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v

   Reconstruction of evolutionary history by Bayesian analysis of extant genome 
sequences suggests that the  Mycobacterium tuberculosis  complex emerged as an 
infection of anatomically modern humans carrying the L3 mitochondrial haplotype 
around one hundred thousand years ago. Since then,  M. tuberculosis  has demon-
strated a remarkable ability to persist amongst small, highly vulnerable populations 
of early humans migrating out of Africa and to thrive in response to changing 
demography and recent massive population expansion. The Global Plan to Stop TB 
proposes its elimination—de fi ned as fewer than one case per million individuals—
by 2050 [1]. Given our history of intimate companionship, how can we envisage a 
strategy to drive this microbe towards extinction? 

 While we can readily collect data on tuberculosis epidemiology, attempts to 
explain patterns of disease—and hence to design rational control strategies—reveal 
contributions from multiple variables. It is clear that disease results from some com-
bination of host, microbial, and environmental factors, but it is hard to generate 
mechanistic models that tease these apart. This is an example of an “inverse prob-
lem”, in which we have to try and infer the parts by examination of the whole. This 
is anathema to reductionist biology, and it is the territory to which systems biology 
aspires. 

 Sydney Brenner highlights the attempt to address ill-posed inverse questions as 
a lethal  fl aw in the systems approach, predicting a spiral into low-input, high-
throughput, no-output biology [2]. Systems biologists counter by proposing an 
iterative process of modelling and forward testing of derived hypotheses. This 
involves an interesting mix of logical reasoning. Wikipedia pithily describes deduc-
tion (in which a conclusion is determined by a precondition) as the province of 
mathematicians, induction (in which a conclusion is a probable outcome of a 
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vi Introduction

 precondition) as the province of scientists, and abduction (in which a precondition 
is inferred from a conclusion) as the province of detectives. While Sherlock Holmes 
may dispute elements of this categorisation, the systems biology agenda strives 
towards some clear-sighted integration of all three methods. 

 A systems approach to tuberculosis can be envisaged as a series of nested prob-
lems (often inverse problems) ranging in scale from the level of populations, to 
individuals, to the cellular and molecular that can conveniently be branded as 
“ systems epidemiology” [3], “systems vaccinology” [4], and so on. The present 
volume comprises a series of contributions from groups who are at the forefront of 
applying systems biology approaches to understand tuberculosis, working primarily 
at the cell biology end of this spectrum. 

 Beste and McFadden [5] and Jamshidi et al .  [6] review advances in metabolic 
modelling. Metabolomics is particularly appropriate for network modelling. 
Connectivity between components in the network is direct—one metabolite changes 
into another—in contrast to the indirect spatial and temporal interactions used to 
build networks of genes and proteins. Jamshidi et al .  describe fundamental pro-
cesses of network modelling, while Beste and McFadden stress the importance of a 
robust experimental system to generate data for modelling, outlining the advantages 
of growth in a chemostat as a means to optimise relative homogeneity of the bacte-
rial populations under study. Both groups stress the dependence of metabolic mod-
elling on the availability of an accurately annotated genome. Contributions from a 
series of outstanding researchers established the foundations of mycobacterial bio-
chemistry and metabolism during the  fi rst half of the twentieth century, but a rela-
tive neglect of tuberculosis research in the 1960s and 1970s left multiple gaps in our 
knowledge. In the genome era, there is a tendency to  fi ll these gaps using sequence 
homologies with other organisms. Both papers stress the importance of caution in 
this, favouring an iterative process in which metabolic models are used both to 
 formulate and test forward hypotheses as well as to track back and correct misan-
notations. Even core textbook metabolic pathways are found to differ between 
 M. tuberculosis  and “canonical”  E. coli . 

 Lack of information about the physiological state of  M. tuberculosis  within infected 
humans presents a major challenge for modelling tuberculosis pathogenesis, and 
models derived from microbial culture systems have been usefully extended to metab-
olomics of intracellular  M. tuberculosis  in macrophages. With the exception of a lim-
ited range of microbe-speci fi c metabolites, it is dif fi cult to derive direct experimental 
data on mycobacterial metabolism in infected tissues; in fact it probably makes sense 
to view host and microbe as a single, integrated metabolic system. It is likely that the 
bacteria sample a highly diverse range of intracellular and extracellular microenviron-
ments during infection, with availability of nutrients and oxygen varying widely over 
space and time [7]. A systems biology challenge will be to infer microbial physiologi-
cal states on the basis of measurements of host metabolism. 

 Both of the metabolic modelling papers stress the importance of integrating 
metabolomics with transcriptional pro fi ling and functional genomics. Waddell et al .  
[8] and Rao et al .  [9] take up the story from a transcriptome perspective. Traditional 
transcriptional pro fi ling is also contingent on accurate genome annotation to select 
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genes that are interrogated in microarray platforms. More recent high-density tiling 
arrays and RNA sequencing approaches remove this limitation and are starting to 
uncover a considerable repertoire of non-coding RNA outside of annotated open 
reading frames [10]. This includes small intergenic RNAs, antisense transcripts, and 
 cis -encoded untranslated regions that are likely to regulate the stability of mRNA 
transcripts and the ef fi ciency of their interaction with ribosomes. Characterisation 
of this layer of post-transcriptional regulation will be an important element in 
 integrating transcriptome and proteome data, and hence for inferring physiology 
from transcription pro fi le. Both papers highlight a central role for the ability of 
transcriptional pro fi ling to uncover crosstalk between host and microbe in mac-
rophage infection models. As discussed for metabolomics, there is a trend in tran-
scriptomic modelling to move from consideration of the isolated microbe to the 
infected cell or lesion as the system under study. Given the speci fi city and technical 
ease of nucleic acid ampli fi cation, transcriptome data represent the most accessible 
source of information about  M. tuberculosis  in lesions. Both papers stress the impor-
tance of linking transcriptional pro fi ling to functional genomics, using transposon 
mutagenesis or formal gene deletion in the microbe side, and exploitation of RNAi 
screens for host manipulation. 

 Steyn et al .  [11] contribute a review of mycobacterial proteomics, focusing in par-
ticular on different strategies for generating protein–protein interaction networks. 
They describe speci fi c contributions to exploration of mechanisms that play a central 
role in host–pathogen interactions—two-component signalling, protein secretion, and 
DNA repair—and highlight the importance of studying post-translational modi fi cation 
events. Together with the chapters on metabolism and transcription, this builds an 
encouraging picture of a strong integrated ‘omics platform that informs a systems 
biology understanding of  M. tuberculosis  and its interaction with host cells. Given our 
knowledge of the mycobacterial cell, it is obviously important that this platform 
includes the parallel advances occurring in the area of lipidomics. 

 Chandra [12] takes forward the application of a systems approach to identi fi cation 
of potential drug targets, integrating genetic essentiality with metabolic modelling 
to identify key choke-points. Target-driven approaches based on genetic essential-
ity have been profoundly disappointing in the  fi eld of antimicrobial drug discovery 
[13]. In part this re fl ects a series of technical limitations: compound libraries used 
in high-throughput screens may have inadequate representation of relevant chemi-
cal space, evidence from gene deletions does not stratify high- versus low-vulner-
ability targets, and potent enzyme inhibitors may not penetrate bacterial cell walls. 
There may also be a limitation in the general concept that simple inhibition of an 
essential enzyme is suf fi cient for bactericidal activity [14]. Events downstream of 
the initial drug–target interaction are probably crucial to the effectiveness of suc-
cessful antibiotics, with accumulation of toxic effector molecules providing the 
actual trigger for cell death. Systems biology models that can predict lethal conse-
quences of target of inhibition would provide an important advance. Given the 
large number of moderately potent hits arising from high-throughput screens 
against whole mycobacteria, a systems biology approach capable of identifying 
cell death parameters that are more experimentally tractable than measurement of 
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colony forming units would also be of considerable use for prioritisation. Chandra 
outlines a concept of “polypharmacology”, involving analysis of the interaction of 
a single drug with multiple targets and the effect of drug combinations. Drug com-
binations are central to tuberculosis treatment regimens, and there is a need for 
systems biology approaches to rationalise and predict positive and negative drug–
drug interactions. 

 Ghosh et al .  [15] describe an exciting international collaborative effort to 
exploit systems biology for TB drug discovery in the context of community 
engagement in a “big science” initiative. This is a joint programme between two 
Japanese systems biology institutes and the Indian Open Source Drug Discovery 
project. The emphasis is on novel communication systems, generating a virtual 
collaborative space that accommodates input from a wide community of research-
ers. This illustrates a key aspect of the systems biology agenda: stimulation of 
multidisciplinary interactions across a wide range of biology, engineering and 
mathematics. Other multidisciplinary consortia exploring the systems biology of 
tuberculosis have been established in the USA [16] and Europe [17]. There are 
formal similarities between social interaction networks and protein–protein inter-
action networks, and it is clear that social factors will be at least as important as 
molecular factors in the success of future strategies for tuberculosis control. 
Perhaps community-based approaches to enhance communication amongst sys-
tems biology researchers could be extended to enhance communication between 
scientists and the wider public? 

 Two papers address host–pathogen interactions from the perspective of the 
immune response. Pine et al .  [18] present a comprehensive overview of the highly 
interconnected host immune network, picking out molecular and cellular biomark-
ers that could be used in combination to stratify the position of individuals with the 
tuberculosis infection spectrum. Fallahi-Sichani et al .  [19] describe various tech-
niques to model the development and heterogeneity of tuberculous granulomas, 
including a powerful and innovative agent-based modelling approach. Focusing on 
the role of TNF a  concentration as an example, they illustrate a very important 
aspect of systems biology modelling as an aid to feature selection. This technique, 
commonly used in machine learning, distinguishes parameters whose variation has 
a more or less critical effect on overall behaviour of the system and therefore war-
rants higher or lower prioritisation for further experimental de fi nition. This pro-
vides a framework for attractive synergy between modellers and experimentalists. 

 Rocco et al .  [20] return to the issue of microbial modelling from a novel per-
spective, reviewing stochastic in fl uences on gene expression and their relevance 
to population heterogeneity and persistence. Conventional ‘omics approaches use 
high-throughput data generated from bulk populations that are assumed to display 
a homogeneous phenotype. This is certainly not the reality. Noise is an important 
element in bacterial physiology, and there is extensive evidence of heterogeneity 
in gene expression amongst bacterial cells grown in an identical strictly controlled 
environment. It can be anticipated that such effects are ampli fi ed multi-fold in the 
complex microenvironments encountered during infection. Rocco et al .  highlight 
the potential links between population heterogeneity and the acutely practical 
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issue of phenotypic tolerance to drugs. Addressing these issues requires alterna-
tive experimental and computational approaches, and it is crucial that strategies 
are developed to integrate single cell information with “mainstream” bulk popula-
tion ‘omics.
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  Abstract   Network reconstructions and constraint-based modeling have been 
shown to be effective methods for understanding complex processes, such as metab-
olism. These reconstructions are in fact biologically structured knowledge-bases 
that can be queried through computations, and thus have become valuable tools for 
Systems Biology. Strengths of this approach include  fl exibility in incorporating 
“incomplete” data measurements, the ability to incorporate different types of data 
(high-throughput as well as physiological), simultaneously, as well as the ability to 
make predictions with minimal reliance on parameter and curve  fi tting. Thus, this 
approach aims to move away from  fi tting data to describe experimental results using 
the current understanding of metabolism in order to interpret the data, make predic-
tions, and to identify the gaps and bridges in knowledge. 

 The critical components for creating genome-scale reconstructions of metabo-
lism include a sequenced and annotated genome, reaction stoichiometry for the 
annotated enzymes, and a bibliome for the organism (combined primary and sec-
ondary literature sources). Network reconstructions of the devastating pathogen 
 Mycobacterium tuberculosis  have been developed and have enabled the ability to 
query functional capabilities using constraint-based modeling approaches. Since 
these networks are then structured in terms of “gene–protein–reaction” associations, 
these knowledge-bases can serve as biologically structured databases onto which 
various high-throughput data types can be directly mapped on. 

 This chapter will focus on the model reconstruction process, methods that have 
been employed for analysis, and predictive applications of modeling the pathogen 
H37Rv strain of tuberculosis. Employing the existing analysis methods and avail-
able datasets there have already been a large number of applications for modeling 
constraint-based modeling of H37Rv. The reconstruction process is a time and 
resource intensive procedure and to date high quality reconstructions have not been 
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possible without manual curation. The bene fi t of having a detailed and quality 
 controlled reconstruction procedure is to help determine a high quality model that 
will provide more meaningful predictions from simulations. Applications of 
 M. tuberculosis  models have included the prediction of growth rates, assessment of 
different growth media, prediction of gene knockouts, identi fi cation of new drug 
targets, identi fi cation of alternative drug targets for existing drugs, and modeling the 
interaction macrophages during different infectious states.  Historically, technological 
advancements have driven biological discovery and have thus been a limiting factor 
in the development of methods to modify and alter biology, e.g., antibiotics. However, 
in the past decade with various high-throughput technologies (e.g., transcriptomics, 
proteomics, metabolomics, etc.) are being employed more frequently, thus there is a 
growing burden and need for means to integrate, interpret, and ideally make predic-
tions for these datasets. Given the successes to date, with further development of new 
methods in conjunction with deeper experimental probing of tuberculosis in vitro 
and in vivo, constraint-based modeling will likely become even more important in 
the  fi nding new targets and treatments for tuberculosis.      

    1  Introduction 

 The principle behind constraint-based modeling is to use physico-chemical or bio-
logical constraints to provide insights that are biologically insightful. The rich, 
detailed history of biochemistry during the past 60 years has resulted in the ability to 
describe metabolic networks in terms of elementally balanced biochemical reactions. 
Furthermore, thermodynamic and kinetic characterization of many of the enzymes in 
an effort to characterize the physical properties of these biological catalysts has 
enabled additional levels of characterization. 

 Flux Balance Analysis (FBA) has become the bread and butter of constraint-based 
modeling  [  1,   2  ] . Employing this approach involves the quasi-steady state assumption 
and knowledge of the identity and composition of the interacting components, as well 
as the set of the biochemical reactions that occur in the system of interest. If  quantitative 
thermodynamic data is not available, qualitative thermodynamic data can also be 
incorporated, simply by speci fi cation of reversibility of a reaction. While this is a very 
simple encapsulation of the complex non-equilibrium thermodynamics within a cell, 
it can have signi fi cant implications on constraining a network and reducing (or 
expanding) the number of possible steady state solutions. At the most elementary 
level, FBA can be applied to a single biosynthetic pathway  [  3  ] . While this might be 
interesting in some cases, the bene fi ts of this approach are really appreciated when 
one makes the jump to the organelle-, cell-, and genome-scale models  [  4,   5  ] . 

 The data (in-)completeness problem is likely to always be present at all spatial and 
temporal hierarchies in biology. High-throughput technologies have been progressing 
to help close the data incompleteness gap. Genomics was the  fi rst “omics”  fi eld in 
biology and has been followed by numerous other high-throughput measurement 
technologies, including proteomics, and metabolomics and a seemingly innumerable 
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array of other “omics” sub- fi elds. We focus the discussion on the technologically 
driven by high-throughput measurements. 

 Aside from technical challenges associated with the analysis of voluminous 
datasets, there is a more pressing challenge regarding the context and the manner in 
which the data are analyzed. There is a demonstrated need to move away from 
black-box modeling approaches to understand these data, towards mechanistic or 
partially mechanistic (gray box) models. The development of multiple “omics” data 
 fi elds has further compounded this problem, further highlighting the need for 
 analysis of large datasets that often include orthogonal types of data to be analyzed 
in a biologically relevant and biologically meaningful context. 

 Constraint-based modeling has provided one approach to organizing and analyzing 
this data from a biological viewpoint, while paying heed to physico-chemical con-
straints. The application of these methods to the deadly pathogen  Mycobacterium 
tuberculosis   [  6  ]  has resulted in advancements in the understanding of its metabolic 
capabilities and opened potential avenues for new or alternative treatments.  

    2   The Reconstruction Process 

 The quality and scope of metabolic network reconstructions have continued to 
evolve during the last 15 years, with current descriptions involving a detailed, itera-
tive, quality-controlled process  [  7  ] . Progress has been made in the automation of 
reconstruction  [  8  ] . Nevertheless, a key hallmark of quality reconstructions however 
has been the need for manual curation, on some level. General steps employed in the 
process of network reconstruction are outlined in Fig.  1.1 .  

 The starting point for genome-scale reconstructions is a sequenced and annotated 
genome. This serves as the scaffold onto which the biochemical transformations carried 
out by enzymes in the organism are mapped. Manual curation follows, which includes 
gathering evidence and critically evaluating the primary (and review) literature for 
information about the genes, proteins, and metabolites. There have been an increasing 
number of organism speci fi c databases that have been developed during the past 
decade that were very helpful for  fl eshing out the general network architecture of 
 M.  tuberculosis   [  9–  11  ] . 

 Following manual curation, there is conversion of the set of biochemical reactions 
into a stoichiometric matrix. The stoichiometric matrix is unique compared to many 
other types of matrices in biological systems, as it has integer entries, thus there is no 
noise associated with the values  [  2,   12  ] . The conversion to a mathematical format also 
involves the application of (qualitative) thermodynamic constraints. Quantitative 
 constraints have been explored  [  13,   14  ]  and have been used for expanding the scope 
to dynamic models  [  15–  17  ] . However, for the purpose of developing a basic model 
with which to carry out constraint-based modeling, only directionality needs to be 
speci fi ed (i.e., reversible or irreversible). The debugging and functionality testing 
stage is another step that is a critical step in the process, as it ensures network 
 functionality. It is unfortunately also a time-consuming process. 



4 N. Jamshidi et al.

 For micro-organisms the primary functionality test involves biomass production. 
The biomass “reaction” is actually a pseudo-reaction that is included to account for 
the growth as well as non-growth associated demands  [  18  ] . Since this reaction 
requires the production and utilization of a large number of metabolites, the ability 
to produce biomass implicitly accounts for the biosynthesis of a large number of 
compounds. Construction of iNJ661 involved testing individual components (i.e., 
non-essential amino acids, mycolic acids, etc.) prior to testing the complete biomass 
function. Since the biomass function involves so many different compounds, in 
practice, many of the compounds (such as non-essential amino acids, vitamin prod-
ucts, etc.) are tested individually (see “Reaction and Pathway Function Testing” in 
Fig.  1.1 ). There are other considerations and issues to evaluate during the quality 
control process, such as revising constraints in order to eliminate “free energy” 
producing loops  [  19  ] . This issue and others are discussed in more detail by Thiele 
and Palsson in  [  7  ] . 

 It should be noted that the iterative loop in Fig.  1.1  involves further manual 
 curation and more detailed investigation into a particular functionality, in order to 
understand why the test failed. For iNJ661 this included multiple rounds of revisiting 
and reevaluating the primary literature as well as detailed evaluation of the relevant 
pathways. In some situations there may be no direct evidence to support incorporation 
of a particular reaction (such as a transport reaction), which is an intermediate in a 
pathway whose endpoint is known to occur in the organism. In order to produce a 
functional model, the transport reaction may need to be added. This is one example of 
why “con fi dence level” scores are an important quality control measure in network 
reconstructions, because they denote the type of evidence that was used to justify 
incorporation of the reaction. These can then be used to determine future experiments 
and to also re-evaluate model content when additional datasets are generated for the 
organism.  

    3   Network Characterization 

 There are a myriad of ways to test or assess functionality of a model  [  2,   20–  22  ] . 
Once a functional model has been constructed, one of the  fi rst steps of analysis is to 
understand how a particular objective, such as growth, varies on varying substrate 
utilization. Phase-plane diagrams can address such questions by plotting two different 
network  fl uxes (uptake or exchange reactions) while optimizing for an objective. This 
can be used to assess the trade-off associated with the use of one substrate versus 
another. The fatty acid constitution of Mycobacteria and other acid fast organisms is 
complex and unique compared to most other prokaryotes. These fatty acids also 
 constitute a signi fi cant portion of the biomass. Glycerol is a required substrate for 
this and the trade-off between glucose and glycerol is demonstrated in Fig.  1.2 , 
while optimizing for biomass.  

 The ability to carry out genome-wide screening of gene essentiality in microbes, 
enables testing of in silico predictions using network models. Results can be categorized 
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  Fig. 1.1    An outline of the general steps for building genome-scale metabolic networks that are 
amenable to constraint-based modeling. For iNJ661 speci fi cally, the annotated genome for 
 Mycobacterium tuberculosis  H37Rv was downloaded from The Institute for Genomic Research 
(TIGR)  [  68  ] . Reconstruction content was de fi ned based on the sequence annotation, legacy data, 
the Tuberculist database  [  69  ] , ancillary sources such as the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and SEED  [  70  ] . Debugging was started once the  fi rst draft of the reconstruction 
was completed and functional testing (i.e.,  fl ux balance analysis calculations, etc.) were begun. 
This was carried out in a systematic manner, checking for individual biomass constituents (as 
products) before analyzing the complete biomass function       
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as true positive (veri fi ed positive predictions), true negative (veri fi ed negative pre-
dictions), false positive, and false negative. The speci fi city of the model is  determined 
by the false negative predictions and the sensitivity is determined by the true posi-
tive predictions. Since various processes, notably feedback inhibition and regulation 
as well as incomplete knowledge of the true metabolic network of the organism, 
predictions are never expected to be perfect. However, since the model summarizes 

  Fig. 1.2    An example of phase-plane diagram for iNJ661 depicting biomass optimization (growth) 
while varying glycerol and glucose uptake simultaneously. Glycerol is necessary and suf fi cient for 
growth, but supplementation with glucose helps achieve higher growth rates.  Open dots  indicate 
the calculated phase points and the  solid black lines  indicate isoclines       
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the current level of knowledge and understanding of the metabolism in the  organism, 
the reasons for the predictions made by the model can be traced back to the network. 
Thus, the false positive and false negative predictions can serve as hypothesis gen-
erating results, and can highlight regions of metabolism that may need further 
experimental elucidation. 

 The false positive and false negative rates can be arti fi cially decreased by adjusting 
the biomass function to include (or exclude) particular metabolites. While this may pro-
vide a seemingly better model, such revisions do not actually provide further biological 
insight. There is more likely information to be gained from further investigation into the 
possible causes for the incorrect predictions. Alternatively, one can incorporate additional 
experimental data, such as high-throughput data to make the model more context speci fi c; 
this approach has been effective in improving the prediction rates for iNJ661  [  23  ] . 

 The concept of correlated reaction sets in functional network models specify 
groups of reactions that are active in a set; if one reaction in the set has a non-zero 
 fl ux, then every other reaction in the set will also have a non-zero  fl ux. The converse 
is also true, if one reaction in the set does not carry a net  fl ux, it implies that every 
other reaction in the set has no net  fl ux either. There are different ways and different 
stringencies to de fi ning these correlated sets, that have been discussed elsewhere 
 [  2,   20,   24,   25  ] . Variations among the types of correlated reaction sets include 
whether the correlations are absolute or partial (i.e., whether they are correlated 
85% of the time, 90%, or 100%), qualitatively versus qualitatively correlated, 
 condition dependent or not, etc.  [  2,   5,   20–  22,   24–  26  ] . 

 Antibiotic targets can be analyzed from the perspective of correlated reaction sets. 
Hard-coupled reaction (HCR) sets are groups of reactions that are always correlated 
as a result of stoichiometric interactions (so they will be correlated regardless of 
media condition, although altered expression pro fi les could result). This concept was 
applied for tuberculosis to identify drugs that act on single enzymes, but actually 
knock out complete pathways. The other enzymes in these pathways can serve as 
equivalent, alternative drug targets. 

 147 HCR sets were calculated for iNJ661, with the average reaction set involving 
three reactions. Known  M. tuberculosis  antibiotic targets  [  27  ]  were mapped to the 
reactions in the HCR sets, resulting in 25 HCRs with antibiotic targets. A sub-section 
of the map highlighting some of the druggable HCR sets is illustrated in Fig.  1.3 . 
Since multi-drug treatment regimens are common for tuberculosis treatment  [  28  ] , it 
is important to be able to identify different sets of enzyme and reaction targets that 
are independent of one another, particularly if exploring new drug targets.  

 The time and resource intensive process of building high-quality, manually 
curated network reconstructions (Fig.  1.1 ) has the bene fi cial result of enabling the 
analysis of different types of omic data in an integrated manner. Transcriptomic, 
proteomic,  fl uxomic, and metabolomic data can all be mapped directly onto a net-
work reconstruction (Fig.  1.4 ). These data serve to make the organism “context 
speci fi c,” that is representing in vitro growth under different media conditions or data 
gather from in vivo measurements, with more  fi delity. Even growing  M. tuberculosis  
in culture in the same condition over the span of weeks has resulted in measurable 
changes in biomass composition  [  29  ] , given the slow doubling time of the organism, 


