by

writing (1.3) as � smh iXint, Xint can represent another kind of internal field, defined

in better accuracy than the mean-field average Xmh i. In this case, attributed to the

adiabatic potential DUm , we can write Xint ¼ �rm DUmð Þ , corresponding to the

Weiss field that was originally proposed for a magnetic crystal.

In the presence of an external field X, the effective field can be defined as

X þ Xint ¼ X0, considering X0 as if applied externally. Such a field X0 is usually

temperature dependent, as contributed by temperature-dependent Xint; hence, we

can write X0 ¼ X0ðTÞ under a constant p. The macroscopic energy relation can

therefore be expressed as

DU�DQ� D sX0ð Þ or DU � TDSþ D sX0ð Þ � 0:

Writing the Gibbs potential as G ¼ U � TSþ sX0, we can obtain the inequality

DG� 0; (1.4)

indicating that the minimum of G determines the equilibrium at constant T and p.
In practice, order variables sm should be identified experimentally; thereby,

equilibrium can be determined from the Gibbs function at given T and p. On the

other hand, the mean-field average smh i ¼ s , called order parameter, can be

utilized for simplifying description. In this case, the Gibbs function can be written

asG p; T;sð Þ, where the order parameter s is defined for the range 0�s� 1, where

0 and 1 are designated to perfect disorder and order, respectively. In spontaneously
ordered crystals, the internal field Xint can be related to spatially distributed sm. For

a ferromagnetic crystal, Weiss (1907) postulated thatXint / magnetizationð Þ, which
is traditionally called Weiss’ molecular field in a ferroelectric crystal.

1.2 Structural Changes

The structure of an equilibrium crystal is stable, which is however transformable

from one stable state to another by applying an external field. In addition, we consider

that the order variablessm emerging atTc in finite magnitude are in collectivemotion,

leading to spontaneous phase transitions. Although assumed primarily as indepen-

dent of the hosting lattice, the correlated order variables modulate translational lattice

symmetry. Interpreting this by Newton’s action–reaction principle, correlated lattice

displacements um should interact with correlated vectors sm . Born and Huang [2]

proposed their principle for the lattice to maintain stability with minimum strains,

which can be evaluated by minimizing the Gibbs potential. Such a minimizing

process can nevertheless be observed as thermal relaxation.

Regarding a transition from a phase 1 to another phase 2 at a critical point ðpc; Tc),

the Gibbs potential may be written as G pc; Tc; s1;s2ð Þ, where s1 and s2 represent
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these phases 1 and 2 which coexist during the transition. Although somewhat

imprecise, we write the whole Gibbs potential under an applied field X as

Gtrans ¼ G pc; Tc;s1;s2ð Þ � s1 þ s2ð ÞX:

In the noncritical region below Tc, we consider two Gibbs potentials G1 and G2,

coexisting at p and T, which are expressed as

G1 ¼ G p; Tð Þ � s1X

and

G2 ¼ G p; Tð Þ � s2X;

respectively.

For a binary transition characterized by inversion s1 ¼ �s2 , we consider

fluctuations Ds1 ¼ �Ds2 , and hence,
P
i¼1;2

@Gtrans

@si

� �
pc;Tc

Dsi ¼ 0 . Therefore,

expanding with respect to Dsi, the Gibbs potential can be expressed as

DGtrans ¼ 1

2

X
i¼1;2

@2Gtrans

@si@sj

� �
pc;Tc

DsiDsj þ . . . : (1.5)

Neglecting higher than second-order terms for smallDsi, a nonvanishingDGtrans

gives a discontinuity due to the leading term of the second-order in (1.5). On the

other hand, if such an inversion does not apply, DGtrans is dominated by the finite

first-order derivative terms; hence, the transition is called the first-order, according
to the Ehrenfest’s classification. In the binary case, DGtrans is dominated by the

second-order terms, and hence, the transition is called the second-order. It is noted
from (1.5) that both the correlationsDsiDsj and the second-order derivatives should

not vanish for the leading term to come into effect; nonzero correlations are

essential, as substantiated by transition anomalies observed for the specific heat.

Such fluctuations Dsi should be quantum mechanical in nature, being responsible

for the threshold anomalies, whilesi behave like a classical vector at and below Tc.

The transformation below Tc is signified by the difference DG1;2 ¼ G2 � G1 ,

which is finite at X 6¼ 0, however zero if X ¼ 0. Accordingly,

DG1;2 ¼ s2 � s1ð ÞX: (1.6)

For X ¼ 0 and X 6¼ 0 , the transformations are the second- and the first-order,

respectively. In thermodynamics, both the Gibbs potential and order parameter are

extensive variables by definition, as they are proportional to the corresponding

volume. Denoting domain volumes by V1 and V2, the total volume is V1 þ V2 ¼ V,
which can be assumed as invariant under a constant p. If so, (1.6) can be determined

by either the volume ratio V1 V2= or order-parameter ratio s1 s2= ; both can be

changed by applying X (see Chap. 4).
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Figure 1.1 shows a phase diagram, where two Gibbs functions of phasesG1 andG2

are schematically plotted in a p–T plane. The crossing point P po; Toð Þ indicates that a
transition occurs betweenG1 andG2 at Pðpo; ToÞ. The transition is generally first-order,
becauseof discontinuity in theperpendicular direction top–Tplane, although implicit in

the two-dimensional p–T diagram; there is a finite change of curvature at P as related to

DGtrans.Nevertheless, the discontinuity vanishes, ifwe ignorefluctuations.Figure 1.2(a)

illustrates a continuous binary transition G1 ! G2 at Tc , assuming that there are no

Fig. 1.1 Phase equilibrium

in the p–T diagram. Two

curves of Gibbs functions. G1

p; Tð Þ and G2 p;Tð Þ cross at a
point P po;Toð Þ, representing
thermal equilibrium between

phase 1 and phase 2. If the

transition is discontinuous at

P, such Gibbs functions

cannot specify the

equilibrium sufficiently at P,

requiring another variable

such as s.

Fig. 1.2 (a) The second-
order phase transition is

characterized by two

functionsG1andG2 that have a

common tangent and different

curvatures at P in the p–T
diagram. (b) Equilibrium
between binary domains

specified by s1 and s2, which

are separated phases at

temperatures below the

critical temperature Tc.

Transition anomalies near Tc

are shown schematically by

the shaded area.
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fluctuations. In the diagram s–T in Fig. 1.2(b), a continuous transition is sketched by

solid lines, which are broadened by fluctuations in the vicinity of Tc . Below Tc , the

transformations1 $ s2 can take place in the first order, if performed by an externalX.
It is noted that such a process under a constant p condition is not strictly adiabatic,

because Xint is temperature dependent in practical crystals.

1.3 New Concepts

In this book, we discuss thermodynamics of crystalline states under the laws of

thermodynamics, for which new concepts, such as renormalized coordinates,
solitons, and fields, are added to express collective properties of order variables in

periodic structure. These are listed in the following.

1.3.1 Modulated Phases and Renormalized Coordinates

We describe fluctuations in crystals as arising from quantum-mechanical space–time

uncertainties for order variables si that represent classical vectors at all sites of a

periodic lattice. Their correlatedmotion described as propagation in the continuumfield
suited particularly to low excitations of lattice under critical conditions. Associated

with sinusoidal lattice displacements ui, the related variables si are signified by their

displacements and expressed as a sinusoidal field si ¼ so exp i k:ri � oti þ jið Þ;
accompanying phase uncertainties Dji.

Surfaces are significant for thermal properties of a crystal; however, by ignoring

them, we can idealize a crystal as infinite periodic structure, where phases of order

variablessi fluctuate byDji at a given T. Such sinusoidal fluctuations are detectable
if their standing waves are pinned by the modulated lattice, visualizing mesoscopic
fluctuations. (See Chap. 8 for the detail.) The order variable s r; tð Þ ¼ s fð Þ is

continuous in space–time or phase f ¼ k:r � ot, for which one full angular period

0�f� 2p is sufficient instead of a repeated expression. Hence, such a continuous

variable s fð Þ can be utilized for expressing thermodynamic functions in a

mesoscopic state.

Expressed in the form s ¼ sof fð Þ incorporated with periodic boundary

conditions, so is a finite amplitude and f ¼ k:r � ot in the range 0�f� 2p .
The spatial phase fs ¼ k:r in standing waves visualizes distributed mesoscopic

phases in the angular range 0�fs � 2p in a whole crystal without referring to

lattice sites. Noted that this definition is similar to a renormalization group of order
variables in statistical mechanics [3], we shall call fs and r; tð Þ renormalized phase

and coordinates, respectively. The Gibbs function in a mesoscopic phase can also

be expressed as G so;fsð Þ in terms of renormalized variables.
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1.3.2 Thermodynamic Changes and Nonlinear Dynamics

Physical properties of matter can change with the responsible dynamical system in

equilibrium under isothermal and adiabatic conditions. Small deviations from

equilibrium are always restorable in stable crystals, where the dynamical system

is dissipative and dispersive under these conditions. Accordingly, the equation of

motion during thermodynamic changes can be nonlinear, leading to the modulated

lattice structure. While not particularly familiar in traditional physics, we need to

deal with the nonlinearity in thermodynamics of crystalline states. Soliton theory

[4] in nonlinear physics provides with collective motion in an accurate approxima-

tion better than the mean-field approach.

1.3.3 Fields within Thermodynamic Boundaries

For collective motion in crystals, it is convenient to use the field concept [5].

The superconducting transition in metals can be discussed with the field concept

on condensation of electrons in the reciprocal lattice space. Characterized by

supercurrents and Meissner effects, superconducting phase transitions are more

complex than other ordering phenomena, although exhibiting similar specific heat

anomalies arising from condensing charge carriers. Fröhlich’s field-theoretical

model of electron–phonon interaction provides a clear image of condensates to

initiate a phase transition, on which the theory of Bardeen, Cooper, and Schrieffer

can define order variables. The last three chapters in this book are for super-

conducting transitions in metals, which can be discussed by analogy of structural

changes. Phase changes in crystals are generally associated with adiabatic

potentials, where the nonlinearity arises from interactions with the lattice.

In this book, dynamical variables in crystals are discussed within thermal

boundaries at constant T and p, which can be described as isothermal and adiabatic

processes in crystals. The former remains the same as in traditional theories,

whereas the latter process cannot be separated from the former, showing thermal

relaxation to stabilize structure.

1.3.4 Adiabatic Potentials

Introduced early by Boltzmann and Ehrenfest, the concept of adiabatic invariance

should be extended explicitly to crystalline states to deal with long-range

correlations, which can be discussed by means of the internal adiabatic potential
in the lattice. Recognized in practical applications of thermodynamics, it was

however not seriously dealt with in most available references. We therefore

emphasized its significance for driving condensates for structural order.
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1.4 Sampling Modulated States

For critical fluctuations, the timescale t is a significant for sampling experiments of

the spatial distribution of s. For that purpose, the timescale to of sampling should be

shorter than the timescale t of fluctuations. A Gibbs potential, if sampled at a given

p–T condition, should be expressed by a space–time average over to, namely,

Gp;T ¼ 1

to

ðto
0

dt

 
1

V

ð
V

g r; tð Þd3r
!
; (1.7a)

where g r; tð Þ is the density of Gibbs potential in the sampling volume V. Writing the

time average as 1
to

Rto
0

g r; tð Þdt ¼ g r; tð Þh it, (1.7a) can be expressed by

Gp;T ¼ 1

V

ð
V

g r; tð Þh itd3r: (1.7b)

The average density g r; tð Þh it over to can be sampled from a specimen of volume

V. It is noted that such a sampling results in a useful information only if t>to .
Sampled mesoscopic s r; tð Þh it represents s fsð Þ , where 0�fs � 2p and the

distributed s fsð Þ is explicit, provided that t>to.

Exercise 1

1. What is the mean-field average? If a physical event at each lattice point is

random and independent, the average should always be zero, should it not?

There must be some kind of correlations among them in order to have a nonzero

average. Discuss this issue.

2. Review Ehrenfest’s classification of phase transitions from a standard textbook

on thermodynamics. In his definition of second-order transitions, vanishing first-

order derivatives and nonzero second-order derivatives of the Gibbs function are

necessary. On the other hand, as we mentioned in Sect. 1.2, nonzero correlations

DsiDsjamong internal variables are required, in addition to Ehrenfest’s defini-

tion. Is this a conflict? This problem should be discussed to clear this issue before

proceeding to the following chapters.

3. In traditional thermodynamics, the Gibbs potential was defined as a function of

macroscopic variables. However, macroscopic heat and order parameter are

associated with internal variables in a crystal, which are essentially related to

thermal and adiabatic averages of fluctuating microscopic variables, respec-

tively. In this context, the Gibbs function defined in this chapter is associated

with all sites that may not be identical. Discuss this issue for thermodynamics of

heterogeneous matters.
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Chapter 2

Phonons

Disregarding point symmetry, we can simplify the crystal structure by the space

group [1, 2], representing the thermodynamic state in equilibrium with the sur-

roundings at given values of p and T. In this approach, the restoring forces secure

stability of the lattice, where the masses at lattice points are in harmonic motion.

In this case, we realize that their directional correlations in the lattice are ignored

so that a possible disarrangement in the lattice can cause structural instability.

In this chapter, we discuss a harmonic lattice to deal with basic excitations in

equilibrium structure. Lattice vibrations in periodic structure are in propagation,

specified by frequencies and wavevectors in virtually continuous spectra. Quantum

mechanically, on the other hand, the corresponding phonons signify the dynamical

state in crystals. In strained crystals, as modulated by correlated constituents, low-

frequency excitations dominate over the distorted structure, which is however

thermally unstable as discussed in this chapter.

2.1 Normal Modes in a Simple Crystal

A crystal of chemically identical constituent ions has a rigid periodic structure

in equilibrium with the surroundings, which is characterized by translational
symmetry. Referring to symmetry axes, physical properties can be attributed to the

translational invariance, in consequence of energy and momentum conservations

among constituents.

Constituents are assumed to be bound together by restoring forces in the lattice

structure. Considering a cubic lattice ofN3 identical mass particles in a cubic crystal

in sufficiently large size, we can solve the classical equation of motion with nearest-

neighbor interactions. Although such a problem should be solved quantum mechan-
ically, classical solutions provide also a useful approximation. It is noted that the

lattice symmetry is unchanged with the nearest-neighbor interactions, assuring

M. Fujimoto, Thermodynamics of Crystalline States,
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structural stability in this approach. In the harmonic approximation, we have linear
differential equations, which can be separated into 3N independent equations; this

one-dimensional equation describes normal modes of N constituents in collective

motion along the symmetry axis x, y, or z [3]. Denoting the displacement by a vector

qn from a site n, we write equations of motion for the components qx;n; qy;n and qz;n
independently, that is,

€qx;n ¼ o2 qx;nþ1 þ qx;n�1 � 2qx;n
� �

; €qy;n ¼ o2 qy;nþ1 þ qy;n�1 � 2qy;n
� �

and

€qz;n ¼ o2 qz;nþ1 þ qz;n�1 � 2qz;n
� �

;

where o2 ¼ k m= and k and m are the mass of a constituent particle and the force

constant, respectively. As these equations are identical, we write the following

equation for a representative component to name qn for brevity:

€qn ¼ o2 qnþ1 þ qn�1 � 2qn
� �

; (2.1)

which assures lattice stability along any symmetry direction.

Defining the conjugate momentum by pn ¼ m _qn, the Hamiltonian of a harmonic

lattice can be expressed as

H ¼
XN
n¼0

p2n
2m

þ mo2

2
qnþ1 � qn
� �2 þ mo2

2
qn � qn�1ð Þ2

� �
: (2.2)

Each term in the summation represents one-dimensional infinite chain of identi-

cal masses m, as illustrated in Fig. 2.1a.

Normal coordinates and conjugate momenta, Qk and Pk , are defined with the

Fourier expansions

qn ¼
1ffiffiffiffi
N

p
XkN
k¼0

Qk exp iknað Þ and pk ¼
XkN
k¼0

Pk exp iknað Þ; (2.3)

Fig. 2.1 (a) One-
dimensional monatomic

chain of the lattice constant a.
(b) A dispersion curve o vs: k
of the chain lattice.
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where a is the lattice constant. For each mode of qn and pn, the amplitudes Qk and

Pk are related as

Q�k ¼ Qk
�; P�k ¼ Pk

� and
XN
n¼0

exp i k � k0ð Þna ¼ Ndkk0 ; (2.4)

where dkk0 is Kronecker’s delta, that is, dkk0 ¼ 1 for k ¼ k0, otherwise zero for k ¼ k0.
Using normal coordinates Qk and Pk, the Hamiltonian can be expressed as

H ¼ 1

2m

X2p a=

k¼0

PkPk
� þ QkQk

�m2o2 sin2
ka

2

� �� �
; (2.5)

from which the equation of motion for Qk is written as

€Qk ¼ �m2o2Qk; (2.6)

where

ok ¼ 2o sin
ka

2
¼ 2

ffiffiffiffi
k
m

r
sin

ka

2
: (2.7)

As indicated by (2.7), the k-mode of coupled oscillators is dispersive, which are

linearly independent from the other modes of k0 6¼ k . H is composed of N

independent harmonic oscillators, each of which is determined by the normal

coordinatesQk and conjugate momentaPk. Applying Born–von Kárman’s boundary

conditions to the periodic structure, k can take discrete values as given by k ¼ 2pn
Na

and n ¼ 0; 1; 2; . . . ;N. Figure 2.1b shows the dispersion relation (2.7) determined

by the characteristic frequency ok:
With initial values of Qkð0Þ and _Qkð0Þ specified at t ¼ 0, the solution of (2.7)

can be given by

QkðtÞ ¼ Qkð0Þ cosoktþ
_Qkð0Þ
ok

sinokt:

Accordingly,

qnðtÞ ¼
1ffiffiffiffi
N

p
XkN
k¼0

X
n0¼n;n�1

qn0ð0Þ cos ka n� n0ð Þ � oktf g þ _qn0 ð0Þ
ok

sin ka n� n0ð Þ � oktf g
	 


;

(2.8)

where a n� n0ð Þ represents distances between sites n and n0 so that we write it as

x ¼ a n� n0ð Þ in the following. The crystal is assumed as consisting of a

large number of the cubic volume L3 where L ¼ Na , if disregarding surfaces.
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The periodic boundary conditions can then be set as qn¼0ðtÞ ¼ qn¼NðtÞ at an

arbitrary time t. At a lattice point x ¼ na between n ¼ 0 and N , (2.8) can be

expressed as

q x; tð Þ ¼
X
k

Ak cos �kx� oktð Þ þ Bk sin �kx� oktð Þ½ �;

where Ak ¼ qkð0Þffiffiffi
N

p and Bk ¼ _qkð0Þ
ok

ffiffiffi
N

p , and x is virtually continuous in the range 0� x

� L, if L is taken as sufficiently long. Consisting of waves propagating in � x

directions, we can write q x; tð Þ conveniently in complex exponential form, that is,

q x; tð Þ ¼
X
k

Ck exp i �kx� oktþ jkð Þ; (2.9)

where C2
k ¼ A2

k þ B2
k and tanjk ¼ Bk

Ak
. For a three-dimensional crystal, these one-

dimensional k-modes along the x-axis can be copied to other symmetry axes y and z;
accordingly, there are 3N normal modes in total in a cubic crystal.

2.2 Quantized Normal Modes

The classical equation of motion of a harmonic crystal is separable to 3N indepen-

dent normal propagation modes specified by kn ¼ 2pn
aN along the symmetry axes. In

quantum theory, the normal coordinate Qk and conjugate momentum Pk ¼ �i�h @
@Qk

are operators, where �h ¼ h
2p and h is the Planck constant. For these normal and

conjugate variables, there are commutation relations:

Qk;Qk0½ � ¼ 0; Pk;Pk0½ � ¼ 0 and Pk;Qk0½ � ¼ i�hdkk0 ; (2.10)

and the Hamiltonian operator is

Hk ¼ 1

2m
PkP

y
k þ m2o2

kQkQ
y
k

� �
: (2.11a)

Here,P
y
k andQ

y
k express transposedmatrix operators of the complex conjugatesPk

�

and Qk
�, respectively.

Denoting the eigenvalues of Hk by ek, we have the equation

HkCk ¼ ekCk: (2.11b)

For real eigenvalues ek , Pk and Qk should be Hermitian operators, which are

characterized by the relations P
y
k ¼ P�k and Q

y
k ¼ Q�k , respectively. Defining

operators
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bk ¼ mokQk þ iP
y
kffiffiffiffiffiffiffiffiffiffi

2mek
p and b

y
k ¼ mokQ

y
k � iPkffiffiffiffiffiffiffiffiffiffi
2mek

p ; (2.12)

we can write the relation

bkb
y
k ¼ 1

2mek
m2o2

kQ
y
k Qk þ P

y
k Pk

� �
þ iok

2ek
Q
y
k P

y
k � PkQk

� �

¼ Hk

ek
þ iok

2ek
Q�kP�k � PkQkð Þ:

From this relation, we can be derive

Hk ¼ �hok b
y
k bk þ

1

2

� �
; if ek ¼ 1

2
�hok: (2.13)

Therefore, Hk are commutable with the operator b
y
k bk, that is,

Hk; b
y
k bk

h i
¼ 0;

and from (2.12)

bk0 ; b
y
k

h i
¼ dk0k; bk0 ; bk½ � ¼ 0 and b

y
k0 ; b

y
k

h i
¼ 0:

Accordingly, we obtain

Hk; b
y
k

h i
¼ �hokb

y
k and bk; Hk½ � ¼ �hokbk:

Combining with (2.11b), we can derive the relations

Hk b
y
kCk

� �
¼ ek þ �hokð Þ b

y
kCk

� �
and Hk bkCkð Þ ¼ ek � �hokð Þ bkCkð Þ;

indicating that b
y
kCk and bkCk are eigenfunctions for the energies ek þ �hok and

ek � �hok , respectively. In this context, b
y
k and bk are referred to as creation and

annihilation operators for the energy quantum �hok to add and subtract in the energy

ek; hence, we can write

b
y
k bk ¼ 1: (2.14)

Applying the creation operator b
y
k on the ground state function Cknk-times, the

eigenvalue of the wavefunction b
y
k

� �nk

Ck can be given by nk þ 1
2

� �
�hok, generating a
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state of nkquanta plus 1
2
�hok . Considering a quantum �hok like a particle, called a

phonon, such an exited state with nk identical phonons is multiply degenerate by

permutation nk! Hence, the normalized wavefunction of nk phonons can be

expressed by 1ffiffiffiffi
nk !

p b
y
k

� �nk

Ck . The total lattice energy in an excited state of n1; n2;

::::: phonons in the normal modes 1, 2,. . ... can be expressed by

U n1; n2; :::::ð Þ ¼ Uo þ
X
k

nk�hok; (2.15a)

where Uo ¼
P
k

�hok

2
is the total zero-point energy. The corresponding wavefunction

can be written as

C n1; n2; :::::ð Þ ¼
b
y
1

� �n1

b
y
2

� �n2

:::::ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1! n2! :::::

p C1C2:::::ð Þ; (2.15b)

which describes a state of n1; n2; :::: phonons of energies n1�hok1 ; n2�hok2 ; :::::. The
total number N¼n1 þ n2 þ ::::: cannot be evaluated by the dynamical theory;

however, we can determine the value in thermodynamics, as related to the level

of thermal excitation at a given temperature.

2.3 Phonon Field and Momentum

In a one-dimensional chain of identical mass particles, the displacement mode qk is
independent from each other’s modes, and hence representing normal modes in a

three-dimensional crystal. However, this model is only approximate, in that these

normal modes arise from the one-dimension harmonic chain model, where mutual

interactions between different normal modes are prohibited. For propagation in

arbitrary direction, the vibrating field offers more appropriate approach than the

normal modes, where quantized phonons move in any direction like free particles in

the field space.

Setting rectangular coordinates x; y; z along the symmetry axes of an orthorhom-

bic crystal in classical theory, the lattice vibrations are described by a set of

equations

px;n1
2

2m
þ k

2
qx;n1 � qx;n1þ1

� �2 þ qx;n1 � qx;n1�1

� �2n o
¼ ex;n1 ;

py;n2
2

2m
þ k

2
qy;n2 � qy;n2þ1

� �2 þ qy;n2 � qy;n2�1

� �2n o
¼ ey;n2 ;

and

pz;n3
2

2m
þ k

2
qz;n3 � qz;n3þ1

� �2 þ qz;n3 � qz;n3�1

� �2n o
¼ ez;n3 ;

(2.16)
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whereex;n1 þ ey;n2 þ ez;n3 ¼ en1n2n3 is the total propagation energy along the direction
specified by the vector q n1; n2; n3ð Þ and k is the force constant.

The variables qx;n1 ; qy;n2 ; qz;n3 in (2.16) are components of a classical vector

q n1; n2; n3ð Þ , which can be interpreted quantum theoretically as probability
amplitudes of components of the vector q in the vibration field. We can therefore

write the wavefunction of the displacement field asC n1; n2; n3ð Þ ¼ qx;n1qy;n2qz;n3,
for which these classical components are written as

q x; tð Þ ¼
X
kx

Ck;x exp i �kxx� okx tþ jkx

� �
;

q y; tð Þ ¼
X
ky

Cky exp i �kyy� oky tþ jky

� �
;

q z; tð Þ ¼
X
kz

Cky exp i �kzz� okz tþ jkz

� �
;

and hence, we have

C n1; n2; n3ð Þ ¼
X
k

Ak exp i �k:r � n1ex;n1 þ n2ey;n2 þ n3ez;n3
�h

tþ jk

� �
:

Here, Ak ¼ CkxCkyCkz ; jk ¼ jkx þ jky þ jkz , and k ¼ kx; ky; kz
� �

are the ampli-

tude, phase constant, and wavevector of C n1; n2; n3ð Þ , respectively. Further

writing

n1ex;n1 þ n2ey;n2 þ n3ez;n3
�h

¼ ok n1; n2; n3ð Þ ¼ ok; (2.17a)

the field propagating along the direction of a vector k can be expressed as

C k;okð Þ ¼ Ak exp i �k:r � oktþ jkð Þ; (2.17b)

representing a phonon of energy �hok and momentum � �hk . For a small kj j , the
propagation in a cubic lattice can be characterized by a constant speed v of propaga-
tion determined by ok ¼ v kj j, indicating no dispersion in this approximation.

The phonon propagation can be described by the vector k, composing a recipro-
cal lattice space, as illustrated in two dimensions in Fig. 2.2 by

kx ¼ 2pn1
L

; ky ¼ 2pn2
L

and kz ¼ 2pn3
L

;
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