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CHAPTER 1 

FRONTIERS OF SPINAL CORD 
AND SPINE REPAIR: 

Experimental Approaches for Repair 
of Spinal Cord Injury 

Choya Yoon*,1 and Mark H. Tuszynski1,2 
1 Department of Neurosciences, University of California San Diego, La Jolla, California, USA; 
'Veterans Administration Medical Center, San Diego, California, USA 
*Corresponding Author: Choya Yoon-Email: c6yoon@ucsd.edu 

Abstract: Regeneration of inj ured CNS neurons was once thought to be an unachievable goal. 
Most patients with significant damage to the spinal cord suffer from permanently 
impaired neurological function. A century of research, however, has led to an 
understanding of multiple factors that limit CNS regeneration and from this 
knowledge experimental strategies have emerged for enhancing CNS repair. Some 
of these approaches have undergone human translation. Nevertheless, translating 
experimental findings to human trials has been more challenging than anticipated. In 
this chapter, we will review the current state of knowledge regarding central axonal 
growth failure after injury, and approaches taken to enhance recovery after SCI. 

INTRODUCTION 

In the field of spinal cord injury (SCI) research, the tenns "regeneration" and 
"sprouting" both describe axonal growth responses. These forms of growth have to 
be distinguished because they serve separate functions and are controlled by distinct 
mechanisms (Fig. I). "Regeneration" refers to new growth at the tip of a transected 
axon, and generally suggests propagation of growth over some distance, of the sort 
that occurs spontaneously after peripheral nerve injury. "Sprouting", on the other hand, 
refers to new growth that can arise from either a transected or an intact axon, can occur 
anywhere along the length ofthe axon (Fig. 1), and generally extends over a relatively short 

Regenerative Biology a/the Spine and Spinal Cord, edited by Rahul Jandial and Mike Y. Chen. 
©2012 Landes Bioscience and Springer Science+Business Media. 
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2 REGENERATIVE BIOLOGY OF THE SPINE AND SPINAL CORD 

Sprouting from lesioned axons 
to other s upraspinal projections 

Sproutin g of spared 
s upraspinal projection 

" - +--t---1I--+--Sproullng 10 propriospinal relays 

'--'---Lesion 

DRG 
Regenerating ______ -t±- t--ij 
descending fiber 

Wallarian degeneration 

Figure 1. Anatomical plasticity of eNS neurons after injury. Following damages to descending and dorsal 
column sensory spinal tracts, the distal segment undergoes Wallarian degeneration and the proximal do 
not regenerate unless experimentally induced. Modified from Blesch A et at. Trends Neurosci 2009; 
32:41-47;1 ©2009 with permission from Elsevier. 

distance. Axonal sprouting spontaneously occurs in both the PNS and the CNS and can 
be a robust phenomenon throughout life. 1,2 For example, axons sprout extensively in the 
human hippocampus during the course of Alzheimer's disease, 3 after spinal cord injury, 4-7 

and in the cerebral cortex after stroke.8,9 Sprouting can sub-serve substantial functional 
recovery, depending on the extent ofthe original injury and intervention with rehabilitative 
therapy.lO,ll However, axonal regeneration occurs rarely if at all after adult CNS injury, 
leading to the permanence of many functional deficits after SCI. 

MECHANISMS UNDERLYING AXONAL GROWTH FAILURE 

There are several mechanisms that contribute to the failure ofaxonal regeneration in 
the adult CNS after injury. (I) Extensive inflammation and cell death occurs around sites 
of SCI. (2) Pennissive tissue substrates of bridges fail to form in injury sites, leading to an 
inability of injured axons to adhere to and grow through the injury site. (3) A number of 
molecules in the injured adult spinal cord actively inhibit axonal regeneration, including 
molecules in the extracellular matrix and proteins associated with CNS myelin. (4) There 
is a failure of production of growth-stimulating molecules, such as growth factors, around 
sites of central injury. (5) Intrinsic neuronal programs to activate growth are deficient 
in adult neurons. 12 

1. After first mechanical insult, additional damage accumulates within the first few 
hours by a variety of reacti ve processes. 13 Interruption of blood flow and massive 
inflammatory responses result in cell death and cell loss at or adjacent to the 
epicenter. The majority of cellular loss is due to necrosis in the first few hours 
post-injury and to apoptosis in the following days and weeks. Damage and death 
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of oligodendrocyte occur afterwards contributing to demylelinating phenotype 
and axonal degeneration at and adjacent to the injury site. 14 Mechanisms that 
may trigger apoptosis in the injured spinal cord include vascular abnormalities, 
excitotoxic events, and inflammation. ls These findings have provided a base for 
neuroprotective strategies in repair of spinal cord following injury. 

2. One of the pathological outcomes of SCI is the formation of cavities in the 
spinal cord. After days to weeks, a CNS injury can expand in size leading to 
a scar-encapsulted cavity16-18 in which injured axons are unable to adhere and 
growth through the lesion site. The underlying causes of cyst formation are not 
fully understood although various phenomena including ischemia, hemorrhage 
(Wallace, 1987), ormacrophage infi Itration and inflammationls,19were suggested 
to be contributors. Cellular implants and their genetic modification have been 
key strategies to provide substrates for axonal growth. Olfactory ensheathing 
cells, Schwann cells, neural stem cells, and transplants from fetal spinal cord20-23 
as well as fibrin or hydrogel loaded with growth factors have been studied as 
therapeutic approaches. 

3. The damaged tissue around the lesion site reacts to injury with proliferation, 
and activation of microglia and macrophages recruited from the bloodstream 
and with reactive astrocytosis. Reactive astrocytes stabilize the injury site and 
limit the spread of injury. However, they also form a gliar scar with microglia 
and fibroblasts accompanied by accumulation of proteoglycans and tenescin C, 
fibronectin, laminin and collagen, which are the noncellular components ofthe 
scar. In parallel, disrupted myelin proteins, including the transmembrane proteins 
NogoA, the myelin associated glycoprotein (MAG) and the oligodendrocyte 
myelin glycoprotein (Omgp) bind to the Nogo receptor complex in neurons 
and activate a downstream signaling cascade that, through activation of a small 
GTPase, RhoA and its downstream ROCK ultimately leads to growth cone 
collapse and inhibits axonal growth. Successful outcomes that axonal growth 
after experimental CNS lesion was enhanced by neutralizing such inhibitory 
factors advanced to the development of therapeutic interventions.2,24-26 

4. One off actors that influence the disparity between axonal regeneration following 
PNS and CNS injury is production of growth-stimulating molecules, in particular 
growth factors around injury site. Neurotrophic factors contribute to growth, 
guidance and survival of several neuronal populations during development. 
Clearly, rapid production of several growth factors by Schwann cells, including 
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 
Insulin-like growth factor (IGF), Ciliary neurotrophic factor (CNTF), Glial-cell 
line derived neurotrophic factor (GDNF) and others leads to successful axonal 
regeneration in the adult PNS.27-32 In contrast, those factors are not expressed 
in temporal or spatial gradients supportive of regeneration in CNS.33 These 
observations made neurotrophic molecules attractive candidates to enhance an 
intrinsic cell response of injured CNS neurons.34-40 

5. In comparison with neurons at embryonic or early postnatal stage, intracellular 
genetic response for growth of adult neurons is very deficient; embryonic neurons 
show a better potential to regrow if lesioned and they are much less sensitive 
to inhibitory molecules. As mentioned above, even adult peripheral nerves 
regenerate with genetic program for growth activated robustly but adult CNS 
neurons lack intrinsic capacity for such pro-regenerative response.41 ,42 Therefore, 
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a variety of strategies to unlock the genetic program of CNS neurons aimed at 
activating genes for growth are underway. 

EXPERIMENTAL EFFORTS TO ENHANCE REGENERATION 
OF THE INJURED SPINAL CORD 

Most experimental spinal cord studies are conducted as combined anatomical and 
functional analyses. Experimental efforts have been designed to target the multiple 
mechanisms of SCI pathology identified above. These experimental approaches include,43 

a. placement of molecular and cellular bridges in the lesion cavity;44 
b. stimulation ofthe injured spinal cord with growth factors;45 
c. neutralization of myelin or ECM-related inhibitors;46,47 and 
d. "conditioning" of neurons to activate intrinsic genetic programs and proteins 

related to an active growth state.48.Sl 

Table 1. Growth factor sensitivities of spinal cord axons 
Growth Factors 

NGF 

BDNF 

NT-3 

NT-4/5 

Injured Axons 

Nociceptive spinal axons 

Cerulospinal axons 
Rubrospinal axons 

Raphespinal axons 

Coerulospinal axons 
Reticulospinal axons 

Vestibulospinal axons 
Local motor axons 
Local sensory axons (CGRP) 
Corticospinal axons 

Dorsal column sensory axons 
Local motor axons 
Coerulospinal axons 
Reticulospinal axons 
Propriospinal axons 

References 

Tuszynski et al (1994, 1996) 
Ramer et al (2000) 
Tuszynski et al (1994, 1996) 
Kobayashi et al (1997) 
Ye and Houle (1997) 
Liu et al (1999) 
Bregman et al (1997) 
Menei et al (1998) 
Menei et al (1998) 
Ye and Houle (1997) 
Jin et al (2002) 
Jin et al (2002) 
Lu et al (2001) 
Lu et al (2001) 
Schnell et al (1994) 
Grill et al (1997) 
Bradbury et al (1999) 
Blesch et al (2004) 
Blesch et al (2004) 
Blesch et al (2004) 
Blesch et al (2004) 

GDNF Local motor axons Blesch and Tuszynski (2003) 
Propriospinal axons Blesch and Tuszynski (2003) 
Dorsal column sensory axons Blesch and Tuszynski (2003) 
Nociceptive spinal axons Ramer et al (2003) 

Adapted from Lu P et al. Exp Neuro12008; 209:313-320;" ©2008 with permission of Elsevier. 
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Effects of Growth Factors and Bridges 

In recent years, several groups in aseries of studies have examined the ability of injured 
adult spinal axons to respond to growth factors (Table I). Growth factors were provided 
using techniques of direct infusion of protein, or gene delivery wherein genes encoding 
growth factors are expressed using viral gene therapy vectors. In many cases, the lesion 
cavity is filled with cellular grafts to support axon penetration. Critical points established 
from these studies are: (I) injured adult axons exhibit enhanced growth after exposure to 
growth factors after injury. For example, several brainstem neural projections thatmodulate 
motor function in the spinal cord exhibit sensitivity to the growth factors brain-derived 
neurotrophic factor (BDNF)and neurotrophin-3 (NT -3).20,52-54 (II) Patterns of growth factor 
sensitivity of adult axons after injury are comparable to that of developmental growth 
factor sensitivity. (III) The combination of cell grafting to reconsistute a cellular bridge 
in a lesion site, and growth factor administration by gene therapy, results in substantial 
axonal regeneration within a spinal cord lesion site.43,55-57 Aguayo and colleagues58 showed 
several years ago that central axons can extend in peripheral nerve grafts placed into sites 
of SCI; these grafts are now known to contain substantial quantities of the growth factors 
nerve growth factor (NGF), BDNF, NT-3, ciliary neurotrophic factor (CNTF), and glial 
cell line-derived neurotrophic fator (GDNF) secreted by Schwann cells. 

BDNF particularly must be noted for its growth promoting effects on a broad range of 
neuronal populations including cerulospinal, rubrospinal, raphespinal, coerulospinal and 
reticulospinal axons (Table I). In addition to supporting extension ofaxons, BDNF has 
also been demonstrated to prevent degeneration ofthe red nucleus59 and even the death 
of corticospinal neuronal cell bodies by administration into the cortex.60 Yet corticospinal 
axons, which are essential for human voluntary movement,61 remain among the most 
refractory axonal systems from which to elicit regenerative responses. One possible 
explanation for the limited ability of corticospinal axons to regenerate is the absence 
of high level expression of growth factor receptors on the tips of injured axons.62 This 
speculation was recently supported by the observation that over-expression ofthe BDNF 
receptor, trkB, in layer V motor cortex resulted in corticospinal axon regeneration into 
a cortical lesion site.63 

NT-3 has also been implicated in promoting growth of injured corticospinal 
axons35,37,38,55,64-67 as well as stimulating the regeneration of ascending dorsal column 
sensory axons.35,55,64-67 

Other growth factors including insulin-like growth factor- I (IGF- I), the fibroblast 
growth factor (FGF) fami Iy and GDN F have axonal growth-promoting effects. However, 
the factthat GDNF along with NGF enhances growth of nociceptive spinal axons indicates 
a potential to cause dysfunctional sprouting and pain after SCI. Most likely, these growth 
factors should be avoided in experimental efforts to treat SCI. 

Neutralizing Inhibitors to Axonal Regeneration 

Two classes of environmental molecu les contribute to fai lure of axonal growth: Proteins 
associated with degenerating myelin (myelin-associated inhibitors) and proteoglycans 
associated with glial scarring, including the chondroitin sulfate proteoglycans (CSPGs). 

More than 20 years ago, early studies by Schwab and colleagues identified an axon 
growth-inhibiting activity in CNS myelin.68 Two membrane protein fractions of 35 
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and 250 kDa in CNS myelin were found to inhibit neurite outgrowth in vitro.69 Such 
inhibitory proteins, cloned later as NogoA, MAG (myelin associated protein) and OMgp 
(oligodendrocyte myelin glycoprotein), mediate their signaling through the so-called 
Nogo-66 receptor (NgRl) with a complex of coreceptors that include p75/Lingo-1i 
Taj.7o.73 Most recently, ligands have been shown to bind to another inhibitory receptor, 
paired immunoglobulin-like receptor B (PirB).74 Binding of MAl to the receptor activates 
RhoA-mediated stimulation of Rho-associated kinase (ROCK) that regulates actin 
cytoskeletal dynamics75 resulting in inhibition of neurite outgrowth and growth cone 
collapse.76 Effects of blocking inhibitory signaling from MAI-NogoR on axonal regrowth 
in vivo have been extensively examined in rodent models of SCI. For example, some 
studies reported enhanced corticospinal, rubrospinal and raphe spinal axon regeneration 
in NgRI knockout mice after SCI,77 whereas other studies reported no effect of nogo 
receptor deletion.78,79 Antagonizing the inhibitory activity of No goA pharmacologically 
(using the monoclonal antibody (IN-I), peptide NEPI- 40, or soluble version ofNgRl) 
was reported to result in significant growth of damaged CST axons with recovery of 
locomotion in some studies80,81 but not in others. 82 The ROCK inhibitor Y-27632 was 
also reported to promote sprouting of CST fibers and improve locomotor recovery after 
injury.83 Despite some ofthis controversy regarding the precise role of no go neutralization 
in axonal regeneration after SCI, clinical trials of nogo antibody infusions are currently 
underway in the United States and Europe, and results are expected sometime in 2012. 

In addition to the myelin-inhibitory molecules, extracellular matrix molecules such 
as chondroitin sulfate proteoglycan (CSPG), hyaluronan and tenascin are deposited after 
spinal cord injury and these molecules restrict axonal growth. 84,85 CSPGs consist of a 
core protein to which a variable number of unbranched sugar (glucosaminoglycan; GAG) 
side chains are covalently attached. Degradation of CSPGs with the bacterial enzyme 
chondroitinase (CHASE) turns an inhibitory surface for axon growth to a more permissive 
environment.86-88 Rho-ROCK signaling also appears to mediate inhibitory signals from 
CSPG binding, as observed with myelin-associated inhibitors.89,9o Therapeutic effects 
of CHASE on axon regeneration have been demonstrated in many studies; intrathecal 
delivery of CHASE enhanced axonal growth of both ascending sensory projections 
and descending motor projections, resulting in functional improvement after spinal 
cord injury.88 Interestingly, transgenic mice expressing CHASE in astrocytes reported 
regenerated corticospinal axons into a lesion site, but not caudal to the lesion site; 
functional improvement did not OCCUr. 91 

Finally, the receptor "protein tyrosine phsophatase sigma" (PTPsigma) was recently 
identified as a receptor for CSPGS.92 PTPsigma gene disruption enhanced penetration of 
axons into a CSPG-rich scar tissue after SCI. This discovery provides new directions for 
targeting inhibitory CSPG molecules to enhance axon regeneration. 

Intrinsic Determinants of eNS Regeneration 

Transection of the spinal cord results in no spontaneous regeneration of the 
corticospinal tract. 93 In contrast, the raphespinal and rubrospinal projections, which also 
contribute to locomotion, exhibit a modest degree of regeneration into spinal cord lesion 
sites when provided with cellular bridges, trophic stimulation, and other experimental 
therapies. 52,94-97 The regenerative differences between corticospinal and other systems 
may be due to several potential mechanisms. For example, regeneration-associated genes 
(RAG) including GAP-43, c-JUN, Galectin-\, ~-II-tubulin and a-l-tubulin are expressed 
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at only low levels in corticospinal neurons whereas expression of these genes is induced 
after injuries of raphespinal and rubrospinal systems.98-I02 In general, the ability of the 
neuron to reactivate expression of growth molecules in response to injury corresponds to 
its regenerative potential,51 Intrinsic neuronal properties related to axon growth involve 
transcription of specific sets of genes and some autonomous processes within the axon 
including local mRNA translation, protein synthesis and conveyance of an injury signal 
to the cell soma via retrograde axoplasmic transport. 103 

Enhancing Intrinsic Growth Potential 

In an attempt to boost intrinsic neuronal growth properties, two main methodological 
approaches have been used: (I) "conditioning" lesions, and (2) modification of genetic 
programs. 

I. "Conditioning" lesions prime the growth state of injured neurons for 
regeneration. The dorsal root ganglion (DRG) neuron has served as a unique 
system to study the intrinsic potential of neurons to regenerate after injury. 
The peripheral branch of a DRG neuron can regenerate robustly following 
sciatic nerve injury, but the central branch cannot. Interestingly, an injury to 
the peripheral branch of a DRG neuron (a "conditioning" lesion) significantly 
enhances the regeneration of the central DRG branch if the spinal cord is 
subsequently lesioned.48,lo4This striking phenomenon is attributed to activation 
of genes associated with regeneration by the conditioning lesion. Those genes 
include GAP-43, CAP-23, SPRRIA (involved in cytoskeleton dynamics within 
the growth cone), Galectin-l and BDNF. One key mediator known to mimic 
regenerative responses induced by the conditioning lesion is cyclic AMP 
(cAMP). Direct administration of cAMP into the DRG neuron recapitulates 
some, but not all, of the conditioning effect.49,50 Polyamine metabolism 
through CREB has been shown to be a mechanism for enhancement of axon 
regeneration by cAMP elevation. 105 

Lens injury, another form ofa "conditioning" lesion, has also been reported 
to stimulate the activation of growth programs for retinal ganglion cells after 
axotomy. Such regenerative responses can be achieved by combined application 
of cAMP and oncomodulin, a calcium-binding protein secreted bymacrophages 
into retinal ganglion cell bodies. Like conditioning lesions in the peripheral branch 
of a DRG neuron, upregulation of growth-associated genes is accompanied by 
regeneration of injured optic nerves. 51 ,I06,I07 

2. Modifications of genetic programs: Experimental manipulations at molecular 
level to enhance the intrinsic capacity of injured neurons to regrow. 

SCI differentially modulates the expression ofthousands of genes encoding 
diverse proteins such as cell adhesion molecules, cytoskeletal proteins, survival 
factors, ion channels, neuropeptides, transcription factors, and others. To identify 
genetic mechanisms that could potentially promote axon regeneration, anumberof 
screenings based on gene microarray methods have been conducted. This strategy 
was designed to monitor changes in gene profiling occurring before and after 
injury, in order to identify master control genes for regeneration.32,108-1 12 Studies 
in DRG neurons following a conditioning lesion identified several candidate 
genes to promote axonal growth, including the transcription factors c-Jun,113 


