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Konstantin Oskolkov
Drawn by Nikolay Oskolkov





Preface

This volume is dedicated to Konstantin Oskolkov’s 65th birthday and is a cel-
ebration of his contributions to mathematical analysis. It grew out of the AMS
Sectional Meeting held at Georgia Southern University, March 11–13, 2011. Many
of the chapters appearing in this volume are close to Kostya’s broad mathematical
interests.

The editors wish to thank all those who made this volume possible. Special
thanks go to all the authors who have contributed chapters to this volume. We also
want to acknowledge the time and the hard work of the referees.

Columbia, SC, USA Dmitriy Bilyk
Miami, FL, USA Laura DeCarli
Athens, GA, USA Alexander Petukhov
Statesboro, GA, USA Alexander M. Stokolos
Atlanta, GA, USA Brett D. Wick
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Burk Erdoğan, Derrick Hart, and Alex Iosevich

Riesz Potentials, Bessel Potentials, and Fractional Derivatives
on Besov-Lipschitz Spaces for the Gaussian Measure . . . . . . . . . . . . . . . . . . . . . . . 105
A. Eduardo Gatto, Ebner Pineda, and Wilfredo O. Urbina

Maximal Operators Associated to Sets of Directions
of Hausdorff and Minkowski Dimension Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Paul Hagelstein

Distance Graphs in Vector Spaces Over Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . 139
Derrick Hart, Alex Iosevich, Doowon Koh, Steven Senger,
and Ignacio Uriarte-Tuero

Remarks on Extremals in Minimal Support Inequalities. . . . . . . . . . . . . . . . . . . . 161
Steven M. Hudson

On Fubini Type Property in Lorentz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Viktor I. Kolyada

Some Applications of Equimeasurable Rearrangements . . . . . . . . . . . . . . . . . . . . 181
Anatolii A. Korenovskii and Alexander M. Stokolos

Maximal Functions Measuring Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Veniamin G. Krotov

Estimates for the Exceptional Lebesgue Sets of Functions from
Sobolev Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Veniamin G. Krotov and Mikhail A. Prokhorovich

On the A2 Inequality for Calderón–Zygmund Operators . . . . . . . . . . . . . . . . . . . 235
Michael T. Lacey

Quest for Negative Dependency Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Linyuan Lu, Austin Mohr, and László Székely
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Part I
Konstantin Oskolkov



On the Scientific Work of Konstantin Ilyich
Oskolkov

Dmitriy Bilyk, Laura De Carli, Alexander Petukhov, Alexander M. Stokolos,
and Brett D. Wick

Abstract This chapter is a brief account of the life and the scientific work of
K.I. Oskolkov.

Konstantin Ilyich Oskolkov, or Kostya for his friends and colleagues, was born in
Moscow on February 17, 1946. Kostya’s father, Ilya Nikolayevich, worked as an
engineer at the Research Institute of Cinema and Photography. His mother, Maria
Konstantinovna, was a distinguished pediatric cardiology surgeon. Since Maria’s
father was a priest, during Stalin’s purges, her parents had to hide away, and for
a long time, she grew up without them and was forced to hide her background.
Kostya’s paternal grandfather, Nikolay Innokent’evich Oskolkov, was a famous
engineer who built bridges, dams, and subways across all of Russia and USSR.
At the age of 25, he directed the reconstruction of the famous Borodinsky bridge in
Moscow, giving the bridge the look that it still has today. Nikolay Innokent’evich’s
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wife, Anna Vladimirovna Speer, came from the lineage of Karl von Knorre,
a famous astronomer, a student of V.Ya. Struve, and the founder and director of
the Nikolaev branch of the Pulkovo observatory.

The early 1970s was a time of scientific bloom in the USSR. Physicists,
engineers, and mathematicians were honored members of the society—newspaper
articles, movies, and TV shows were created about them. It was during this time that
Kostya’s academic career began. In 1969, Kostya graduated with distinction from
the Moscow Institute of Physics and Technology, one of the leading institutions
of Soviet higher education specializing in science and technology, with a major
in applied mathematics. One of Kostya’s professors was Sergey Alexandrovich
Telyakovskii, who encouraged Kostya to start graduate school at the Steklov
Mathematical Institute of the Academy of Sciences of USSR under his supervision.
In 1972, Kostya received the degree of Candidate of Sciences (the equivalent of
Ph.D.), and then in 1979 at the same institute, he defended the dissertation for the
degree of Doctor of Sciences (Dr. Hab.), a nationally recognized scientific degree
which was exceptionally hard to achieve.

The beginning of Kostya’s scientific work coincided with a revolutionary period
of breakthrough results in multidimensional harmonic analysis. In 1971, Ch.
Fefferman [72] proved the duality of the real Hardy space H1 and BMO. In that same
year, Fefferman [71] constructed an example of a continuous function on the two-
dimensional torus whose rectangular Fourier series diverges almost everywhere.
In 1972 L. Carleson and P. Sjölin [70] found the sharp region of Lp-convergence
of two-dimensional Bochner-Riesz averages. In 1972 Fefferman [73] disproved a
long-standing “disc multiplier” conjecture by showing that the spherical sums of
multidimensional Fourier series converge in the Lp norm only in the trivial case
p = 2.

In the 1970s, the Function Theory seminar at Moscow State University was led
by D.E. Menshov and P.L. Ulyanov. During that time, an extremely talented group
of mathematicians working in harmonic analysis, approximatively of Kostya’s age,
was active in Moscow. Notable names include S.V. Bochkarev, B.S. Kashin, E.M.
Nikishin, and A.M. Olevskii. It was in this academic environment that Kostya began
his career. His research activity was also greatly influenced by such well-known
Soviet mathematicians as members of the Academy of Sciences S.M. Nikol’skii
and L.S. Pontryagin, as well as his Ph.D. advisor S.A. Telyakovskii.

Between 1972 and 1991, Kostya worked at the Steklov Institute. Together with
Boris Kashin, they led a seminar. The atmosphere of this seminar was extremely
welcoming and informal. Both supervisors always tried to encourage the speakers
and provide suggestions on how they could improve the results or the presentation
(which was not very typical in the Russian academia). He also worked at the
Department of Computational Mathematics and Cybernetics of Moscow State
University, where he taught one of the main courses on Optimal Control.

Much of Kostya’s time and effort was invested into the collaboration between the
Academy of Sciences of USSR and Hungary. In particular, for a long time, he was
an editor of the journal “Analysis Mathematica.”
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Kostya extensively traveled to different cities and towns of the Soviet Union,
where he lectured on various topics, served as an opponent in dissertation defenses,
and chaired the State Examination Committee. In the former USSR, where much
of the scientific activity and potential was concentrated in big centers like Moscow
or Leningrad, such visits greatly enriched the mathematical life of other cities. In
particular, Kostya often visited Odessa. Numerous mathematicians from Odessa
have been inspired by their communication with Kostya. The papers of V. Kolyada,
V. Krotov, A. Korenovsky, P. Oswald, and A. Stokolos in the present volume attest
to this fact.

At that time Kostya was one of few members of the Steklov Institute who
spoke English and German fluently. Because of that, he was constantly involved
in receiving frequent foreign visitors to the institute, which he always did with great
pleasure. In particular, he often spoke with L. Carleson, who visited the institute on
several occasions.

The work of L. Carleson profoundly influenced Kostya’s mathematical research.
From the start of his scientific career, Kostya was very enthusiastic about Carleson’s
theorem, which establishes the a.e. convergence of Fourier series of L2 functions
(1966). The original proof was so complicated that soon after its publication there
appeared more detailed proofs in several books (e.g., Mozzochi [86]; Jørsboe and
Mejlbro [78]), as well as an alternative proof by Fefferman [74]. Lecturing in
various parts of the Soviet Union, Kostya often stressed the importance of this proof
and attracted attention on this theorem in which he saw great potential for future
research. His predictions came true when in the mid-1990s, M. Lacey and C. Thiele
(as well as other authors later on) further developed the techniques used in the proof
of Carleson’s theorem and successfully applied them to problems in multilinear
harmonic analysis. In particular, they provided a short proof of Carleson’s theorem
based on their method of time-frequency analysis of combinatorial model sums [85].

We now highlight some of Kostya’s contributions to mathematics. We choose
to violate the chronological order and start with the topic, which we find most
interesting and influential (although this choice inevitably reflects the personal
tastes of the authors). The focus of our exposition is on the results in the area
of harmonic analysis. The subsequent articles by M. Chakhkiev, V. Kolyada,
V. Maiorov, and V. Temlyakov give a snapshot of Oskolkov’s contribution in the
areas of Approximation Theory and Optimal Control.

Kostya’s research activity was to a great extent inspired and motivated by his
participation in the seminar of Luzin and Men’shov at Moscow State University.
For a long time, this seminar was supervised by P.L. Ul’yanov. As a student of N.K.
Bari, P.L. Ul’yanov was deeply interested in the finest features of convergence of
Fourier series, in particular the problem of finding spectra of uniform convergence.

Let us turn to rigorous definitions. Let K = {kn} be a sequence of pairwise
distinct integers. Denote by C (K ) the subspace of continuous 1-periodic functions
with uniform norm, whose Fourier spectrum is contained in K , i.e.,

C (K ) =

{
f (t) : f (t + 1) = f (t) ∈ C , f̂k =

ˆ 1

0
f (t)e−2π iktdt = 0, k �∈K

}
.
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Denote

SN f (t) =
N

∑
n=0

f̂ke−2π iknt , LN(K ) = sup
0 �≡ f∈C (K )

‖SN f‖
‖ f‖ .

The sequence K is called a spectrum of uniform convergence if for any function
f in C (K ), the sequence SN( f ) converges to f (t) uniformly in t as N → ∞. The
boundedness of the sequence LN suffices to deduce that K is a spectrum of uniform
convergence; however, the main difficulty lies precisely in obtaining good bounds
on LN in terms of the spectrum K .

The classical result of du Bois-Reymond on the existence of a continuous
function whose Fourier series diverges at one point shows that the sequence of all
integers is not a spectrum of uniform convergence, while all lacunary sequences
are spectra of uniform convergence. For a long time, it was not known whether
the sequence n2 (or more general polynomial sequences) is a spectrum of uniform
convergence. This problem was repeatedly mentioned by P.L. Ulyanov, in particular,
in his 1965 survey [94]. In his remarkable publication [34] Kostya gave a negative
answer to this question. His proof is very transparent, elegant, short, and inspiring
and led to a series of outstanding results.

We shall briefly outline Kostya’s approach. If one denotes

hN(P) = ∑
1≤|n|≤N

e2π iP(n)

n
,

it is then evident that

|hN(P)| ≤ ∑
1≤|n|≤N

1
n
∼ 2logN → ∞.

This is a trivial bound of hN . At the same time, any nontrivial estimate of the
type |hN(P)| ≤ (logN)1−ε for all polynomials of degree r would easily imply the
bound LN ≥ (logN)ε , and the growth of the Lebesgue constants would then disprove
the uniform convergence. Therefore, the question reduces to improving the trivial
bounds for the trigonometric sums, which is far from being simple.

Kostya has demonstrated that no power sequence and, more generally, no
polynomial sequence can be a spectrum of uniform convergence. In addition, a
remarkable lower bound LN > ar(logN)εr for the Lebesgue constants of polynomial
spectra has been established. Here εr = 2−r+1, the constant ar is positive and
depends only on the degree of the polynomial defining the spectrum, but not on
the polynomial itself.

Kostya’s ingenious insight consisted of applying the method of trigonometric
sums to the solution of this problem. His main observation was that the sequence hN

is nothing but the Hilbert transform of the sequence {e2π iP(n)} and the algebraically
regular nature of this sequence allows one to obtain a substantially improved result.
For instance, when r = 1 and P(x) = αx, the following canonical relations hold
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h(P)≡ ∑
n �=0

e2π iαn

n
= 2i

∞

∑
n=1

sin(2π iαn)
n

= 2π i

(
1
2
−{α}

)
,

where {α} is the fractional part of the number α and α �∈ Z. Moreover, the
supremum of the partial sums is nicely bounded by

sup
N,α

∣∣∣∣∣2i
N

∑
n=1

sin(2π iαn)
n

∣∣∣∣∣< ∞, (1)

as opposed to the aforementioned logarithmic bound, which can be interpreted as
boundedness in two parameters: the upper limof the partial sums and all polynomials
of the first degree.

On one hand, this estimate demonstrates the applicability of the method of
trigonometric sums; on the other hand, it shows the type of bound one may expect
to obtain by using this method for polynomials of higher degrees.

Consequently, Kostya managed to improve the trivial bound and to deduce the
estimate LN > ar(logN)εr with some constant ar depending on r from the bound

|hN(P)| ≤ cr(logN)1−εr , (2)

where P is a polynomial of degree r with real coefficients and εr = 21−r.
The method employed in [34] to prove Eq. (2) is elegant and essentially

elementary. It is roughly as follows: by squaring out the quantity |hN(P)|, one
obtains a double sum

|hN(P)|2 = ∑
1≤|n|,

∑
|m|≤N

e2π i(P(n)−P(m))

nm
.

Introducing the summation index ν = n−m and invoking elementary estimates, one
obtains a relation of the type

|hN(P)|2 ≤ ∑
1≤|ν|≤N

|hN(Pν)|
ν

+ 1,

where Pν(x) = P(x+ν)−P(x), (ν =±1,±2, . . .). Since for each ν the polynomial
Pν(x) has degree strictly less than r, the proof may be completed by induction on r.

Notice that if r = 1, inequality (2) turns into Eq. (1). Kostya and his coauthor
and friend G.I. Arkhipov came up with the brilliant idea that Eq. (2) can be
substantially improved; in fact, the logarithmic growth of Eq. (2) may be replaced
with boundedness, as in Eq. (1), for polynomials P of arbitrary degree, not just
of degree r = 1. The proof is not simple and requires heavy machinery like the
Hardy-Littlewood-Vinogradov circle method for trigonometric sums. The following
remarkable theorem was proved in [36]:
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Theorem A (G.I. Arkhipov and K.I. Oskolkov, 1987). Let Pr be the class of
algebraic polynomials P of degree r with real coefficients. Then

sup
N

sup
{P∈Pr}

∣∣∣∣∣ ∑
1≤|n|≤N

e2π iP(n)

n

∣∣∣∣∣≡ gr < ∞

and for every P∈Pr, the sequence of symmetric partial sums convergences and the
sum is bounded uniformly in Pr.

Of course, this stronger bound brought forth new results that did not take long to
appear. The first application was obtained for the discrete Radon transform. Namely,
let P ∈Pr and define

T f (x) = ∑
j �=0

f (x−P( j))
j

.

Then

T̂ f (n) = f̂ (n)∑
j �=0

e2π inP( j)

j
,

therefore

|T̂ f (n)| ≤ | f̂ (n)|sup
N

sup
{Q∈Pr}

∣∣∣∣∣ ∑
1≤| j|≤N

e2π iQ( j)

j

∣∣∣∣∣≤ gr| f̂ (n)|

and

T : L2 → L2.

In 1990 E.M. Stein and S. Wainger [92] independently proved the boundedness of
the discrete Radon transform in the range 3/2 < p < 3. A. Ionescu and S. Wainger
[77] subsequently extended the result to all 1 < p < ∞. See [84] for a good source
of information about the current state of the subject.

Later, Kostya found a new and unexpected method of proof for Theorem A by
interplacing the theory of trigonometric sums with PDEs. His key observation was
that formal differentiation of the trigonometric sum

h(t,x) := (p. v. ) ∑
|n|∈N

eπ i(n2t+2nx)

2π in

yields the solution of the Cauchy initial value problem for the Schrödinger equation
of a free particle with the initial data 1/2−{x}

∂ψ
∂ t

=
1

2π i
∂ 2ψ
∂x2 , ψ(t,x) |t=0 = 1/2−{x}.
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However, one has to make rigorous sense of this formalism, which is highly non-
trivial. For instance, the series ϑ(t,x) := ∑n∈Z eπ i(n2t+2nx), which arises naturally,
is not summable by any regular methods for irrational values of t as observed by
G.H. Hardy and J.E. Littlewood, see [75].

Using the Green function Γ (t,x) =
√

i
t e−

πix2
t and the Poisson summation

formula, Kostya established the following identity, which must be understood in
the sense of distributions.

ϑ(t,x) = Γ (t,x)ϑ
(
−1

t
,−x

t

)
.

This might be viewed as a generalization of the well-known reciprocity of truncated
Gauss sums, see [75, p. 22]:

q

∑
n=1

e
πin2 p

q =

√
iq
p

p

∑
m=1

e−
πim2q

p .

From this identity, Kostya derives the existence and global boundedness for the dis-
crete oscillatory Hilbert transforms with polynomial phase h(t,x), i.e., a particular
case of Theorem A for the polynomials of second degree. The case of higher-degree
polynomials, for example, cubic, requires the analysis of linearized periodic KdV
equation. The general case was considered in the remarkable paper [41].

The success achieved by Kostya in the study of the Schrödinger equation of a free
particle with the periodic initial data has been developed even further. Z. Ciesielski
suggested that Kostya tries to use Jacobi’s elliptic ϑ -function as a periodic initial
data. This function has lots of internal symmetries, and the problem sounded quite
promising.

Formally, the problem is the following:

∂ψ
∂ t

=
1

2π i
∂ 2ψ
∂x2 , ψ(t,x) |t=0 = ϑε (x) = c(ε) ∑

m∈Z
e−

π(x−m)2

ε .

Here, ε is a small positive parameter which tends to 0 and c(ε) a positive factor,
normalizing the data in the space L2(T), i.e., on the period.

D. Dix, Kostya’s colleague from the University of South Carolina, conducted
a series of computer experiments (unpublished) and plotted the 3D graph of the
density function ρ = ρ(θε , t,x) = |ψ(θε , t,x)|2,(t,x) ∈R

2, for ε = 0.01. The result
was astonishing, see Fig. 1.

Instead of expected chaos, the picture turned out to be well structured. First, the
graphs represent a rugged mountain landscape, and second, the landscape is not a
completely random combination of “peaks and trenches.” In particular, it is criss-
crossed by a rather well-organized set of deep rectilinear canyons, or “the valleys of
shadows.” The solutions exhibit deep self-similarity features, and complete rational
Gauss sums play the role of scaling factors. Effects of such nature are labeled in the
modern physics literature as quantum carpets.
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Fig. 1 The Schrödinger landscape

Moreover, Kostya showed that semiorganized and semi-chaotic features, exhib-
ited by the bivariate Schrödinger densities |ψ(t,x)|2, also occur for a wide class of√
δ -type initial data where δ = δ (x) denotes the periodic Dirac’s delta-function. By

definition,
√
δ is a family of regular periodic initial data { fε(x)}ε>0 such that in the

distributional sense, | fε |2 → δ for ε → 0.
These phenomena were mathematically justified by Kostya using the expansions

of densities |ψε |2 into ridge-series (infinite sums of planar waves) consisting of
Wigner’s functions and by analyzing the distribution of zeros of bivariate Gauss
sums.

Figure 2 below demonstrates Bohm trajectories—the curves on which the
solution ψ conserves the initial value of the phase, i.e., remains real valued and
positive.

Figure 2 looks like a typical quantum carpet from the Talbot effect. The Talbot
effect phenomenon, discovered in 1836 by W.H.F. Talbot [93], the British inventor
of photography, consists of multi-scaled recovery (revival) of the periodic “initial
signal” on the grating plane. It occurs on an observation screen positioned parallel
to the original plane, at the distances that are rational multiples of the so-called
Talbot distance. At the bottom of the figure, the light can be seen diffracting through
a grating, and this exact pattern is reproduced at the top of the picture, one Talbot
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Fig. 2 The Bohm trajectories

length away from the grating. Halfway down, one sees the image shifted to the side,
and at regular fractions of the Talbot length, the sub-images are clearly seen. A
careful examination of Fig. 2 reveals the aforementioned features in this picture.

Kostya suggested the model that explains the Talbot effect mathematically [56].
He established the bridges between the following equations describing the Talbot
effect:

Wave �→Helmholtz with small parameter �→ Schrödinger

Subsequently, several theorems concerning the Talbot effect were proved by him,
explaining the phenomenon of “the valleys of shadows”—the rectilinear domains of
extremely low light intensity in Fig. 1.

In particular, it was discovered that there are surprisingly wide and very
interesting relations of his results on Vingradov series with many concepts in math-
ematics, such as the Fresnel integral, continued fractions, Weyl exponential sums,
Carleson’s theorem on trigonometric Fourier series of L2 functions, the Riemann
ζ -function, and shifted truncated Gauss sums—in other words, deep connections
exist between the objects of analytic number theory and partial differential equations
of Schrödinger type with periodic initial data.
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Kostya has explored the complexity features of solutions to the Schrödinger
equation, which are related to the so-called curlicues studied by V.M. Berry and
J. H. Goldberg [64–67]. Curlicues represent a peculiar class of curves on the
complex plane C resulting from computing and plotting the values of incomplete
Gauss sums. In particular, the metric entropy of the Cornu spiral described by the
incomplete Fresnel integral equals 4/3. Kostya’s result [44] demonstrates a very
remarkable fact that, although the Cauchy initial value problem with periodic initial
value f (x) is linear, the solutions may be chaotic even in the case of simple initial
data.

These phenomena were enthusiastically received by the mathematical commu-
nity. In 2010, P. Olver published a paper [88] in the American Mathematical
Monthly attempting to attract the attention of young researchers to the subject.

Kostya also took a different direction of research related to the aforementioned
trigonometric sums in [51, 52, 55, 58]. In particular, in [55] he found an answer
to S.D. Chowla’s problem [68], which had been open since 1931. Along the way,
Kostya characterized the convergence sets for the series

S(t)∼ ∑
(n,m)∈N2

sin2πnmt
nm

, C(t)∼ ∑
(n,m)∈N2

cos2πnmt
nm

,

as well as for more general double series of the type

E(λ , t,x,y)∼ ∑
(n,m)∈N2

λn,m
e2π i(nmt+nx+my)

nm
,

where λ is a bounded “slowly oscillating” multiplier, satisfying, say, the Paley
condition, t,x,y-independent real variables. Such series naturally arise in the study
of the discrepancy of the distribution of the sequence of fractional parts {nt}
(mod 1) and Wigner’s functions arising from the Schrödinger density |ψ |2.

We now turn our attention to some of Kostya’s earlier results, which highlight
his versatile contributions to harmonic analysis and approximation theory.

In 1973, E.M. Nikishin and M. Babuh [87] demonstrated that one could construct
a function of two variables whose rectangular Fourier series diverges almost
everywhere (the existence of such functions was proved by Fefferman [71] in 1971)

with modulus of continuity ωC( f ,δ ) = O
(
log 1

δ
)−1

. One year later, Kostya [15]
proved that this estimate is close to being sufficient. If f ∈C(T2) and

ωC( f ,δ ) = o

(
log

1
δ

log loglog
1
δ

)−1

,

then the rectangular Fourier sums converge a.e.; the exact condition is still an
open question. Kostya’s proof used very delicate estimates of the majorant of the
Fourier series of a bounded function of one variable due to R. Hunt. In addition,
Kostya suggested a remarkable method for expressing the information about the
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smoothness of a function in terms of a certain extremal sequence which we shall
discuss later. Thus, even Kostya’s earliest results are elegant and complete, although
very technical and far from trivial.

A natural counterpart of Carleson’s theorem is Kolmogorov’s example [79] of an
L1 function whose Fourier series diverges almost everywhere. Finding the optimal
integrability class in S.V. Kolmogorov’s theorem is an important open question.
The first step in this direction was made in 1966 by V.I. Prohorenko [89]. The
best result known today was obtained by Konyagin [82] in 1998. In his paper S.V.
Konyagin wrote, “The author expresses his sincere thanks to K. I. Oskolkov for a
very fruitful scientific discussion during his (the author’s) visit to the University of
South Carolina, which stimulated the results of the present paper.”

One of Kostya’s earliest research interests was the quest for a.e. analogues of
estimates written in terms of norms. We shall take the liberty of drawing a parallel
to the Diophantine approximation. The classical Dirichlet–Hurwitz estimate

∣∣∣∣x− p
q

∣∣∣∣≤ 1

q2
√

5

holds for all real x and for infinitely many values of p and q with (p,q) = 1.

Moreover, for some values of x (such as the “golden ratio”
√

5−1
2 ), the constant√

5 cannot be increased. At the same time, as shown by A. Khinchin for almost all
x, the order of approximation can be greatly improved. For example, for almost all
x, there exist infinitely many p, q with (p,q) = 1 such that

∣∣∣∣x− p
q

∣∣∣∣≤ 1
q2 logq

.

More generally, instead of logq, one can use any increasing function ϕ(q), where
the series ∑ 1

qϕ(q) diverges. The divergence condition is sharp, which easily follows
from the Borel–Cantelli lemma. Therefore, the Dirichlet–Hurwitz estimate can be
improved by a logarithmic factor almost everywhere.

In the same spirit, Kostya improved Lebesgue’s result on the approximation of
continuous functions with the partial sums of Fourier series. Uniform estimates may
be substantially strengthened in the a.e. sense. More precisely, Lebesgue’s theorem
[83] implies that if f ∈ Lipα , 0 < α < 1, then the following uniform estimate of the
rate of approximation is valid:

| f (x)− Sn f (x)| ≤C
logn
nα ,

and there is a function f ∈ Lipα such that

limsup
n→∞

nα

logn
| f (0)− Sn f (0)|> 0.
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In [20], using the exponential estimates on the majorants of the Fourier sums of a
bounded function due to Hunt [76], Kostya showed that for almost all x ∈ T, where
T= [0,2π), the estimate can be improved to

| f (x)− Sn f (x)| ≤Cx
log logn

nα ,

and there is a function f ∈ Lipα such that for almost all x ∈ T

limsup
n→∞

nα

loglogn
| f (x)− Sn f (x)| > 0.

We would like to mention that the parallel with the Diophantine approximation
is more than just formal. In his later works, Kostya used continued fractions,
the main tool of Diophantine approximation, to obtain convergence theorems for
trigonometric series. See, for example, [51, 52, 55, 58].

The proof of the aforementioned metric version of Lebesgue’s theorem was based
on a remarkable sequence δk, defined for a modulus of continuity ω(δ ) by the
following rule:

δ0 = 1, δk+1 = min

{
δ : max

(
ω(δ )
ω(δk)

;
δω(δk)

δkω(δ )

)
≤ 1

2

}
, k = 0,1, . . . .

One can view this sequence as a discrete K-functional. Namely, it is well known
that the modulus of continuity ω(δ ) controls the rate of convergence while the ratio
ω(δ )/δ controls the growth of the derivative of a smooth approximation process
when δ → 0. So, the δk system controls both, which is similar to the idea of the
K-functional.

The idea of such partitions was already in the air, probably since the work
of S.B. Stechkin [91] in the early 1950s. Simultaneous partition of a modulus
of continuity ω(δ ) and the function δ/ω(δ ) apparently was first used by V.A.
Andrienko [63]. As in the work of Stechkin, Andrienko used such partitions to
construct counterexamples.

Kostya however was the first who wrote this sequence explicitly and employed it
to obtain positive results. Amazingly, this sequence turns out to be very useful in the
description of phenomena that are either close to or seemingly far from the rate of
a.e. approximations. For instance, the classical Bari-Stechkin-Zygmund condition
on the modulus of continuity just means that δk/δk+1 is bounded. Later on, this
method was widely used by many authors, see, for example, [80, 81].

Another example of application of δk sequence is the a.e. form of a Jackson-
type theorems from constructive approximation theory. Namely, let f ∈ Lp(T), 1≤
p < ∞; let ωp( f ,δ ) denote the Lp-modulus of continuity of a function f ; and let

Sδ ( f )(x) = δ−1
´ x+δ

x f (y)dy. Then

‖ f − Sδ( f )‖p ≤Cpωp( f ,δ ).
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In [20] Kostya suggested an a.e. version of the above theorem. Let ω(t)/t, w(t)
and ω(t)/w(t) be increasing, and assume also that

∞

∑
k=0

(
ω(δk)

w(δk)

)p

< ∞. (3)

If ωp( f ,δ ) = O(ω(δ )), then

f (x)− Sδ ( f )(x) = Ox (w(δ )) a.e. on T.

If (1) diverges, then there is a function f such that ωp( f ,δ ) = O(ω(δ )) and

limsup
δ→0+

f (x)− Sδ ( f )(x)
w(δ )

= ∞ a.e. on T.

Further applications of the sequence δk include a quantitative characterization of
the Luzin C-property. By Luzin’s theorem, an integrable function is continuous if
restricted to a proper subset of the domain whose complement has arbitrarily small
measure. It is then natural to ask the following: if the function has some smoothness
in the integral metric, what can be concluded about the uniform smoothness of this
restriction?

Kostya [23, 31] suggested the following sharp statement: let ω(δ ) be a modulus
of continuity, and let f be such that ωp( f ,δ ) ≤ ω(δ ). Let another modulus of
continuity w(δ ) be as above [see Eq. (3)]. Then for some measurable function
C(t) ∈ Lp,∞

| f (x)− f (y)| ≤ (C(x)+C(y))w(|x− y|).

The convergence of the series in Eq. (1) is a sharp condition. Since any Lp,∞ function
is bounded modulo a proper set of arbitrary small measure, the above inequality
provides the quantitative version of the Luzin C-property.

Later, that property was generalized to functions in H p, 0 < p≤ 1 and in Lp, p≥
0 by A. Solyanik [90]. Also V. G. Krotov and his collaborators have studied the
C-property in more general settings (see his paper in this volume).

Kostya’s interest in the convergence of Fourier series lead him to consider the
question of the best approximation of a continuous function f with trigonometric
polynomials. This problem has a long history and tradition, especially in the Russian
school. Here Kostya again used a combination of deep and simple ideas and obtained
optimal results.

To be specific, let f be a continuous periodic function with Fourier sums Sn( f ),
and let En( f ) = En be the best approximation of f by trigonometric polynomials of
order n. Classic estimates due to Lebesgue state that

‖ f − Sn( f )‖ ≤ (Ln + 1)En( f ),

where Ln are Lebesgue constants. From this inequality it follows that

‖ f − Sn( f )‖ ≤C(logn)En( f ).
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This inequality is sharp in many function classes defined in terms of a slowly
decreasing majorant of best approximations. But the inequality is not sharp if the
best approximations decrease quickly.

The following estimate was proved by Kostya in [17] :

‖ f − Sn( f )‖ ≤C
2n

∑
k=n

Ek( f )
n− k+ 1

.

Here, C is an absolute constant, and ‖ · ‖ is a norm in the space of continuous
functions. This estimate sharpens Lebesgue’s classical inequality for fast decreasing
Ek. The sharpness of this estimate is proved for an arbitrary class of functions having
a given majorant of best approximation. Kostya also investigated the sharpness of
the corresponding estimate for the rate of almost everywhere convergence of Fourier
series. See the note by V. Kolyada in this volume.

When f is continuous with no extra regularity assumptions, the partial Fourier
sums may not provide a good approximation of f . In a paper with D. Offin [6],
Kostya constructed a simple and explicit orthonormal trigonometric polynomial
basis in the space of continuous periodic functions by simply periodizing a well-
known wavelet on the real line. They obtained trigonometric polynomials whose
degrees have optimal order of growth if their indices are powers of 2. Also,
Fourier sums with respect to this polynomial basis have almost best approximation
properties.

More recently, Kostya wrote an interesting series of papers on the approximation
of multivariate functions. He became interested in the ridge approximation (approx-
imation by finite linear combination of planar waves) and the algorithms used to
generate such approximations. His interest in these problems was motivated by the
connections between the ridge approximation and optimal quadrature formulas for
trigonometric polynomials, which are discussed in [43]. In this chapter Kostya also
studied the best ridge approximation of L2 radial functions in the unit ball of R2 and
showed that the orthogonal projections on the set of algebraic polynomials of degree
k are linear and optimal with respect to degree n ridge approximation. The proof of
this result uses, in particular, the inverse Radon transform and Fourier-Chebyshev
analysis.
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