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Preface

Programmed cell death is a fascinating process common to all multicellular

organisms. Programmed cell death results in the elimination of cells via a complex

but a highly defined programme. Defects in the regulation of programmed cell

death are associated with serious diseases such as cancer, autoimmunity, AIDS, and

neurodegeneration.

Apoptosis has been the best studied type of programmed cell death so far. Cells

that undergo apoptosis are characterized by chromatin condensation, nuclear frag-

mentation, membrane blebbing, cell shrinkage, and formation of apoptotic bodies.

The central role in apoptosis execution belongs to cysteine-specific aspartate

proteases (caspases). Caspases are enzymes that orchestrate apoptosis via cleavage

of cellular substrates.

There are two major pathways of apoptosis: intrinsic and extrinsic. The intrinsic

pathway is triggered via chemotherapeutic drugs, irradiation, and growth factor

withdrawal. These stimuli lead to mitochondrial outer membrane permeabilization

(MOMP), which results in cytochrome C release and caspase activation. In the

extrinsic apoptotic pathway, the caspase cascade is triggered by signals emanating

from the cell-surface death receptors (DR) triggered by death ligands (DL)

(TNF, CD95L/FasL, TRAIL). The DR stimulation results in the formation of the

death-inducing signaling complex (DISC) and subsequent caspase activation.

Despite the fact that signaling pathways of apoptosis have been described with

an impressive level of detail, the understanding of apoptosis regulation in quantita-

tive terms has been missing until recently. There were many unclear points: when

does a cell decide that it has to die, what are the rate-limiting steps in apoptosis, is

there a point of no return, how can cell death be accelerated or blocked, and many

others. From another side the years of apoptosis research resulted in a profound

understanding of how signaling in apoptosis occurs. All major apoptotic complexes

have been identified from the DISC to the apoptosome, including the death

receptors and adaptors and the most important enzymes and their inhibitors.

Therefore, apoptosis was an ideal system to go into quantitative studies using the

emerging field of systems biology.
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Systems biology combines mathematical modeling with experimental

approaches in a closed loop cycle (Fig. 1). On the modeling side there are a number

of mathematical formalisms, e.g., Ordinary Differential Equations (ODEs), Bool-

ean models, etc., that allow to address different biological questions. Experimental

work for systems biology of apoptosis involves the generation of quantitative data

using different apoptotic assays.

EXPERIMENTS

PREDICTIONS

MODEL

ANALYSIS

• Quantitative Western Blots
• Cell death assays
• Single cell analysis

• Ordinary Differential Equations(ODEs)
• Bayesian modeling
• Boolean modeling

Fig. 1 Systems biology of apoptosis. Schematic view of systems biology of apoptosis

The development of this field in the recent years is fascinating. Studies of

apoptosis using systems biology have provided novel insights into the quantitative

regulation of cell death. In this book we describe contemporary systems biology

studies devoted to cell death signaling both from experimental and modeling sides

and focus on the question how systems biology helps to understand life/death

decisions made in the cell and how to develop new approaches to rational treatment

strategies.

Chapter 1 starts with an overview of the major types of mathematical modeling

used in apoptosis and cell death. A simple minimalistic model of CD95/

Fas-induced apoptosis is designed to introduce the most commonly used mathe-

matical formalism, ordinary differential equations (ODEs). Besides ODEs, other

modeling approaches are discussed in depth as well.

In Chap. 2 we focus on the biology of the extrinsic apoptotic pathway and its

modeling by Ordinary Differential Equations (ODEs). We discuss new insights in

the extrinsic death signaling which have been obtained using modeling.

Chapter 3 is devoted to model reduction approaches and uses the extrinsic

apoptotic signaling as an example. This chapter provides a beautiful example of
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how complex biological signaling can be simplified using mathematical modeling

and how a simplified model can provide new insights in complex biological

questions. The first three chapters provide a major insight into the modeling of

extrinsic pathways.

Chapter 4 covers the molecular mechanisms of the mitochondrial apoptotic

pathway and the major models describing this pathway. An emerging question in

the field how bioenergetics influence the cell death pathway is also addressed in

detail.

Chapter 5 further addresses the molecular mechanisms of extrinsic and intrinsic

apoptosis in the context of modeling hepatocytes. Notably, an enormous progress

has been recently made in modeling the signaling pathways in the liver and, in

particular, cell death in the liver. This work is essential to define new therapeutic

strategies for liver regeneration and liver disease.

Chapter 6 explores other forms of cell death, e.g., necrosis, autophagy, their

cross talk with apoptosis, as well as the way to model cross talk between different

cell types using Boolean modeling.

Chapter 7 describes a single cell analysis. Single cell analysis is compared to

bulk approaches and the importance to follow a single cell rather than a cell

population is discussed.

Chapter 8 discusses a systems-level understanding of cytokine–cytokine cross

talk, namely how the cross talk between different cytokine pathways could be

modeled on intracellular and extracellular levels. The importance of this cross

talk for development and disease is also highlighted.

Chapter 9 deals with an important question in the field: the importance of

searching for new components of cell death networks using different screening

techniques. The unraveling of new components versus the investigation of dynamic

models, which include all known components of the network, is a highly discussed

question.

Taken together, the different chapters of the book describe in detail the remark-

able progress which was made in recent years in systems biology of apoptosis and

show new challenges in this field that can provide even more exciting insights into

cell death regulation.
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Chapter 1

Modeling Formalisms in Systems

Biology of Apoptosis

Stefan Kallenberger and Stefan Legewie

Abstract Apoptosis is a form of cellular suicide central to various aspects in

biology including tissue homeostasis, embryonic development, carcinogenesis,

and neurodegenerative disorders. Quantitative modeling approaches provided valu-

able insights into the digital and irreversible nature of apoptosis initiation. In this

chapter, we summarize the mathematical formalisms used in systems biology of

apoptosis. In addition, we give an overview of apoptosis-related research questions

that can be addressed by modeling. Moreover, we review top-down and bottom-up

modeling approaches applied to apoptosis, and particularly focus on ordinary

differential equation (ODE) modeling. Basic concepts such as bistability and

sensitivity analysis are introduced, and a review of apoptosis-related ODE models

is provided. We describe bistability, temporal switching, crosstalk between death

and survival, and also discuss approaches to model cell-to-cell variability.

1.1 Why Modeling Apoptosis?

Apoptosis is a phenomenologically easily observable process. However, under-

standing its mechanistic basis is challenging owing to complex interactions of a

large number of signaling proteins and emergent behavior at the systems level.

After applying a sufficiently strong death-inducing stimulus to a population of cells,

irreversible signaling events are initiated leading to the characteristic appearance of

an apoptotic cell: Membrane blebbing proceeds, the cell shrinks, and organelles

disintegrate. Apoptosis occurs for extrinsic stimuli on a timescale of hours and for

intrinsic stimuli of days, and is accessible to several experimental techniques
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allowing for the acquisition of quantitative data. The classical techniques

of Western blotting and immunoprecipitation enable coincidental acquisition of

coarsely time-resolved population data for proteins and their intermediate

processing stages. Fluorescence-based flow cytometry techniques allow measuring

the protein concentrations at the single-cell level. A major disadvantage of flow

cytometry is the inability of tracking time-dependent behavior of individual cells.

This problem is overcome by fluorescence-based microscopic methods that were

developed to obtain quantitative data of single cells with high temporal resolution:

The activity of caspases can be monitored with FRET reporters or smart probes that

harbor caspase cleavage sites. Moreover, the mitochondrial pathway of apoptosis

can be monitored by measuring Bax translocation, outer membrane permeabi-

lization, and Smac release. The wide range of available experimental techniques

and the detailed knowledge about molecular events render apoptosis a system

suitable for modeling analyses. Apoptosis induced by death ligands is one of the

few cell fate decisions known to proceed by purely posttranscriptional mechanisms,

thus further simplifying the formulation of mathematical models.

Even though individual steps of the apoptotic signal transduction cascades are

well understood, we lack insights into the system properties and the dynamics of the

death decision. Questions to be addressed in apoptosis by systems biology

approaches include:

1. How do cells ensure that apoptosis robustly occurs in all-or-none manner? What

is the “point-of-no-return” representing irreversibility in apoptosis? Which

signaling motifs are responsible for such digital and history-dependent behav-

ior? As detailed below, mechanisms proposed using kinetic modeling include

bistability due to positive feedback and sigmoidal responses arising from com-

petitive inhibition.

2. How is specificity in the apoptosis vs. survival responses ensured? A topic of

particular interest for apoptosis modeling is that apoptotic stimuli trigger sur-

vival or death signaling depending on initial conditions and the stimulus

strength. At least in some cases, the inhibitory crosstalk between survival and

cell death signaling pathways appears to be mutually exclusive at the single-cell

level (Nair et al. 2004), implying that death and survival represent different

attractor states for the cell. Modeling can be employed to identify critical nodes

of signaling crosstalk that tip the balance between cell death and survival.

Furthermore, the interlocked regulation of cell cycle is a topic followed by

modelers. In this context the characterization of attractors, fixed points, and

limit cycles is of interest.

3. What are the principles underlying cell-to-cell variability in the apoptosis

response of a cell population? Why do cell types differ in their sensitivity to

death-inducing stimuli? Currently, several therapeutic applications are tested to

stimulate apoptosis in cancer cells, to decelerate tumor growth, or to prevent

cells, preferentially neurons or cardiomyocytes, from undergoing programmed

cell death. Modeling approaches could help to plan therapies and to predict the

outcome on a population of cells. Particularly by distinguishing cell death
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kinetics and the behavioral heterogeneity of different cell types, and predicting

drug sensitization by cotreatments, modeling could be a valuable tool. We will

describe and review strategies to predict cell death kinetics of single cells and of

heterogeneous cell populations.

First we will give an overview of the basics of mathematical formalisms and then

review successful application of ODE apoptosis models to resolve biological

questions.

1.2 Overview of Mathematical Formalisms

Analyzing the cell on a systems view can be done by top-down and bottom-up

approaches. Detailed mechanistic mathematical models constructed from the

molecular characteristics of individual proteins (“bottom-up models”) have only

been developed for metabolic and signaling networks. In contrast, transcriptional

regulatory networks, and the link between signaling networks and ultimate cellular

decisions are best tackled by statistical methods which integrate huge amounts of

data but are mostly phenomenological (“top-down modeling”).

Top-down approaches examine the cell on a global level, treating individual

regulatory modules as black boxes that are not analyzed mechanistically but only

characterized with respect to input–output behavior. Thus, top-down methods typi-

cally do not require much prior knowledge about the system, so that many signaling

and/or metabolic pathways can be studied at once. Most top-down approaches are

solely data-driven and rely on high throughput screens of cellular behavior (gene

expression profiling, proteomics, siRNA screening, sequencing, and affinity assays).

Typically, the ultimate goal of top-down approaches is to identify biologically

relevant patterns and correlations to the data (e.g., disease marker gene identification)

or to predict new molecular interactions (e.g., reverse engineering algorithms).

Bottom-up approaches focus on well-characterized parts of the biochemical

regulatory network, and are typically based on the assumption that the properties

of these subnetworks (or “modules”) can be studied in isolation. Based on prior

knowledge and on time-resolved experimental data, mechanistic mathematical

models describing the interactions of individual proteins in the module are

constructed (e.g., by using sets of coupled differential equations). The goal of

bottom-up modeling is to identify physiologically relevant systems-level properties

emerging from complex interactions within the network (e.g., feedback).

Apoptosis-inducing signaling cascades, especially those induced by death

ligands, were mainly studied using bottom-up modeling approaches, since (1) the

molecular events are well characterized; (2) transcriptional events can be

neglected; (3) the ultimate death decision often closely correlates with all-or-

none activation of effector caspases, implying that statistical methods are not

required to link signaling to cellular phenotypes. However, bottom-up approaches

to apoptosis are diverse and the methodology of choice depends on the complexity
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of the signaling network under study, the available experimental data, and the

question to be addressed by modeling. Boolean approaches are typically employed

to qualitatively analyze the (quasi-)static behavior of large apoptosis-survival

crosstalk networks which comprise many molecular species. Ordinary differential

equation (ODE) models allow for the quantitative description of network dynamics

but typically require knowledge about many kinetic parameters which either limits

the network size and/or requires huge amounts of experimental data. Standard

ODE modeling may even not be sufficient if spatiotemporally resolved single-cell

data is available (1) spatial gradients within the cell can be modeled using

subcellular compartment ODE models or partial differential equations (PDEs).

(2) Cell-to-cell variability may arise due to stochastic dynamics of the apoptotic

signaling cascade (“intrinsic noise”) or due to cell-to-cell variability in the expres-

sion of pathway components (“extrinsic noise”). While ODE models with ran-

domly sampled initial protein concentrations can be employed to simulate extrinsic

noise, stochastic simulation algorithms are required to understand intrinsic noise.

In the following, we will give an overview of top-down and bottom-up modeling

approaches applied to apoptosis signaling, before discussing applications of ODE

models in more detail.

1.2.1 Linear Regression Models

To systematically analyze how the pro- and anti-apoptotic cytokines TNF, EGF,

and insulin impinge on the cellular apoptosis decision, Janes et al. (2005) generated

a compendium of costimulation measurements. Based on the assumption that

simple linear combinations of signaling activity profiles account for apoptosis

initiation, they employed a top-down modeling approach known as partial least-

squares regression (PLSR) which does not require prior knowledge. PLSR

modeling calculates super axes as an orthogonal set of “principal components,”

which contain linear combinations of the original signaling protein activities

weighted by their contribution to the apoptotic outputs. Thereby, the dimension

of the data matrix is reduced to a small set of informative super axes, which can be

used to predict apoptosis initiation for any experimental condition, provided that

measurements of signaling species used for model training are available. PLSR has

been successfully applied to other large-scale apoptosis datasets, and provided

insights into complex phenomena such as autocrine amplification loops (Janes

et al. 2006). For a more detailed description, please, see the chapter by Deppmann

and Janes. A major drawback of PLSR is the lack of mechanistic insights into (1)

how signaling activity patterns are generated and (2) how signaling activities are

integrated, e.g., at the level of caspases, to control the death decision. Therefore, the

next section will be devoted to bottom-up approaches applied to apoptosis which

take into account mechanisms of apoptosis initiation.
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1.2.2 Boolean Models

Recent biomedical research revealed a plethora of protein–protein and enzymatic

interactions, and thus extensively characterized the topology of the intracellular

signaling network. However, quantitative information characterizing the affinity

of protein–protein interactions or enzyme kinetic parameters is still scarce. More-

over, quantitative characterization is often performed using recombinant proteins

in vitro, with questionable relevance to the in vivo situation. Simulations of large-

scale networks is therefore often performed using Boolean or logic modeling, a

qualitative approach that is based on network topology, but does not take into

account quantitative features of individual reactions. Instead protein activities are

represented by nodes which can either be on or off (activity 0 or 1), depending on

the activities of upstream input nodes. Logic rules are applied at each iteration: For

example, in a so-called AND-gate, the node Z will be activated if and only if both
input nodesX and Y are active. In contrast, anOR-gate simply requires eitherX or Y
to be active. Thus, Boolean rules can be used to qualitatively represent real

biochemical mechanisms such as functional redundancy (OR-gate) or coincidence
detection (AND-gate), the latter, arising from sequential processing by two distinct

enzymes. Since logical rules are applied iteratively, the approach can be used

to study temporal phenomena such as adaptation.Moreover, Boolean networks can

exhibit nonlinear dynamic phenomena such as oscillations, and stable vs. unstable
attractors. Please see chapters by Schlatter et al. and Calzone et al. for a detailed

review on Boolean network dynamics.

A number of Boolean modeling studies have been presented in the context of

apoptosis (Calzone et al. 2010; Mai and Liu 2009; Philippi et al. 2009; Schlatter

et al. 2009; Zhang et al. 2008). All these studies analyzed the crosstalk of apoptosis

signaling via caspases and survival pathways such as NF-кB signaling. The main

goal was the identification of stable states in the systems, representing cell fates

such as apoptosis, necrosis, and survival. Calzone et al. (2010) and Mai and Liu

(2009) focused on signaling upon death receptor engagement. They showed that the

stable states of the apoptosis network are robust and investigated the requirements

for irreversibility in the apoptosis decision. Schlatter et al. (2009) and Philippi et al.

(2009) took into account costimulation with prodeath and prosurvival ligands, and

experimentally confirmed key model predictions. Zhang et al. (2008) analyzed

antigen-induced survival signaling network in T cell large granular lymphocyte

(T-LGL) leukemia cells including transcriptional induction of cytokines and auto-

crine stimulation events. Model predictions could be confirmed in leukemic cells

isolated from patients, thus contributing to our understanding of signaling deregu-

lation in the disease. Taken together, Boolean modeling approaches provided

valuable insights into apoptosis at multiple timescales and for various experimental

settings.
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1.2.3 Quantitative Modeling Approaches

Boolean models are inherently limited in their capability of quantitatively describing

the temporal dynamics of biochemical networks. In the context of perturbation

analysis, Boolean approaches are restricted to the simulation of complete elimina-

tion of network nodes and/or reactions; thus, gradual phenomena such as dosage

compensation cannot be studied. Moreover, the qualitative effects of perturbations

as revealed by Boolean modeling are often intuitively clear. Thus, in many cases,

nontrivial and experimentally testable predictions require quantitative modeling

approaches such as ODE and PDE modeling, as well as stochastic simulations.

ODE approaches, described in detail below, assume that large numbers of

signaling molecules are present within the cell, so that random fluctuations in

reaction events can be neglected by averaging over the whole molecule population.

Moreover, in ODE modeling it is assumed that the cell represents a well-stirred

reactor, implying that diffusion effects do not matter. In apoptosis networks, these

assumptions are likely to be fulfilled, as caspase and their regulators are typically

expressed at the number of several hundred thousand molecules per cell (Svingen

et al. 2004). Furthermore, the time scale of apoptosis induction (hours) is slow

relative to the time scale of protein diffusion within a cell (milliseconds to seconds);

therefore, spatial gradients of apoptosis signaling molecules are unlikely to play a

decisive role in apoptosis initiation.

Nonetheless, reaction–diffusion models allowed investigating molecular

mechanisms of apoptosis induction: Using live-cell imaging with high temporal

resolution, Rehm and colleagues (2009) observed that cytochrome c release from

mitochondria during apoptosis occurs in spatial waves that propagate from a

subcellular mitochondrial pool to the remainder of the mitochondrial population.

PDE modeling was employed to investigate the dynamics of nonsteady state

diffusion. This approach revealed that localized release and diffusion of inducers

of mitochondrial outer membrane permeabilization (MOMP) alone was insufficient

to explain the data. However, then the authors took into account that MOMP

inducers bind to mitochondria, and modeling indicated that this absorption shapes

the dynamics of cytochrome c release, thus providing insights into molecular

mechanisms controlling apoptosis induction.

Owing to low molecule numbers of Bcl-2 family members, stochastic

simulations using cellular automaton approaches were performed by Chen et al.

(2007a), Siehs et al. (2002), and D€ussmann et al. (2010) to describe the dynamics of

MOMP. Chen et al. (2007a) focused on bistability and concluded that the stochastic

system attained two distinct stable states much like the deterministic case; thus

robustness of switching towards molecular noise could be confirmed. D€ussmann

et al. (2010) compared their model to measurements in cells expressing Bax-FRET

probes monitoring Bax oligomerization. Their model could provide an explanation

for pore formation upon Bax accumulation and oligomerization in the outer

mitochondria membrane.
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Live cell imaging tools are increasingly important and allow the analysis

of apoptosis at the single cell level or even with subcellular resolution. Thus,

stochastic and reaction–diffusion modeling are likely to become central to apopto-

sis modeling. For example, death receptors are frequently expressed at low levels

and form localized (nano-) clusters on the cell membrane (Dumitru and Gulbins

2006), implying that deterministic ODE approaches will fail, especially upon weak

stimulation. Stochastic and reaction–diffusion modeling will reveal underlying

mechanisms and, more importantly, predict strategies for intervention for testing

the functional relevance of such phenomena.

1.3 Basic Concepts in ODE Modeling

In this section, we give an overview of the most important steps in ODE model that

include implementation, optimization, and analysis.

1.3.1 Building Blocks of Biochemical Models

The kinetics of chemical reactions can be described with reaction rates dependent

on the concentrations of educts and products. Specifically, one typically assumes

that the number of product molecules synthesized in a certain time interval is

linearly dependent on the concentrations of educt molecules (law of mass action).

The net influx or efflux arising from all participating reactions determines the rate

of change in each molecular species. Thus, ODE modeling is based on the assump-

tion that the temporal derivatives of molecule concentrations equal the sum of all

relevant reaction rates (Table 1.1). Larger biochemical signal transduction

networks are therefore reflected using coupled ODEs.

Table 1.1 lists elementary reactions in biochemical networks: Most steps in ODE

models are described as unimolecular reactions that could represent irreversible

reactions representing processes as degradation or substrate cleavage (1.1) or

reversible transitions between certain states of a protein (1.2). Other common

elements are the reversible assembly of two proteins, such as ligand binding to a

receptor (1.3), reversible dimerization of two monomers (1.4), and

enzyme–catalyzed reactions (1.5). In many cases, the full enzyme catalysis mecha-

nism (enzyme + substrate $ enzyme–substrate complex ! enzyme + product)

can be described by a single overall reaction rate, e.g., by using the

Michaelis–Menten approximation (see biophysical textbooks).
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1.3.2 Simulation

Based on such simple building blocks, mechanistic models of biochemical reaction

networks can be implemented. As a demonstrative example, we constructed a

model of caspase activation by death ligands (Fig. 1.1a), where each reaction is

described by an equation similar to those in Table 1.1. Signaling is initiated by

reversible ligand binding to the death receptor, followed by formation of the

so-called death-inducing signaling complex (DISC), recruitment of procaspase-

8 and procaspase-3 cleavage by active caspase-8. The model consists of the

stimulus (L; assumed to have a constant concentration in the medium), eight

dynamical variables (R, LR, DISC, C8, DISC.C8, C8*, C3, C3*), and seven kinetic

parameters (k1+, k1�, k2, k3+, k3�, k4, k5). The kinetic parameters and initial

concentrations were taken from previous theoretical and experimental studies

(Albeck et al. 2008b; Bentele et al. 2004; Neumann et al. 2010; Rehm et al.

2009; Stennicke et al. 1998).

Using numerical integration techniques, the temporal evolution of the model

species to extracellular stimulation by death ligands can be simulated (Fig. 1.1b).

The simplest numerical integrationmethod, known as the Eulermethod, approximates

the solution of the differential equation dx/dt ¼ f(x) iteratively by the discretization

xðtiþ1Þ ¼ xðtiÞ þ f ðxðtiÞÞ _ Dt; (1.6)

where x(ti) is the solution at time point ti and Dt ¼ ti+1 � ti. In practice, the solution
of the differential equation at any time point is obtained by iteratively applying

(1.6) starting from the initial conditions at t ¼ 0. The smaller the time increment

Dt is chosen, the more accurate solution might be obtained. However, in general,

the numerical error of the Euler method increases with increasing number of

Table 1.1 Exemplary components of a model graph

Unimolecular irreversible

reaction

dA
dt

¼ �kA (1.1)

Unimolecular reversible

reaction

dA2

dt
¼ kþA1 � k�A2 (1.2)

Reversible ligand–receptor

binding

dRL

dt
¼ kþR � L� k�RL (1.3)

dRL

dt
¼ 0 , Kb ¼ kþ

k�
¼ RL

R � L
Dimerization

dD

dt
¼ kþM2 (1.4)

Enzyme–catalyzed

reaction

dB

dt
¼ kAE

E ¼ const.

(1.5)
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Fig. 1.1 Exemplary model of extrinsic apoptosis and predicted trajectories for its variables.

(a) The model graph represents five reactions that are translated into a set of eight ODEs. The

ligand in the medium is assumed to be present in excess, and is therefore not described by a

differential equation, but considered to be constant. The model variables are receptor (R with

R0 ¼ 100 nM), receptor ligand complexes (RL), DISCs, procaspase-8 (C8 with C80 ¼ 250 nM),

procaspase-8 bound to DISCs (DISC.C8), active caspase-8 (C8*), procaspase-3 (C3 with C30
¼ 120 nM), and active caspase-3 (C3*). (b) Simulated model trajectories for a step-like increase in

the death ligand stimulus (see legend for ligand concentrations)
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