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Preface

The development of the theory of probability metrics — a branch of probability
theory — began with the study of problems related to limit theorems in probability
theory. In general, the applicability of limit theorems stems from the fact that they
can be viewed as an approximation to a given stochastic model and, consequently,
can be accepted as an approximate substitute. The key question that arises in
adopting the approximate model is the magnitude of the error that must be accepted.
Because the theory of probability metrics studies the problem of measuring dis-
tances between random quantities or stochastic processes, it can be used to address
the key question of how good the approximate substitute is for the stochastic model
under consideration. Moreover, it provides the fundamental principles for building
probability metrics — the means of measuring such distances.

The theory of probability metrics has been applied and has become an important
tool for studying a wide range of fields outside of probability theory such as
statistics, queueing theory, engineering, physics, chemistry, information theory,
economics, and finance. The principal reason is that because distances are not
influenced by the particular stochastic model under consideration, the theory of
probability metrics provides some universal principles that can be used to deal with
certain kinds of large-scale stochastic models found in these fields.

The first driving force behind the development of the theory of probability
metrics was Andrei N. Kolmogorov and his group. It was Kolmogorov who stated
that every approximation problem has its own distance measure in which the
problem can be solved in a most natural way. Kolmogorov also contended that
without estimates of the rate of convergence in the central limit theorem (CLT) (and
similar limit theorems such as the functional limit theorem and the max-stable limit
theorem), limit theorems provide very limited information. An example worked
out by Y.V. Prokhorov and his students is as follows. Regardless of how slowly
a function f(n) > 0, n = 1,..., decays to zero, there exists a corresponding
distribution function F(x) with finite variance and mean zero, for which the CLT is
valid at a rate slower than f(n). In other words, without estimates for convergence
in the CLT, such a theorem is meaningless because the convergence to the normal
law of the normalized sum of independent, identically distributed random variables
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viii Preface

with distribution function F(x) can be slower than any given rate f(n) — 0. The
problems associated with finding the appropriate rate of convergence invoked a
variety of probability distances in which the speed of convergence (i.e., convergence
rate) was estimated. This included the works of Yurii V. Prokhorov, Vladimir V.
Sazonov, Vladimir M. Zolotarev, Vygantas Paulauskas, Vladimir V. Senatov, and
others.

The second driving force in the development of the theory of probability metrics
was mass-transportation problems and duality theorems. This started with the work
of Gaspard Monge in the eighteenth century and Leonid V. Kantorovich in the 1940s
— for which he was awarded the Nobel Prize in Economics in 1975 — on optimal mass
transportation, leading to the birth of linear programming. In mathematical terms,
Kantorovich’s result on mass transportation can be formulated in the following
metric way. Given the marginal distributions of two probability measures P and Q
on a general (separable) metric space (U, d), what is the minimal expected value —
referred to as k (P, Q) or the Kantorovich metric — of a distance d(X,Y) over
the set of all probability measures on the product space U x U with marginal
distributions Py = P and Py = Q? If the measures P and Q are discrete,
then this is the classic transportation problem in linear programming. If U is
the real line, then x (P, Q) is known as the Gini statistical index of dissimilarity
formulated by Corrado Gini. The Kantorovich problem has been used in many
fields of science — most notably statistical physics, information theory, statistics,
and probability theory. The fundamental work in this field was done by Leonid V.
Kantorovich, Johannes H. B. Kemperman, Hans G. Kellerer, Richard M. Dudley,
Ludger Riischendorf, Volker Strassen, Vladimir L. Levin, and others. Kantorovich-
type duality theorems established the main relationships between metrics in the
space of random variables and metrics in the space of probability laws/distributions.
The unifying work on those two directions was done by V. M. Zolotarev and his
students.

In this book, we concentrate on four specialized research directions in the theory
of probability metrics, as well as applications to different problems of probability
theory. These include:

* Description of the basic structure of probability metrics,

* Analysis of the topologies in the space of probability measures generated by
different types of probability metrics,

* Characterization of the ideal metrics for a given problem, and

* Investigation of the main relationships between different types of probability
metrics.

Our presentation in this book is provided in a general form, although specific
cases are considered as they arise in the process of finding supplementary bounds or
in applications to important special cases.

The target audience for this book is graduate students in the areas of functional
analysis, geometry, mathematical programming, probability, statistics, stochastic
analysis, and measure theory. It may be partially used as a source of material for
lectures for students in probability and statistics. As noted earlier in this preface,
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the theory of probability metrics has been applied to fields outside of probability
theory such as engineering, physics, chemistry, information theory, economics, and
finance. Specialists in these areas will find the book to be a useful reference to gain
a greater understanding of this specialized area and its potential application.

New York, USA Svetlozar T. Rachev
Prague, Czech Republic Lev B. Klebanov
Singapore Stoyan V. Stoyanov

Nice, France Frank J. Fabozzi
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Chapter 1
Main Directions in the Theory of Probability
Metrics

1.1 Introduction

Increasingly, the demands of various real-world applications in the sciences,
engineering, and business have resulted in the creation of new, more complicated
probability models. In the construction and evaluation of these models, model
builders have drawn on well-developed limit theorems in probability theory and
the theory of random processes. The study of limit theorems in general spaces and
a number of other questions in probability theory make it necessary to introduce
functionals — defined on either classes of probability distributions or classes of
random elements — and to evaluate their nearness in one or another probabilistic
sense. Thus various metrics have appeared including the well-known Kolmogorov
(uniform) metric, L, metrics, the Prokhorov metric, and the metric of convergence
in probability (Ky Fan metric). We discuss these measures and others in the chapters
that follow.

1.2 Method of Metric Distances and Theory of Probability
Metrics

The use of metrics in many problems in probability theory is connected with the
following fundamental question: is the proposed stochastic model a satisfactory
approximation to the real model, and if so, within what limits? To answer this
question, an investigation of the qualitative and quantitative stability of a proposed
stochastic model is required. Analysis of quantitative stability assumes the use of
metrics as measures of distances or deviations. The main idea of the method of
metric distances (MMD) — developed by Vladmir M. Zolotarev and his students to
solve stability problems — is reduced to the following two problems.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics, 1
DOI 10.1007/978-1-4614-4869-3_1, © Springer Science+Business Media, LLC 2013



2 1 Main Directions in the Theory of Probability Metrics

Problem 1.2.1 (Choice of ideal metrics). Find the most appropriate (i.e., ideal)
metrics for the stability problem under consideration and then solve the problem in
terms of these ideal metrics.

Problem 1.2.2 (Comparisons of metrics). If the solution of the stability problem
must be written in terms of other metrics, then solve the problem of comparing these
metrics with the chosen (i.e., ideal) metrics.

Unlike Problem 1.2.1, Problem 1.2.2 does not depend on the specific stochastic
model under consideration. Thus, the independent solution of Problem 1.2.2 allows
its application in any particular situation. Moreover, by addressing the two foregoing
problems, a clear understanding of the specific regularities that form the stability
effect emerges.

Questions concerning the bounds within which stochastic models can be applied
(as in all probabilistic limit theorems) can only be answered by investigation of
qualitative and quantitative stability. It is often convenient to express such stability
in terms of a metric. The theory of probability metrics (TPM) was developed to
address this. That is, TPM was developed to address Problems 1.2.1 and 1.2.2,
thus providing a framework for the MMD. Figure 1.1 summarizes the problems
concerning MMD and TPM.

1.3 Probability Metrics Defined

The term probability metric, or p. metric, means simply a semimetric in a space
of random variables (taking values in some separable metric space). In probability
theory, sample spaces are usually not fixed, and one is interested in those metrics
whose values depend on the joint distributions of the pairs of random variables. Each
such metric can be viewed as a function defined on the set of probability measures
on the product of two copies of a probability space. Complications connected with
the question of the existence of pairs of random variables on a given space with
given probability laws can be easily avoided. Fixing the marginal distributions of
the probability measure on the product space, one can find the infimum of the
values of our function on the class of all measures with the given marginals. Under
some regularity conditions, such an infimum is a metric on the class of probability
distributions, and in some concrete cases (e.g., for the L; distance in the space
of random variables — Kantorovich’s theorem; for the Ky Fan metric — Strassen—
Dudley’s theorem; for the indicator metric — Dobrushin’s theorem) were found
earlier [giving, respectively, the Kantorovich (or Wasserstein) metric, the Prokhorov
metric, and the total variation distance].
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{ Theory of probability metrics (TPM) ]

- - Ideal metrics problem -
Classification of p. r Comparison of metrics

metrics oati
Characterizations of

the “ideal” (suitable,
natural) metrics w.r.t.
the specific character

Analysis of the met-
ric and topological
relationships between

of the given approxi- d1ffe¥ent classes of p.
mating problem. metrics.

\/ Second stage of MMD

First stage of MMD

Description of the ba-
sic metric and topo-
logical structures of p.
metrics.

Transition from the
initial appropriate
metrics to the met-

ric required (w.r.t. the
final solution).

Solution of the stabil-
ity problem in terms
of approximate met-
rics.

{ Methods of metric distances (MMD) J

Fig. 1.1 Theory of probability metrics as a necessary tool to investigate the method of metric
distances

1.4 Main Directions in the Theory of Probability Metrics

The necessary classification of the set of p. metrics is naturally carried out from
the point of view of a metric structure and generating topologies. That is why the
following two research directions arise:

Direction 1. Description of basic structures of p. metrics.

Direction 2. Analysis of topologies in space of probability measures generated by
different types of p. metrics; such an analysis can be carried out with the help of
convergence criteria for different metrics.

At the same time, more specialized research directions arise. Namely:
Direction 3. Characterization of ideal metrics for a given problem.

Direction 4. Investigations of main relationships between different types of p.
metrics.



4 1 Main Directions in the Theory of Probability Metrics

In this book, all four directions are covered as well as applications to different
problems in probability theory. Much attention is paid to the possibility of giving
equivalent definitions of p. metrics (e.g., in direct and dual terms and in terms of the
Hausdorff metric for sets). Indeed, in concrete applications of p. metrics, the use of
different equivalent variants of the definitions in different steps of the proof is often
a decisive factor.

One of the main classes of metrics considered in this book is the class of minimal
metrics, an idea that goes back to the work of Kantorovich in the 1940s dealing
with transportation problems in linear programming. Such metrics have been found
independently by many authors in several fields of probability theory (e.g., Markov
processes, statistical physics).

Another useful class of metrics studied in this book is the class of ideal metrics
that satisfy the following properties:

1. w(Pe, Q) < le|"u(P, Q) forall ¢ € [-C,C],c # 0,
2. //L(Pl*QsPZ*Q)SM(PhPZ)’

where P.(A) := P((1/c)A) for any Borel set A on a Banach space U and where *
denotes convolution. This class is convenient for the study of functionals of sums
of independent random variables, giving nearest bounds of the distance to limit
distributions.

The presentation we provide in this book is given in a general form, although
specific cases are considered as they arise in the process of finding supplementary
bounds or in applications to important special cases.

1.5 Overview of the Book

The book is divided into five parts. In Part I, we set forth general topics in the TPM.
Following the definition of a probability metric in Chap. 2, different examples of
probability metrics are provided and the application of the Kolmogorov metric in
mathematical statistics is discussed. Then the axiomatic construction of probability
metrics is defined. There is also a discussion of an interesting property about the
Kolmogorov metric, a property that is used to prove biasedness in the classic
Kolmogorov test. More definitions and examples are provided in Chap. 3, where
primary, simple, and compound distances and minimal and maximal distances
and norms are provided and motivated. The introduction and motivation of three
classifications of probability metrics according to their metric structure, as well
as examples of probability metrics belonging to a particular structural group, are
explained in Chap. 4. The generic properties of the structural groups and the links
between them are also covered in the chapter.

In Part I, we concern ourselves with the study of the dual and explicit represen-
tations of minimal distances and norms, as well as the topologies that these metric
structures induce in the space of probability measures. We do so by examining
further the concepts of primary, simple, and compound distances, in particular
focusing on their relationship to each other. The Kantorovich and the Kantorovich—
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Rubinstein problems are introduced and illustrated in a one-dimensional and
multidimensional setting in Chap.5. These problems — more commonly referred
to as the mass transportation and mass transshipment problems, respectively —
are abstract formulations of optimization problems. Although the applications
are important in areas such as job assignments, classification problems, and best
allocation policy, our purpose for covering them in this book is due to their link to
the TPM. In particular, an application leading to an explicit representation for a class
of minimal norms is provided. Continuing with our coverage of Kantorovich and
the Kantorovich—Rubinstein functionals in Chap. 6, we look at the conditions under
which there is equality and inequalities between these two functionals. Because
these two functionals generate minimal distances (Kantorovich functional) and
minimal norms (Kantorovich—Rubinstein functional), the relationship between the
two can be quantified, allowing us to provide criteria for convergence, compactness,
and completeness of probability measures in probability spaces, as well as to
analyze the problem of uniformity between these two functionals. The discussions in
Chaps. 5 and 6 demonstrate that the notion of minimal distance represents the main
relationship between compound and simple distances. Our focus in Chap. 7 is on the
notion of K-minimal metrics, and we describe their general properties and provide
representations with respect to several particular metrics such as the Lévy metric
and the Kolmogorov metric. The relationship between the multidimensional Kan-
torovich theorem and the work by Strassen on minimal probabilistic functionals is
also covered. In Chap. 8, we discuss the relationship between minimal and maximal
distances, comparing them to the corresponding dual representations of the minimal
metric and minimal norm, providing closed-form solutions for some special cases
and studying the topographical structures of minimal distances and minimal norms.
The general relations between compound and primary probability distances, which
are similar to the relations between compound and simple probability distances, are
the subject of Chap. 9.

The application of minimal probability distances is the subject of the five chapters
in Part III. Chapter 10 contains definitions, properties, and some applications of
moment distances. These distances are connected to the property of definiteness
of the classic problem of moments, and one of them satisfies an inequality that is
stronger than the triangle inequality. In Chap. 11, we begin with a discussion of the
convergence criteria in terms of a simple metric between characteristic functions,
assuming they are analytic. We then turn to providing estimates of a simple metric
between characteristic functions of two distributions in terms of moment-based
primary metrics and discussing the inverse problem of estimating moment-based
primary metrics in terms of a simple metric between characteristic functions.
In Chaps. 11 through 14, we then use our understanding of minimal distances
explained in Chap. 7 to demonstrate how the minimal structure is especially useful
in problems of approximations and stability of stochastic models. We explain
how to apply the topological structure of the space of laws generated by minimal
distance and minimal norm functionals in limit-type theorems, which provide weak
convergence together with convergence of moments. We study vague convergence in
Chap. 11, the Glivenko—Cantelli theorem in Chap. 12, queueing systems in Chap. 13,
and optimal quality in Chap. 14.



6 1 Main Directions in the Theory of Probability Metrics

Any concrete stochastic approximation problem requires an appropriate or
natural metric (e.g., topology, convergence, uniformities) having properties that
are helpful in solving the problem. If one needs to develop the solution to the
approximation problem in terms of other metrics (e.g., topology), then the transition
is carried out using general relationships between metrics (e.g., topologies). This
two-stage approach, described in Sect. 1.2 (selection of the appropriate metric,
which we labeled Problem 1.2.1, and comparison of metrics, labeled Problem 1.2.2)
is the basis of the TPM. In Part IV — Chaps. 15 through 20 — we determine the
structure of appropriate or, as we label it in this book, ideal probability distances
for various probabilistic problems. The fact that a certain metric is (or is not)
appropriate depends on the concrete approximation (or stability) problem we are
dealing with; that is, any particular approximation problem has its own “ideal”
probability distance (or distances) on which terms we can solve the problem in the
most “natural” way. In the opening chapter to this part of the book, Chap. 15, we
describe the notion of ideal probability metrics for summation of independent and
identically distributed random variables and provide examples of ideal probability
metrics. We then study the structure of such “ideal” metrics in various stochastic
approximation problems such as the convergence of random motions in Chap. 16,
the stability of characterizations of probability distributions in Chaps. 17 and 20,
stability in risk theory in Chap. 18, and the rate of convergence for the sums and
maxima of random variables in Chap. 19.

Part V is devoted to a class of distances — Euclidean-type distances. In this part
of the book, we provide definitions, properties, and applications of such distances.
The space of measures for these distances is isometric to a subset of a Hilbert space.
We give a description of all such metrics. Some of the distances appear to be ideal
with respect to additive operations on random vectors. Subclasses of the distances
are very useful to obtain a characterization of distributions and especially to recover
a distribution from its potential. All Euclidean-type distances are very useful for
constructing nonparametric, two-sample multidimensional tests. As background
material for the discussion in this part of the book, in Chap.21 we introduce
the mathematical concepts of positive and negative definite kernels, describe their
properties, and provide theoretical results that characterize coarse embeddings in
a Hilbert space. Because kernel functions are central to the notion of potential
of probability measures, in Chap.22 we introduce special classes of probability
metrics through negative definite kernel functions and show how, for strongly
negative definite kernels, a probability measure can be uniquely determined by its
potential. Moreover, the distance between probability measures can be bounded by
the distance between their potentials; that is, under some technical conditions, a
sequence of probability measures converges to a limit if and only if the sequence
of their potentials converges to the potential of the limiting probability measure.
Also as explained in Chap. 22, the problem of characterizing classes of probability
distributions can be reduced to the problem of recovering a measure from potential.
The problem of parameter estimation by the method of minimal distances and the
study of the properties of these estimators are the subject of Chap. 23. In Chap. 24,
we construct multidimensional statistical tests based on the theory of distances
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generated by negative definite kernels in the set of probability measures described in
Chap. 23. The connection between distances generated by negative definite kernels
and zonoids is the subject of Chap.25. In Chap. 26, we discuss multidimensional
statistical tests of uniformity based on the theory of distances generated by negative
definite kernels and calculate the asymptotic distribution of these test statistics.



Part I
General Topics in the Theory of
Probability Metrics



Chapter 2
Probability Distances and Probability Metrics:
Definitions

The goals of this chapter are to:

* Provide examples of metrics in probability theory;

* Introduce formally the notions of a probability metric and a probability distance;

* Consider the general setting of random variables (RVs) defined on a given
probability space (€2, .4, Pr) that can take values in a separable metric space U
in order to allow for a unified treatment of problems involving random elements
of a general nature;

* Consider the alternative setting of probability distances on the space of proba-
bility measures P, defined on the o-algebras of Borel subsets of U? = U x U,
where U is a separable metric space;

* Examine the equivalence of the notion of a probability distance on the space of
probability measures P, and on the space of joint distributions £X, generated by
pairs of RVs (X, Y) taking values in a separable metric space U.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics, 11
DOI 10.1007/978-1-4614-4869-3_2, © Springer Science+Business Media, LLC 2013
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2 Probability Distances and Probability Metrics: Definitions

Notation introduced in this chapter:

Notation Description

EN Engineer’s metric

xr Space of real-valued random variables with E|X|? < oo
P Uniform (Kolmogorov) metric

X=X[R) Space of real-valued random variables

L Lévy metric

K Kantorovich metric

0, L ,-metric between distribution functions
K, K* Ky Fan metrics

L, L ,-metric between random variables
MOM,, Metric between pth moments

(S, p) Metric space with metric p

R” n-dimensional vector space

r(Cy, Cy) Hausdorff metric (semimetric between sets)
s(F,G) Skorokhod metric

K=K, Parameter of a distance space

H Class of Orlicz’s functions

Pl Birnbaum—Orlicz distance

Kr Kruglov distance

U,d) Separable metric space with metric d

S.m.s. Separable metric space

Uk k-fold Cartesian product of U

By = By (U) Borel o-algebra on U*

Pr = Pr(U) Space of probability laws on By

Tygp.,..yP Marginal of P € Py on coordinates «, S, ...,y
Pry Distribution of X

nw Probability semidistance

X:=X) Set of U-valued RVs

LX, 1= LX,(U) Space of Pryy, X,Y € X(U)

u.m. Universally measurable

U.m.s.m.s. Universally measurable separable metric space

2.1 Introduction

Generally speaking, a functional that measures the distance between random
quantities is called a probability metric.' In this chapter, we provide different
examples of probability metrics and discuss an application of the Kolmogorov

"Mostafaei and Kordnourie (2011) is a more recent general publication on probability metrics and

their applications.
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metric in mathematical statistics. Then we proceed with the axiomatic construction
of probability metrics on the space of probability measures defined on the twofold
Cartesian product of a separable metric space U. This definition induces by
restriction a probability metric on the space of joint distributions of random elements
defined on a probability space (2, A, Pr) and taking values in the space U . Finally,
we demonstrate that under some fairly general conditions, the two constructions are
essentially the same.

2.2 Examples of Metrics in Probability Theory

Below is a list of various metrics commonly found in probability and statistics.

1. Engineer’s metric:
EN(X,Y) := [E(X) —-E(Y)|, X,Y €X', (2.2.1)

where X7 is the space of all real-valued RVs) with E| X |7 < oo.
2. Uniform (or Kolmogorov) metric:

p(X.Y) :=sup{|Fx(x) — Fyr(x)|:x € R}, X, Y eX=X([R), (2.2.2)

where Fy is the distribution function (DF) of X, R = (—o00, +00), and X is the
space of all real-valued RVs.
3. Lévy metric:

LX,Y):=inf{e >0: Fy(x —e) —e < Fy(x) < Fx(x +¢)+¢, Vx eR}.
(2.2.3)

Remark 2.2.1. We see that p and L may actually be considered metrics on the
space of all distribution functions. However, this cannot be done for EN simply
because EN(X,Y) = 0 does not imply the coincidence of Fy and Fy, while
p(X,Y)=0 < L(X.,Y) =0 <= Fx = Fy. The Lévy metric metrizes
weak convergence (convergence in distribution) in the space F, whereas p is often
applied in the central limit theorem (CLT).?

4. Kantorovich metric:

lc(X,Y):/R|FX(x)—Fy(x)|dx, X,y e x!.

2See Hennequin and Tortrat (1965).
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5. L,-metrics between distribution functions:
o0 1/p
0,(X.Y) = (/ | Fx(t) — Fy(t)lpdt) ., p>1, X, YeXxl 224
—0o0

Remark 2.2.2. Clearly, K = 0. Moreover, we can extend the definition of 8 , when
p = oo by setting o = p. One reason for this extension is the following dual
representation for 1 < p < oo:

0,(X,Y) = sup |[Ef(X)—Ef(Y)|, X,YeX'
fE€F,

where F, is the class of all measurable functions f with | f|, < 1. Here,
I f1l4(1/p + 1/q = 1) is defined, as usual, by*

([|f|’f)l/q, I <q <o

esssup|f|, ¢ = oo.
R

Ifllg =

6. Ky Fan metrics:
K(X.Y):=inf{le > 0:Pr(|X — Y| > ¢) < ¢}, X, Y €X, (2.2.5)
and
X 7|
1+|X-Y]|
Both metrics metrize convergence in probability on X = X(R), the space of

real RVs.*
7. L,-metric:

K*(X.,Y):= E (2.2.6)

L,(X,Y):={EX -Y|"}/? p>1 X,YeX’. (2.2.7)
Remark 2.2.3. Define
mP(X) :={E|X|"}/?, p>1, X eXx’. (2.2.8)
and

MOM,(X.Y) := |m”(X) —m?(Y)|. p=1. X.Y X" (2.2.9)

3The proof of this representation is given by (Dudley, 2002, p. 333) for the case p = 1.
4See Lukacs (1968, Chap. 3) and Dudley (1976, Theorem 3.5).
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Then we have, for Xo, X;,... € X7,

K(XI’H XO) - Oa

£, (X, Xo) — 0
p o X0) = 0= MoM, (X, Xo) — 0

(2.2.10)

[see, e.g., Lukacs (1968, Chap. 3)].

Other probability metrics in common use include the discrepancy metric,
the Hellinger distance, the relative entropy metric, the separation distance metric, the
x2-distance, and the f-divergence metric. These probability metrics are summa-
rized in Gibbs and Su (2002).

All of the aforementioned (semi-)metrics on subsets of X may be divided into
three main groups: primary, simple, and compound (semi-)metrics. A metric u is
primary if u(X,Y) = 0 implies that certain moment characteristics of X and Y
agree. As examples, we have EN (2.2.1) and MOM,, (2.2.9). For these metrics

EN(X.Y) =0 < EX = EY,
MOM,,(X.Y) =0 < m”(X) = m"(Y). (2.2.11)

A metric u is simple if
wX,Y)=0 < Fx = Fy. (2.2.12)

Examples are p (2.2.2), L (2.2.3), and 8 , (2.2.4). The third group, the compound
(semi-)metrics, has the property

WX, Y)=0 < Pr(X =Y) = 1. (2.2.13)

Some examples are K (2.2.5), K* (2.2.6), and £, (2.2.7).

Later on, precise definitions of these classes will be given as well as a study of
the relationships between them. Now we will begin with a common definition of
probability metric that will include the types mentioned previously.

2.3 Kolmogorov Metric: A Property and an Application

In this section, we consider a paradoxical property of the Kolmogorov metric and
an application in the area of mathematical statistics.

Consider the metric space § of all one-dimensional distributions metrized by the
Kolmogorov distance

p(F,G) = sup|F(x) — G(x)|, 2.3.1)

x€R

which we define now in terms of the elements of § rather than in terms of RVs as
in the definition in (2.2.2). Denote by B(F, r) an open ball of radius r > 0 centered



