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Preface

The notes in this volume were produced in conjunction with the Thematic Program
in O-minimal Structures and Real Analytic Geometry, held from January to June
2009 at the Fields Institute. Among the activities of our thematic program were three
graduate courses, offered to participants and to graduate students from universities
in the Greater Toronto Area. Each of these courses was, in turn, split into three
modules, and most of these modules were taught by different instructors. Five
of the six contributions to this volume arose from the modules taught by the
authors: Felipe Cano on the resolution of singularities of vector fields; Chris Miller
on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of
o-minimal structures from quasianalytic classes; Fernando Sanzon non-oscillatory
trajectories; and Patrick Speissegger on pfaffian sets. The sixth contribution, by
Antongiuglio Fornasiero and Tamara Servi, is an adaptation of Wilkie’s construction
of o-minimal structures from total C1-functions to the nonstandard setting. Their
adaptation was carried out concurrently with our program, and the resulting notes
fit in naturally with the pfaffian portion of our lectures.

There are only a few dependencies between the contributions: Miller’s is used in
both Rolin’s and Speissegger’s, and Rolin’s is used in Sanz’s. In addition, familiarity
with the basics is assumed for o-minimality (van den Dries [4] and Miller and van
den Dries [5]) and semianalytic and subanalytic sets (Bierstone and Milman [2]).
Further recommended reading are Marker [3] on model theory (basic aspects of
which are used in Miller’s notes) and Balser [1] on Borel-Laplace summation (used
in Sanz’s notes).

We thank the Fields Institute for the generous funding provided for our program,
and we thank its very competent and helpful staff for making our stay there
productive and very enjoyable. Participation of several US-based graduate students
and junior postdoctoral researchers was partially funded by NSF Special Meetings
Grant DMS-0753096.

Columbus, OH, USA Chris Miller
Bourgogne, France Jean-Philippe Rolin
Hamilton, ON, Canada Patrick Speissegger
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Blowings-Up of Vector Fields

Felipe Cano

Abstract A new proof of the reduction of singularities for planar vector fields is
presented. The idea is to adapt Zariski’s local uniformisation method to the vector
field setting.

Mathematics Subject Classification (2010): Primary 32S65, Secondary 37F75

Introduction

These notes cover part of a course taught at the Fields Institute in January 2009, as
part of the Thematic Program on O-minimal Structures and Real Analytic Geometry.
I try to introduce the reader to a new proof of the reduction of singularities for vector
fields in dimension two.

What is the reason for giving this new proof? Indeed, the original proof of 1968
given by Seidenberg [36] is complete and does not need much tweaking to be useful
for most applications. Other proofs in dimension two were published, among them
Giraud [20, 21], van den Essen [39], Dumortier [19] and one by myself [7], where
I tried to recover Hironaka’s way of reducing singularities.

In these notes, the idea is to recover the local uniformization method due to
Zariski [42, 43], which dates back to 1940 (see also Vaquié [40] for a discussion of
Zariski’s method). The proof I present here can be generalized at least to dimension
three, as done in joint work in progress with Roche and Spivakovsky [13,14]. Also,
as I explain later, the result in dimension three gives a global result as an application
of Zariski’s method.

F. Cano (�)
Dpto. Álgebra, Geometrı́a y Topologı́a, Universidad de Valladolid, 47011, Valladolid, Spain
e-mail: fcano@agt.uva.es

C. Miller et al. (eds.), Lecture Notes on O-minimal Structures and Real Analytic
Geometry, Fields Institute Communications 62, DOI 10.1007/978-1-4614-4042-0 1,
© Springer Science+Business Media New York 2012
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2 F. Cano

For a more general elementary exposition of the theory of singular holomorphic
foliations the reader may look at Camacho and Lins-Neto [5], Cano and Cerveau
(Introduction aux feuilletages singuliers, Unpublished lecture notes available from
the authors) and Brunella [3].

Historical note. Let us give a brief historical overview of the proof of reduction of
singularities for vector fields in dimensions two and three. First of all, let us indicate
that there are no known results in dimension greater than or equal to four, except for
the specific case of absolutely isolated singularities (see Camacho et al. [6]).

The original proof of Seidenberg is based on the behavior of the multiplicity
i.C1; C2Ip/ of the intersection of two plane curves C1 and C2 at a point p under
blowing-up. More precisely, Noether’s formula states that

i.C1; C2Ip/ D mp.C1/mp.C2/C
X

p02E
i.C 0

1; C
0
2Ip0/;

where E is the exceptional divisor of the blowing-up with center fpg, C 0
1; C

0
2 are

the strict transforms of the curves C1; C2 andmp.C / denotes the multiplicity of the
curveC at the pointp. Van den Essen’s, Dumortier’s and Giraud’s proofs follow this
same idea; Dumortier’s is specific to the real case and Giraud’s to the framework of
Algebraic Geometry in positive characteristic.

The use of the multiplicity of the intersection as a main invariant of control
is based on the fact that the singularities considered are isolated, and hence the
multiplicity of the intersection of the coefficients is finite. For vector fields this
invariant is called Milnor number and generalizes, in the Hamiltonian case, the usual
Milnor number of a function. If we can assure that the Milnor number remains finite
under any blowing-up, then the method generalizes to higher dimension without
obstruction. This is the case for absolutely isolated singularities in any dimension,
as shown in our work with Camacho and Sad.

If one wants to look at the general case in dimension three, it is necessary to
develop a method not based on control of the Milnor number. In [7], I gave a
proof based on the ideas of Hironaka. This method can be interpreted as follows
in dimension two: first, we need an invariant acting as the Hilbert-Samuel function;
this invariant is the logarithmic multiplicity of the vector field, together with a
description of a finite list of types. Second, we need maximal contact, which acts as
a kind of reduction of the dimension from two to one. Finally, we consider a more
specific invariant of control for the case of maximal contact, namely, the contact
exponent associated to a Hironaka’s characteristic polyhedron (in this case just a
line).

More precisely, the first result in ambient dimension three was given by myself in
[9,15], in the form of a positive answer to Hironaka’s game. This result is of a local
nature, where we allow formal centers of blowings-up. In some sense, it is a strong
local uniformization result, but it has the disadvantage that formal (non-convergent)
centers of blowings-up are used. The statement is as follows: we start with the germ
of a vector field at .C3; 0/, more precisely with the germ L of the foliation induced
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by the vector field. To this vector field, we associate a logarithmic multiplicity at
a point p, the smallest multiplicity of the coefficients of the vector field expressed
in a logarithmic way with respect to a normal crossings divisor (that is, we “force”
the components of the divisor to be invariant). For instance, if p is the origin, the
divisor is defined by

Qe
iD1 xi D 0 and the vector field is given by

� D
eX

iD1
ai .x/xi

@

@xi
C

nX

iDeC1
ai .x/

@

@xi
;

then the corresponding logarithmic (or adapted) multiplicity is the minimum
of the multiplicities of the coefficients ai .x/ at the origin, for i D 1; 2; : : : ; n.
We say that the point p is a log-elementary singularity of the vector field,
if the logarithmic multiplicity at p is less than or equal to 1. Now we play
Hironaka’s desingularization game between two players A and B (where “A” is
typically interpreted as “Abhyankar” in recognition of the latter’s contribution to
the understanding of singularities):

1. If p is log-elementary for the vector field, player A wins; otherwise, he chooses
a formal center of blowing-up.

2. Player B chooses a point p0 in the preimage of p under the blowing-up.
3. The game restarts with p0 in place of p.

A winning strategy for player A is a decision method that makes sure the game
stops in a finite number of steps, independently of the choices made by player B.
In [15], I presented a winning strategy for player A. In [9], I extended this strategy
to so-called elementary singularities, that is, singularities with non-nilpotent linear
part.

At this point, the problems in dimension three are the following:

(a) To obtain a result where the centers of blowings-up are analytic; that is, the
geometry of the ambient space is not destroyed by a blowing-up with a formal
center.

(b) To obtain a global result. Instead of blowings-up with centers adapted to the
point chosen by player B, try to obtain a global morphism such that all the
points on the exceptional divisor are log-elementary or, even better, elementary.

A version of Hironaka’s game can be played in the case of a non-oscillatory
trajectory of the germ at the origin of real vector field � in R3 (see Sanz [35]). Let �
be a non-oscillatory trajectory of � that approaches to the origin, that is

lim
t!1 �.t/ D 0:

We assume that � is non-oscillatory (that is, � crosses any analytic hypersurface at
most finitely many times) and that � is not contained in any analytic hypersurface.
Then � acts as player B in the following way: player A chooses a blowing-up with
center the origin or a nonsingular analytic curve through the origin. The lifting
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of � accumulates at only one point p0 of the exceptional divisor: otherwise, we
could produce an algebraic hypersurface that � crosses infinitely many times,
contradicting the non-oscillatory property of � .

In joint work with Moussu and Rolin [12], we solved Hironaka’s game in the case
where player B is given by a non-oscillatory trajectory of the germ at the origin of
a vector field in R3. Since we were working over the real field, we were interested
in applications that are stable under ramifications, so we allowed ourselves to do
ramifications; nevertheless, all our centers of blowings-up were analytic. In this way
we obtained a local, non-birational reduction of singularities method over the real
field that finishes in elementary (not just log-elementary) singularities.

The techniques used in [12] have a natural interpretation in terms of Zariski’s
method for the local uniformization. Indeed, a non-oscillatory trajectory � of �
induces an identification of the field of rational functions (even of meromorphic
functions) in three variables with a Hardy field, via the substitution morphism

F.X; Y;Z/

G.X; Y;Z/
7! F.�.t//

G.�.t//
:

This Hardy field has a natural valuation whose centers (in the sense of Zariski)
are given by the accumulation points of � under blowing-up. Thus, player B is in
this case a valuation that chooses, at each step, the center of the valuation in the
corresponding model of the field of rational functions. This is precisely Zariski’s
point of view for the local uniformization. The difference between his point of
view and Hironaka’s is that, in Zariski’s case, we know the nature of player B
(a valuation), and we can do arguments using this particular nature of player B.

The need for ramifications was evident in [12] for passing from a special
nilpotent situation to an elementary case. More precisely, an example produced by
F. Sanz and F. Sancho shows that the latter is not possible in general without using
formal, but nonconvergent, blowings-up. Their example is the following:

� D x
�
x
@

@x
� ˛y @

@y
� ˇz

@

@x

�
C xz

@

@y
C .y � �x/ @

@z
:

This example is discussed in detail in the introduction of Panazzolo [30]. Let me just
mention that, for this �, using a blowing-up with center a formal �-invariant curve
transverse to fx D 0g, one obtains elementary singularities.

We are currently working, with Roche and Spivakovsky, on a local uniformiza-
tion result, in the sense of Zariski, for a general situation of algebraic geometry
in characteristic zero. We obtain, via a birational transformation along a given
valuation, log-elementary singularities in ambient dimension three. Moreover, these
log-elementary singularities satisfy a list of axioms given by Piltant [32] that allow
us to globalize the local uniformization in an ambient space of dimension three. This
result represents an axiomatic version of Zariski’s gluing of local uniformizations
in dimension three [42, 43]. As a consequence, we obtain a global and birational
way of reducing singularities in dimension three, such that the final singularities are
log-elementary.
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In these notes, we present the two-dimensional version of this joint work, in order
to introduce the reader to the key ideas of our method.

To finish this historical note, let us point out that log-elementary singularities
are far from being elementary; for instance, nilpotent singularities are always log-
elementary. In fact, Panazzolo’s thesis [29] deals with transforming nilpotent to
elementary in a global non-birational way, via real transformations of “quasi-
homogeneous” type. This important work showcases just how far log-elementary
signularities are from begin elementary.

The most complete result on reduction of singularities for vector fields in
dimension three is Panazzolo’s [30]. This is a global result, via non-birational
transformations, that obtains elementary singularities in the real case. His techniques
of control and globalization in [30] are close to Hironaka’s; but he also uses
weighted blowings-up, with weights associated to the Newton polyhedron of the
vector field. These latter ideas are, arguably, the reason for the relative simplicity of
his work.

More recently, as of May 2011, some new results on these matters have appeared:
first, the valuation-theoretic arguments in dimension three in [14] can be generalized
to any dimension in order to get maximal contact or resonance. Both these cases
represent a reduction, in a certain sense, of the ambient dimension of the problem.
Second, there is a preprint of McQuillan and Panazzolo in which they apply the
techniques of [29] to obtain a three-dimensional reduction of singularities for vector
fields in ambient dimension three, in the framework of stack theory.

Applications. A classical application of the reduction of singularities of vector
fields is the theorem of Camacho and Sad [4], which proves the existence of
an invariant holomorphic curve at a singularity of a holomorphic vector field in
dimension two. This result was conjectured by R. Thom, based on the intuition that
the invariant hypersurfaces should “organize” the dynamics. Their proof relies on
reduction of singularities and the behavior of an index, now known as the Camacho-
Sad index. A very short proof of this result may be found in [8].

In dimension two, the reduction of the singularities for vector fields has been a
central result, providing an algebraic skeleton in the study of holonomy, formal and
analytic classification, deformation, integrability, etc. Introductions to these topics
can be found in [16, 17, 26–28].

In dimension three, fewer applications are known, due of course to the difficulties
of the result itself. There is a counterexample to the existence of an invariant analytic
curve, found by Gómez-Mont and Luengo [22], based on the behavior under
blowing-up of elementary singularities. Besides the geometric study of oscillation
presented in [35], I would like to mention a remark of Brunella [2] that shows that
any real vector field in dimension three, with an isolated singularity at the origin,
has at least one trajectory arriving at or exiting from the origin.

The reader may look at the references [10,11,18,23,31,33,34,38,41] as a small
seletion of papers corresponding applications of reduction of singularities and some
of the technics introduced in these notes.
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1 Vector Fields and Blowings-Up

Germs of vector fields. The ambient space M is for us of one of the following
types. We can have an ambient space which is a real analytic variety, that is M
is described by a collection of real charts such that the compatibility conditions of
the charts are real analytic applications. We can also consider the case that M is
a complex analytic variety, with the same definition as before, except for the fact
that the compatibility conditions of the charts are complex analytic (holomorphic)
applications. We also consider the case that M � PN

C
is an irreducible complex

projective variety, where we can eventually have singular points. Most of the
properties we are going to consider have local nature and thus they can be explained
in terms of the local ring OM;p of the germs of functions at a point p of M , whose
maximal ideal MM;p is given by the germs of functions f 2 OM;p such that
f .p/ D 0.

Since we work either over the real numbers or over the complex numbers, we
denote k D R or k D C, depending on the cases we are considering.

By definition, the germs of vector field at p 2 M are the k-derivations of the
local ring OM;p . That is a germ of vector field is a map

� W OM;p ! OM;p

which is a homomorphism of k-vector spaces and satisfies to the Leibnitz rule

�.fg/ D f �g C g�f:
We denote DerkOM;p the set of germs of vector fields at p. It has a natural structure
of k-vector space and moreover, it is a OM;p-module, where we have .f �/g D
f .�g/.

The set of tangent vectors TpM at p is the set of “centered derivations”. That is,
a tangent vector at p is a map

v W OM;p ! k

which is a homomorphism of k-vector spaces and satisfies to the “centered”
Leibnitz rule

v.fg/ D f .p/.vg/C g.p/.vf /:
Obviously, any germ � of vector field at p induces a tangent vector

�jp 2 TpM;
just by putting �jpf D .�f /.p/. The tangent space TpM has a natural structure of
k-vector space.

Assume that p is a nonsingular point of M . This is always the case when M is
a real or complex analytic variety. Then the maximal ideal MM;p of OM;p has a
set of generators x1; x2; : : : ; xn, where n is the dimension of M . Depending on the
context, this set of generators is called regular system of parameters or system of
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centered local coordinates. There are particular germs of vector field that we denote
@=@xi , for i D 1; 2; : : : ; n defined by the properties

@

@xi
.xj / D

�
1 if i D j
0 if i ¤ j

In fact, we obtain in this way a basis of the free OM;p-module DerkOM;p . So, any
germ of vector field � has a unique expression as

� D a1 @
@x1
C a2 @

@x2
C � � � C an @

@xn
;

where a1; a2; : : : ; an 2 OM;p . Also, a k-basis of the tangent space TpM is given by
@=@xi jp , for i D 1; 2; : : : ; n. In particular the map � 7! �jp is surjective.

Let us consider representatives Xi of the germs xi for i D 1; 2; : : : ; n. There is
an open neighborhoodU of p satisfying the following property:

For any point q 2 U there is a unique q D .q1; q2; : : : ; qn/ 2 kn such that the functions
X1 � q1; X2 � q2; : : : ; Xn � qn define a regular system of parameters of OM;q .

In view of this property, we can consider vector fields defined in such neighborhoods
U as expressions

V D
nX

iD1
Ai

@

@Xi

where the A1;A2; : : : ; An are functions defined in U . Obviously such a vector field
V induces a germ of vector field Vq at each q 2 U in an evident way, as well as
tangent vectors V.q/ 2 TqM .

Definition 1.1. A germ of vector field � 2 DerkOM;p is non-singular if p is a non-
singular point ofM and �.MM;p/ is not contained in MM;p .

In terms of coordinates, this is equivalent to say that �.xi /.p/ ¤ 0 for some of the
parameters xi . The next classical result justifies the interest of having a non-singular
germ of vector field

Theorem 1.2 (Rectification). Let � 2 DerkOM;p be a non-singular germ of vector
field and let us assume that the ambient space M is a real or complex analytic
variety. There is a choice of local coordinates x1; x2; : : : ; xn such that � D @=@x1.
Blowings-up of ambient space. Let p 2 M be a nonsingular point of the ambient
spaceM . The blowing-up of M with center p is a morphism � WM 0 !M that we
describe in this section.

Blowing-up of the projective space. Let us consider first the case where M D Pnk
is the n-dimensional projective space. Take a projective hyperplane�1 � Pnk such
that p … �1. Now, we can choose homogeneous coordinates ŒX0;X1; : : : ; Xn� in
Pnk such that p D Œ1; 0; 0 : : : ; 0� and �1 D fX0 D 0g. Note that the points in �1
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are of the form Œ0; X1;X2; : : : ; Xn� and hence ŒX1;X2; : : : ; Xn� can be considered
as being homogeneous coordinates for �1. Let us denote by

� W Pnk n fpg ! �1

the linear projection defined by �.q/ D .pCq/\�1, where pCq is the projective
line through p and q. In terms of homogeneous coordinates, we have

�.ŒX0;X1;X2; : : : ; Xn�/ D ŒX1;X2; : : : ; Xn�:
Let G.�/ be the graph of � and consider the topological closure

G.�/ � P
n
k ��1:

The first projection � W G.�/ ! Pnk is by definition the blowing-up of Pnk with
center p. Let us note that the equations of G.�/ in homogeneous coordinates
ŒX0;X1; : : : ; Xn� for Pnk and ŒY1; Y2; : : : ; Yn� for �1 are

XiYj D XjYi I for i; j D 1; 2; : : : ; n:

We see that G.�/ n ��1.p/ D G.�/ and hence � defines an isomorphism

� W G.�/ n ��1.p/! P
n
k n fpg:

Moreover, there is an identification between ��1.p/ and �1. We say that ��1.p/
is the exceptional divisor of � and hence each of its points corresponds to a line
through p.

The transformed space G.�/ is a nonsingular variety. To see a chart decomposi-
tion of it, we write

G.�/ D G.�/ [ ��1.Pnk n�1/ D ��1.Pnk n fpg/[ ��1.Pnk n�1/:

Now, we already know that ��1.Pnk n fpg/ is identified with the open set Pnk n fpg
of the projective space Pnk . To describe ��1.Pnk n�1/, let us first recall that there is
an identification

P
n
k n�1 $ A

n
k D kn;

given in coordinates by Œ1; x1; x2; : : : ; xn� $ .x1; x2; : : : ; xn/. Now, we cover
��1.Ank/ by charts ��1.Ank/ D

Sn
jD1 Uj with

Uj D ��1.Ank/[ fYj ¤ 0g:
Each Uj has a coordinate mapping

�j W Uj ! A
n
k I .x; ŒY�/ 7! .x

.j /
1 ; x

.j /
2 ; : : : ; x.j /n /;
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where x.j /j D xj and x.j /i D Yi=Yj for i ¤ j . In particular, the blowing-up � in
the charts Uj has the equations

.x
.j /
1 ; x

.j /
2 ; : : : ; x.j /n / 7! .x1; x2; : : : ; xn/ 2 A

n
k;

where xj D x.j /j and xi D x.j /i x
.j /
j , for i ¤ j . Let us remark that the morphism �

may be recovered starting with these equations.

Blowing-up of any variety. Let M be a variety, covered by charts U � M , that we
identify as open sets U � Ank . Take a point p 2M and consider a chart U such that
p 2 U . We can shrink the other charts to assume that p … U 0 for another chart U 0
different from U . Now, we can do the blowing-up of U with center p

�U W QU D ��1.U /! U � A
n
k:

We glue the charts U 0 with QU by recalling the identification between QU n ��1.p/
and U n fpg. In this way we obtain the blow-up morphism

� W QM !M:

Blowing up along a subvariety. LetM be a variety and consider a closed subvariety
Y �M . We can identify locally the pair .M; Y / with the pair U �V; f0g�V , where
U and V are open subsets 0 2 U � A

n�m
k and V � A

m
k . The blowing-up

� W QM !M;

of M with center � is obtained by gluing together the local blowings-up

QU � V ! U � V;

where QU ! U is the blowing-up with center 0. Note that the exceptional divisor
��1.Y / � QM is a hyper-surface covered by open sets of the form ��1.p/ � V .

The universal property of the blowing-up. The above constructions seem to be
highly non intrinsic. In particular one immediately sees a problem to justify the
gluing procedures in the blowing-up along a subvariety. All this difficulties are
solved by invoking the universal property of the blowing-up. In algebraic terms
it can be stated as follows

Let � W QM ! M be the blowing-up of M along a subvariety. Consider another proper
morphism h W M 0 ! M having the property that h�1.M n Y / is isomorphic toM n Y and
h�1.Y / is a hyper-surface (in the sense that the sheaf JYOM 0 is an inversible sheaf). Then
there is a unique morphism f W M 0 ! QM such that � ı f D h.

We will not insist in this property and the use of the blowing-up we will do is mainly
through the equations and coordinates.
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Transform of a vector field by blowings-up. Let � be a germ of vector field at
p 2M . That is � 2 DerkOM;p . Consider a blowing-up

� W QM !M;

along a subvariety Y �M and fix a point p0 2 ��1.p/. We want to see if � defines
in a natural way a germ of vector field at p0.

Remark 1.3. Let ! be a germ of differential 1-form. The standard pull-back of 1-
forms by a morphism allows us to define ��! in a very natural way as a germ
of differential 1-form at p0. The case of a germ of vector field is slightly more
complicated.

The ring of germs of functions O0
M;p0 is an extension of OM;p through the

blow-up morphism. More precisely, we can choose local coordinates x1; x2; : : : ; xn
around p 2 M such that

1. The center Y of the blowing-up is locally given at p by

Y D fx1 D x2 D � � � D xm D 0g;

where m is the codimension of Y in M .
2. There are local coordinates x0

1; x
0
2; : : : ; x

0
n at p0 2 M 0 such that

x0
j D xj =xm; j D 1; 2; : : : ; m � 1:
x0
j D xj ; j D m;mC 1; : : : ; n:

(The equalities have to be interpreted locally at p0 by identifying xj with xj ı�).

Without doing the complete details, a necessary a sufficient condition to extend
� to a derivation

� W OM 0 ;p0 ! OM 0;p0 ;

is that �.x0
j / 2 OM 0;p0 for all j D 1; 2; : : : ; n. Of course, it is enough to verify that

�.x0
j / 2 OM 0 ;p0 for 1 � j � m � 1. Let us write

� D
nX

iD1
ai .x1; x2; : : : ; xn/

@

@xi
:

We have

�.x0
j / D �.xj =xm/ D

xmaj � xj am
x2m

D 1

xm

�
aj � x0

j am

�
:

That is, the condition we look for is: x02
m divides xmaj � xj am in the ring OM 0 ;p0 ,

for all 1 � j � m � 1.
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Proposition 1.4. The following conditions are equivalent

1. � extends to a derivation � W OM 0;p0 ! Om0;p0 .
2. x02

m divides xmaj � xj am in the ring OM 0 ;p0 , for all 1 � j � m� 1.
3. �.xi / belongs to the ideal I of OM;p generated by x1; x2; : : : ; xm (this is the ideal

defining Y �M ), for any i D 1; 2; : : : ; m.

Proof. Obviously 3 implies 2. Conversely, the condition that x02
m divides xmaj �

xj am in the ring OM 0 ;p0 is equivalent to say that xmaj �xj am is in I 2OM;p . Assume
that aj0 … I for some 1 � j0 � m � 1. Then

f D @.xmaj0 � xj0am/
@xm

D aj0 C xm
@aj0

@xm
C xj0

@am

@xm

is not in I , contradiction, since xmaj�xj am is in I 2OM;p . If am … I , we do the same
argument by taking the partial derivative with respect to xj , for any 1 � j � m�1.

�

The third condition in the proposition means that Y is invariant for �. To be precise,
we have the following definition:

Definition 1.5. Let I � OM;p be a prime ideal, defining a germ of subspace
.Y; p/ � .M; p/. We say that .Y; p/ is invariant for � if and only if �.I / � I .

Remark 1.6. The point fpg is invariant for � if and only if � is singular at p (we
also say that � has an equilibrium point at p). Consider the curve

Y D fx1 D x2 D � � � D xn�1 D 0g;
to say that Y is invariant means that the vector field is “vertical” along the curve,
that is ai .0; 0; : : : ; 0; xn/ D 0 for i D 1; 2; : : : ; n � 1; in other words, the vector
field is tangent to the curve at the points of Y and hence the trajectories of the
integral curves of � starting at points in Y are contained in Y (this explains the word
“invariant”).

Foliations by lines. A foliation by lines L over M corresponds to the fact
of considering locally a vector field “without velocity”. The leaves will be the
trajectories of the vector field, that is the images of the integral curves, where we do
not consider the parametrization by the time.

To be precise, an atlas for a foliation L is a collection .Ui ; �i / of foliated charts
such that the �i are vector fields defined over the open sets Ui and

�jUi\Uj D hij �j jUi\Uj ;
where the hij are invertible functions defined over Ui \Uj . As usual, we define the
foliation by identifying it with a maximal atlas. The foliation is reduced if for any
(nonsingular) point p 2M we can write

�i D
nX

iD1
ai .x/

@

@xi
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where the coefficients ai .x/ 2 OM;p are without common factor. It is possible to
pass from a foliation to a reduced one in a unique way just by taking the greatest
common divisor of the coefficients. The singular locus SingL of L is locally given
by the singular locus of the vector fields �i and it is of codimension greater or equal
than two in the case of a reduced foliation.

We can also define meromorphic foliations as given by atlases of the form
f.Ui ; g�1

i �i /g where gi 2 OM.Ui/ and the compatibility of the charts is defined as

gj jUi\Uj �jUi\Uj D hij gi jUi\Uj �j jUi\Uj :

As before a meromorphic foliation gives in a unique way a reduced foliation.

Algebraic foliations. In the algebraic case we can define a meromorphic foliation
in a particular way which is very convenient for the work in a bi-rational context.
Let K be the field of rational functions of M , that we suppose to be an algebraic
variety over a field k of characteristic zero (recall that we typically have k D R or
k D C). The K-vector field of derivations DerkK has K-dimension n D dimM .
A rational foliation by lines is just a one dimensionalK-vector subspace

L � DerkK:

If induces a reduced foliation as follows. Let p 2 M be a nonsingular point. The
regular local ring OM;p has a regular system of parameters x1; x2; : : : ; xn (minimal
set of generators of the maximal ideal) and

DerkOM;p D
nX

iD1
OM;p

@

@xi
:

Moreover, each germ of vector field � 2 DerkOM;p extends in a unique way to a
derivation � W K ! K . Now L \ DerkOM;p is a free OM;p-module of rank one
generated by a germ of vector field without common factors in its coefficients. In
this way we obtain a reduced foliation on M .

Blowing up foliations. We have seen that a vector field can only be blown up if the
center of the blowing-up is invariant. Otherwise, we obtain a meromorphic vector
field. This is not an obstruction for the blowing-up of a foliation. Hence any foliation
can be transformed under a blowing-up with any center.

Dicritical vector fields. Let � be a germ of vector field in p 2 M and suppose that

� D
nX

iD1
ai .x1; x2; : : : ; xn/

@

@xi

in local coordinates x1; x2; : : : ; xn. Let us consider the blowing-up � WM1 !M of
M with center p. Assume that p is an equilibrium point of � and hence we have a
transform Q� of � by � . Let us denote by E D ��1.p/ the exceptional divisor of the
blowing-up � .
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At each point p1 2 E we have that Q� D h� 0
1, where h 2 OM1;p1 and � 0

1 has no
common factors in its coefficients. We have the following properties

1. The exceptional divisorE is invariant for Q� . This is a consequence of the fact that
p is an equilibrium point of �.

2. If � has no common factor in its coefficients, then h D 0 is contained in E . More
precisely, we have that either h is a unit (that is h D 0 is empty) or fh D 0g D E .

Let us look in a more precise way this situation. Consider the example of the radial
vector field

R D
nX

iD1
xi

@

@xi
:

Take a point p1 with local coordinates x0 such that x0
1 D x1 and x0

i D xi=x1 for
i � 2. In this case E D fx0

1 D 0g and

QR D x0
1

@

@x0
1

I R0
1 D

@

@x0
1

:

Let us note that E is not invariant for R0
1.

Definition 1.7. In the above situation we say that � is dicritical at p or that � is a
dicritical blowing-up for � if and only if E is not invariant for � 0

1.

This definition works for the case of a foliation, just by considering the reduced
foliation after blowing up.

Let us give a characterization of the dicritical vector fields at p. Let r be the order
of � at p, that is the minimum of the orders of the zero p of each coefficient ai . We
can decompose each coefficient ai .x/ as a sum of homogeneous polynomials

ai .x/ D Ai;r.x1; x2; : : : ; xn/C Ai;rC1.x1; x2; : : : ; xn/C � � � :

Now, the germ of vector field � is dicritical at p 2 M if and only if the vectors
.A1;r ; A2;r ; : : : ; An;r / and .x1; x2; : : : ; xn/ are proportional, that is

xiAr;j D xjAr;i I for all i; j:

Let us remark that being dicritical is a very particular situation. A still unsolved
problem is to show that under any infinite sequence of blowings-up centered at
points the resulting foliation is dicritical only finitely many times. This is true in
dimension two and three, but it is not known for higher dimensions.

Invariant curves. Let � D Pn
iD1 ai .x/@=@xi be a germ of vector field at p 2 M .

A germ of analytic parameterized curve at p is just a morphism � W t 7! �.t/, where
�.0/ D 0. The curve � is called an integral curve of � if and only if

� 0.t/ D �.�.t//
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for all t , where � 0.t/means the tangent vector of � at t . We know that there is always
a unique integral curve (in the analytic context) of � at p. In the case that p 2M is
an equilibrium point, the integral curve at p is just the constant curve t 7! p.

We can also consider the definition of invariant subvariety given in a previous
section. Take a germ of curve .Y; p/ � .M; p/ at p, defined by the ideal I � OM;p .
Recall that .Y; p/ is invariant for � if and only if �.I / � I . It is possible to show that
this is equivalent to say that .Y; p/ is union of leaves, that is of images of integral
curves.

In a more algebraic frame, assume that we have a Puiseux parametrization

xi D �i.t/I i D 1; 2; : : : ; n

of the curve .Y; p/. The necessary and sufficient condition to assure that .Y; p/ is
invariant for � is that

ai .�.t//�
0
j .t/ D aj .�.t//�0

i .t/I for all i; j:

This condition means that �.q/ is in the tangent space of Y at each point q of Y
near p.

Formal invariant curves. A formal curve . OY ; p/ at p 2 M is by definition the
kernel OI � bOM;p of a morphism of complete local rings

O� W bOM;p D kŒŒx1; x2; : : : ; xn��! kŒŒt ��:

Here we can interpret O� as a Puiseux parametrization of . OY ; p/. The derivation �
extends to a derivation � W bOM;p ! bOM;p. As for the convergent case we have

Proposition 1.8. In the above situation the following properties are equivalent

1. �. OI / � OI .
2. ai . O�.t// O�0

j .t/ D aj . O�.t// O�0
i .t/I for all i; j .

If we have the equivalent properties of the above proposition, we say that . OY ; p/ is
a formal invariant curve for �.

We shall see that there are formal invariant curves that are not convergent ones.
This is one of the difficulties when doing reduction of singularities of vector fields,
since the invariant objects are not necessarily convergent ones.

Definition 1.9. The formal curve . OY ; p/ is non-singular if and only if there is a
Puiseux parametrization O�.t/ such that one of the O�i .t/ has order 1.

This definition is equivalent to say that in formal coordinates, we have that OY D
f Ox2 D Ox3 D � � � D Oxn D 0g. Moreover, if the curve is convergent, the rectification
(in the analytic frame) may be done with convergent coordinates.
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Behavior under blowing-up. Let . OY ; p/ be a formal curve at p 2 M . Of course, a
particular case is the case when . OY ; p/ is convergent. Consider the blowing-up

� WM1 !M

with center p. Up to do a linear change in the coordinates x1; x2; : : : ; xn, we can
assume that OY has a parametrization O�.t/ where O�1.t/ has order d and O�i.t/ has
order > d for all i D 2; 3; : : : ; n. Now, consider the point p1 in the exceptional
divisor E of � corresponding to the line

x2 D x3 D � � � D xn D 0:

At this point we have local coordinates x0
1 D x1; x

0
i D xi =x1, for i D 2; 3; : : : ; n.

Now we have a Puiseux parametrization

x0
1 D O�1.t/; x0

i D
O�i .t/
O�1.t/
I i D 2; 3; : : : ; n;

that defines a formal curve OY1 at p1. We say that . OY1; p1/ is the strict transform of
. OY ; p/ by � and that p1 is the first tangent or first infinitesimal near point of . OY ; p/.
Proposition 1.10. Let � be a germ of vector field having an equilibrium point at
p 2 M and let . OY ; p/ be a formal curve. Denote by . OY1; p1/ the strict transform of
.Y; p/ by the blowing-up � of M with center p. We have

1. . OY1; p1/ is convergent if and only if . OY ; p/ is convergent.
2. . OY1; p1/ is invariant for � if and only if . OY ; p/ is invariant.

Infinitely near points. Let . OY ; p/ be a formal curve in M . We can blow up
successivelyM DM0 to get an infinite sequence

�iC1 WMiC1!Mi

of blowings-up with centers pi 2 Mi , where . OYiC1; piC1/ is the strict transform
of . OYi ; pi / and of course we put . OY0; p0/ D . OY ; p/. The points pi are called the
iterated tangents of . OY ; p/ or in another context the infinitely near points (although
in [1] they consider only those points where the multiplicity does not drop).

Proposition 1.11 (Reduction of singularities of curves). Given a formal curve
. OY ; p/ in M , there is an index N � 0 such that . OYi ; pi / is non singular for all
i � N .

Proof. Take coordinates x1; x2; : : : ; xn and a Puiseux expansion �.t/ such that
�i .t/ D tmiUi .t/, with Ui.0/ ¤ 0 and

m D m1 < m2 � m3; : : : ; mn
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and moreover m does not divide m2. Blowing up, we obtain m0
1 D m1, m0

i D
mi �m1, for i � 2 and the situation repeats if m1 < m

0
2. Note that m1 ¤ m0

2. After
finitely many steps we getm0

2 < m1 and we are done by induction on m. �

Take a (reduced) foliation by lines L in M locally generated at p by a vector field
�. Let us denote by Li the successive transformed foliations each one in Mi and let
�i be a local generator of Li at pi .

Proposition 1.12. The following properties are equivalent:

1. . OY ; p/ is invariant for L.
2. There is an index N 0 � 0 such that pi 2 SingLi , for each i � N 0.

Proof. By reduction of singularities of the curve, we may assume that OY ; p is given
by x2 D x3 D � � � D xn D 0. Let us consider a logarithmic viewpoint relatively to
x1 D 0. To do this, we put 	i D �i if x1 D 0 is invariant for �i and 	i D x1�i if
x1 D 0 is not invariant for �i . We can write

	i D bi1.xi /xi1 @

@xi1
C

nX

jD2
bij .xi /

@

@xij

where the coefficients bi1; bi2; : : : ; bin have no common factor and the coordinates
satisfy

xi1 D x1I xij D xj =xi1; j � 2:
Let ˛i be the minimum of the orders of bi1; bi2; : : : ; bin and put 
i D ˛i if ˛i is also
the minimum of the orders of bi2; bi3; : : : ; bin and 
i D ˛i C 1 otherwise. We have

biC1;1 D bi1

x

i�1
1

I biC1;j D bij

x

i
1

� xiC1;j biC1;1; j � 2:

Let ıij be the order of bij .x1; 0; : : : ; 0/ D and ıi the minimum of the ıij , for j � 2.
To say that .Yi ; pi / is invariant is equivalent to say that ıi D 1 and this implies that
pi is a singular point of �i . Let us note that

ıiC1 D ıi � 
i :
The only way to have a finite ıi is that 
i D 0 for i � N 0. But if 
i D 0 the point pi
is a nonsingular point of 	i and “a fortiori” of �i . �

Elementary singularities. Let � be a germ of vector field at p 2 M and assume
that p is an equilibrium point of �. That is �.M/ �M, where M is the maximal
ideal of the local ring OM;p of M at p.

Let us recall that the quotientM=M2 is a k-vector space (here k is the base field)
of dimension n. More precisely, if x1; x2; : : : ; xn is a local system of coordinates at
p, we have that

xj D xj CM2I j D 1; 2; : : : ; n;


