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Preface

Pacific-Rim Conference on Multimedia (PCM) is a major annual international

conference organized as a forum for the dissemination of state-of-the-art technological

advances and research results in the fields of theoretical, experimental, and applied

multimedia analysis and processing. It brings together researchers, developers, and

educators in the field of multimedia from around the world. Since the first PCM was

held in Sydney in 2000, it had been held successfully around the Pacific Rim,

including Beijing in 2001, Hsinchu in 2002, Singapore in 2003, Tokyo in 2004, Jeju

in 2005, Zhejiang in 2006, HongKong in 2007, Tainan in 2008, Bangkok in 2009, and

Shanghai in 2010. After 10 years, PCM came back to Sydney in 2011.

PCM 2011 was the 12th conference in this highly successful and increasingly

influential series and was held from 20 to 22 December 2011 at University of

Technology, Sydney, Australia. The technical program featured opening keynote

addresses, invited plenary talks, tutorials, and technical presentations of refereed

papers. This year, we received 113 submissions and accepted 59 papers for oral

presentations. The papers were carefully peer-reviewed. The accept rate of PCM

2011 was 52%. Papers in this volume covered a range of pertinent topics in the field

including face detection, recognition, and synthesis; video coding and transmission;

audio, image, and video quality assessment; audio and image classification; stereo

image and video analysis; object detection, action recognition, and surveillance;

visual analysis and retrieval; watermarking and image processing and applications.

PCM 2011 could never have been successful without the support of ARCNetwork

in Enterprise Information Infrastructure (EII) and University of Technology, Sydney

(UTS).Wewould also like to thank all the committee members, the keynote speakers,

and the tutorial speakers. Our thanks must go to the reviewers who generously spent

their time and provided valuable comments. And at the end, we would like to thank all

the authors for submitting their work to PCM 2011.

NSW, Australia Jesse S. Jin

Beijing, China Changsheng Xu

NSW, Australia Min Xu
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Image Re-Emotionalizing

Mengdi Xu, Bingbing Ni, Jinhui Tang, and Shuicheng Yan

Abstract In this work, we develop a novel system for synthesizing user specified

emotional affection onto arbitrary input images. To tackle the subjectivity and

complexity issue of the image affection generation process, we propose a learning

framework which discovers emotion-related knowledge, such as image local

appearance distributions, from a set of emotion annotated images. First, emotion-

specific generative models are constructed from color features of the image super-

pixels within each emotion-specific scene subgroup. Then, a piece-wise linear

transformation is defined for aligning the feature distribution of the target image

to the statistical model constructed from the given emotion-specific scene

subgroup. Finally, a framework is developed by further incorporation of a regulari-

zation term enforcing the spatial smoothness and edge preservation for the derived

transformation, and the optimal solution of the objective function is sought via

standard non-linear optimization. Intensive user studies demonstrate that the

proposed image emotion synthesis framework can yield effective and natural

effects.

Keywords Re-emotionalizing • Linear piece-wise transformation • GMM
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1 Introduction

Images may affect people into different emotions. For example, a photo taken in a

rainy day looking at a dark street will usually give one a feeling of sadness; while

a picture of a sunshine beach will mostly make people delighted.

Throughout the decade, the multimedia research community has shown great

interest in affective retrieval and classification of visual signals (digital media).

Bianchi-Berthouze [2] proposed an early Emotional Semantic Image Retrieval

(i.e., ESIR) system known as K-DIME. In K-DIME, individual models for different

users are built using neural network. In [8], Itten’s color contrast theory [16] is

applied for feature extraction. Wang et al. [23] also developed emotion semantic

based features for affective image retrieval, while other works, such as [14] and

[24], used generic image processing features (e.g., color histograms) for image

emotion classification. In [25], Yanulevskaya et al. applied Gabor and Wiccest

features, which are combined with machine learning techniques, to perform

emotional valence categorization. Cho [6] developed a human–computer interface

for interactive architecture, art, and music design. The studies [13] and [22]

focused on affective content analysis for movies clips. More recently, some

affective image data sets [17] were proposed for affective image classification.

Inspired by the empirical concepts from psychology and art theory, low-level

image features, such as color, texture, and high-level features (composition and

content), are extracted and combined to represent the emotional content of an

image for classification tasks. The authors also constructed an image dataset which

contains a set of artistic photographs from a photo sharing site and a set of peer

rated abstract paintings.

Beyond these emotion analysis efforts, one question naturally rises: could we

endow a photo (image) with user specified emotions? An effective solution to this

problem will lead to many potential interesting multimedia applications such as

instant online messengers and photo editing softwares. This new function,

illustrated in Fig. 1, can help the inexperienced users create professional

emotion-specific photos, even though they have little knowledge about photo-

graphic techniques. Nevertheless, this problem has rarely been studied. Not

surprising, image emotion synthesis is a difficult problem, given that: (1) the

mechanism of how image affect the human being’s feeling evolves complex

biological and psychological processes and the modern biology and psychology

studies have very limited knowledge on it. Thus, mathematical modeling of this

mechanism is intractable; and (2) human being’s affection process is highly subjec-

tive, i.e., the same image could affect different people into different emotions.

Although to develop an expert system like computational model is intractable, we

believe that these problems could be alleviated by a learning-based approach. It is

fortunate that we can obtain a large number of emotion-annotated images from

photo sharing websites such as Flickr.com. From a statistical point of view, images

within each emotional group must convey some information and common

structures which determine its affective property. Therefore, if the underlying

4 M. Xu et al.



cues that constitute an emotion-specific image can be mined by a learning frame-

work, they can be further utilized for automatic image emotion synthesis.

Our proposed solution is motivated by the recent advances in utilizing web data

(images, videos, meta-data) for multimedia applications [18, 5]. First, an emotion-

specific image dataset is constructed by collecting Internet images and annotating

them with emotion tags by Amazon’s Mechanic Turk [1]. Training images within

each emotion group are clustered into different scene subgroups according to their

color and texture features. Then these images are decomposed into over-segmented

patch (super-pixel) representations and for each emotion + scene group, a genera-

tive model (e.g., Gaussian Mixture Models) based on the color distribution of the

image segments is constructed. To synthesize some specific emotion onto an input

image, a piece-wise linear transformation is defined for aligning the feature distri-

bution of the target image with the statistical model constructed from the source

emotion + scene image subgroup. Finally, a framework is developed by further

incorporation of a regularization term enforcing the spatial smoothness and edge

preservation for the derived transformation, and the objective function is solved by

gradient descent method. Extensive user studies are performed to evaluate the

validity and performance of the proposed system.

2 Related Works

Several works have been done for image color transformation [4, 12, 19, 21]. In

[19], Reinhard et al. presented a system that transfers color by example via aligning

the mean and standard deviation of the color channels in both input and reference

images. However, user input is required to perform the preferred color transforma-

tion. Other works focused on non-photorealistic rendering (i.e., image stylization)

which communicates the main context of an image and explores the rendering

effect of the scene with the artistic styles, such as painting [11, 26], cartoon [15] etc.

Typically, the target exemplar style image is selected manually [4].

Our work is distinctive with these works: first, most of the previous works

focused on only color transformation without any semantic knowledge transfer,

however, our work directly synthesizes affective property onto arbitrary images,

Fig. 1 Objective of the proposed work: emotion synthesis. Given an input image, our system can

synthesize any user specific emotion on it automatically
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which is hardly investigated throughout literature; second, our proposed system is

fully automatic which requires no human interactions, however, most of the

previous methods require either users’ manual selection of certain painting

parameters [11] or users’ specification of specific example images [4].

3 Learning to Emotionalize Images

In this section, we first discuss our emotion-specific image dataset construction;

then we introduce the statistical modeling of the image emotion related features and

propose an emotion transfer model for synthesizing any user specified emotion onto

the input images.

3.1 Dataset Construction

A training image dataset that contains emotion specific images is constructed. In this

work, we mainly consider landscape images (for other categories of images, the same

method applies). In [27], the International Affective Picture System (IAPS) was

developed and used as emotional stimuli for emotion and attention investigations.

Note that we do not use the dataset provided in [17] since most of the images in [17]

are artistic photographs or abstract paints, which are not appropriate for training

emotion-specific models for real images such as landscape photos. A subset from the

NUS-WIDE [7] image dataset, which is collected fromweb images, is selected as our

training dataset. To obtain emotion annotations, we adopt the interactive annotation

scheme by Amazon Mechanical Turk. The web users are asked to annotate the

images into eight emotions, including Awe, Anger, Amusement, Contentment, Sad,
Fear, Disgust, Excitement by Mechanical Turk. We only accept the annotations

which are at least agreed by three (out of five) users, resulting about 5, 000 emotion

specific images. As mentioned, we only choose landscape photos, e.g., beach,

autumn, mountain, etc. as our training set. Exemplar images are shown in Fig. 2

and the statistics of the resulting image dataset are shown in Table 1. From Table 1,

we can observe that only a few landscape images are labeled as disgust or fear,

thus we only consider four types of emotions, including two positive emotions

(i.e., Awe and Contentment) and two negative emotions (e.g., Fear and Sad).

3.2 Emotion-Specific Image Grouping

One can observe that even within each emotion group, image appearances may

have large variations. Therefore, to develop a single model for each emotion image

class is not reasonable. To cope with this problem, we first divide each
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emotion-specific image set into several subsets such that the images within the

same subgroup share similar appearances and structures. Then computational

model is constructed for each of these image sub-groups. Similar with [5], first

we decompose each image into a set of over-segmented image patches (i.e., super-

pixels) by [10], then color (color moment) [20] and texture features (HOG) [9]

are extracted and quantized by the bag-of-words model. Note that color and texture

are complementary to each other in measuring image patch characteristics. Finally

we cluster the images into several scene subgroups by K-means. An illustration of

the image grouping result is given in Fig. 3. One can observe that within each

scene subgroup, the images’ appearances are quite similar. We can also note that

different scene subgroups belong to different landscape types such as beach,
autumn, mountain, etc.

Fig. 2 Exemplar emotion-specific images of our dataset. The exemplar images are from Content-
ment, Awe, Fear and Sad, respectively

Table 1 Statistics of our constructed emotion annotated image dataset

Amuse. Anger Awe Content. Disgust Excite. Fear Sad Sum

NUS-WIDE-Subset 115 199 1,819 1,643 24 201 238 627 4,866

Values in bold face show the size of chosen emotion sets.

Fig. 3 Example results of the image grouping process. The image set annotated with the emotion

contentment is grouped into several scene subgroups
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3.3 Image Emotion Modeling

Emotion specific information is implicit within each emotion + scene subgroup. To

uncover this information for our emotion synthesis task, we use generative models,

i.e., Gaussian mixture models (GMM), for modeling the statistics of the image

patch (segment) appearances within each emotion + scene image subgroup. We

denote x as the appearance feature (i.e., a 3D vector of R, G, B values) of an image

patch segmented by [10]. Then each image is regarded as a bag of image segments.

The reason for using this simple image features (i.e., RGB color space) is that it is

simple and direct for color transformation, which has been extensively

demonstrated by previous works such as [19, 21]. We further denote that there

are C emotion + scene image subgroups.

For each image subgroup c ∈ { 1, 2, . . . C}, we utilize GMM to describe the

patch feature distribution, which is given as follows:

pðxjYcÞ ¼
Xk
k¼1

okNðxjmck;Sc
kÞ; (1)

where Yc ¼ fmc1;Sc
k;o

c
1; . . . ; m

c
k;S

c
k;o

c
kg . K denotes the number of Gaussian

components. mck;S
c
k and oc

k are mean, covariance matrix and weight of the kth
Gaussian component, respectively. For notational simplicity, we drop the superscript

c for the rest of this subsection, while all the equations are presented for each emotion

+ scene subgroup. Nðxjmk;SkÞ denotes the uni-modal Gaussian density, namely,

Nðxjmk;SkÞ ¼ 1

ð2pÞd2jSkj
1
2

expf� 1

2
ðx� mkÞTS�1

k ðx� mkÞg: (2)

The parameters of GMM can be obtained by applying Expectation-Maximization

(EM) approach.

After EM, we can obtain the estimated GMM parameters {Y1, Y2, � � � , YC},

where each Yc characterizes the feature distribution of a specific emotion + scene

subgroup.

3.4 Learning-Based Emotion Synthesis

We first classify the input image into the image subgroup within the target emotion

group. This can be achieved by first over-segmenting the input image and forming

bag-of-words representation based on the color and texture features; then the

nearest neighbor image in the target emotion group is found by computing

the Euclidean distance of the histogram representations between the input image

and the training images, and the scene label of the nearest database image is

selected to be the scene label of the input image, denoted as c.
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As studied in [21, 19], color (contrast, saturation, hue, etc.) can convey emotion

related information. We therefore perform emotion synthesis via applying linear

mapping on the RGB color space for the target image. Instead of performing global

mapping for the entire image as in [21], we propose the following piece-wise

linear mapping for each segment (super-pixel or patch) of the target image as,

f iðxÞ ¼ Pixþ Dx: (3)

Equivalently, we can augment P, x with an additional constant values, i.e., ex ¼
½xT ; 1�T , eP ¼ ½P;Dx� as,

f iðxÞ ¼ ePiex: (4)

For notational simplicity, we use P, x to represent eP,ex for the rest of this subsection.
Here, x denotes the appearance feature of one super-pixel (image segment). Pi

denotes the mapping function for operating the i-th image segment (super-pixel).

These image patches are super-pixels which are obtained by using [10]. Note that

every pixel within the same super-pixel (image segment) shares the same mapping

function fi. The goal of our synthesis process is to obtain the set of appropriate

linear mapping functions for the entire target image (suppose we have M image

segments), namely, P ¼ fP1; :::;PMg . The objective of emotion synthesis can

be expressed as,

max
P

ðF 1 þ F 2Þ; (5)

The objective formulation contains two parts. The first part is a regularization

term, which enforces the smoothness of the transformation and also maintains the

edges of the original image. F1 can be expressed as:

F 1 ¼�
X

i;j2NðaÞ
oa

ijkPixi � Pjxjk22 þ l
X

i;j2NðsÞ
os

ijkPixi � Pjxjk22

�
X

i;j2NðcÞ
kPi � Pjk2F;

(6)

where

NðaÞ ¼ fi; jji; j 2 NðcÞ; kxi � xjk22 � y1g;NðsÞ
¼ fi; jji; j 2 NðcÞ; kxi � xjk22 � y2g:

(7)

Here, N(c) denotes the spatial neighborhood, i.e., two super-pixels i and j are
adjacent. y1 and y2 are the color difference thresholds.oa

ij ando
s
ij are the weighting

coefficients, which are defined as follows:

oa
ij / expð�kxi � xjk22=aÞ;os

ij / 1� expð�kxi � xjk22=aÞ: (8)
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Here, y1, y2, l and a are set to be optimal empirically. We can note from this prior

that: (1) The first term ensures that original contours in the target image will be

preserved by enforcing that originally distinctive neighborhood segments present

distinctive color values in the transformed image; (2) The second term encourages

smooth transition from image segments to near-by segments.

The second part of the framework is the emotion fitting term, which is

expressed as:

F 2 ¼ log
YM
i¼1

pðIjPiÞ
 !

¼ log
YM
i¼1

pðxijYcÞ
 !

: (9)

Here p(x | Yc) is the trained GMM model for emotion+scene subgroup c, xi is the
color vector of the ith image segment. We can note that this term encourages

the distributions of the target image to move towards the statistical model of the

training data. Finally the cost function is denoted as:

F ¼ F 1 þ F 2

¼ �
X

i;j2NðaÞ
oa

ijkPixi � Pjxjk22 þ l
X

i;j2NðsÞ
os

ijkPixi � Pjxjk22

�
X

i;j2NðcÞ
kPi � Pjk2F þ

X
i

log
X
k

N k

 !
:

(10)

Note that Eq. (10) is nonlinear and complex. Therefore, to optimize the cost

function, we adopt Newton’s method with linear constraints, which can guarantee

local optimum [3], as:

max
P

F ; s:t:0 � Pix � 255; 8i ¼ 1; 2; � � � ;M; (11)

where ⪯ denotes component-wise inequality constraints. These constraints ensure

that the resulting color value is within appropriate range. Our method is

schematically illustrated in Fig. 4.

4 Experiments

In this section, we will introduce our experimental settings, user studies along with

discussions. As mentioned in the previous sections, during the pre-processing stage,

training images within each emotion group are segregated into several scene

subgroups (subclasses) based on the distributions of the image super-pixels’ HOG

and color moment features. For each subclass, we train a GMM to describe the

10 M. Xu et al.



distribution of super-pixels’ color information. Given an arbitrary input image, in

the emotion synthesis phase, we first assign it to the nearest scene subclass based on

the HOG and color moment bag-of-words representation. Then our task is to obtain

a mapping function which can optimize Eq. (11). Since our probability function is

non-convex, we can easily get trapped in a local optimum. Therefore, a good initial

mapping matrix is crucial. To get a proper initialization, we firstly assign patch

(super-pixel) j to the nearest Gaussian component center mi. After that, a pseudo

inverse is performed as Pi
inu ¼ x

y
j ui , here xj denotes mean color feature value of

image patch j. The linear multiplier transformation part of the initial mapping

matrix becomes, Pi
ini ¼ lI þ ð1� lÞPi

inv . Here I is the identity matrix. In our

experiment, we set l ¼ 0. 8 empirically. With a good initialization, we can mostly

obtain a good mapping matrix using standard non-linear optimization algorithms

such as Newton’s method.

In our experiment, we choose 55 images from the NUS-WIDE dataset which

serve as the testing images while the others construct the training image set. We

compare our proposed method with the color transfer method proposed in [19],

which directly aligns the mean and standard deviation of the color distribution

between the source (reference) and the target image. The target image is mapped

with the reference image chosen from the emotion + scene subclass by nearest

neighbor assignment (in terms of the HOG and color moment based bag-of-words

representation).

The comparative user studies are conducted as follows. Firstly, the transformed

images of both methods are presented to the participants in pairs (with the left-right

order randomly shuffled). Participants are asked to decide whether these image can

express the specified target emotion. We also consider the naturalness of the

synthesized images, since the naturalness will significantly affect the image quality.

In this sense, the participants are also asked to compare which image of the same pair

is more natural. In particular, participants are asked to give a judgement that whether

the left image is Much Better, Better, Same, Worse, Much Worse than right one.

Fig. 4 The learning-based emotion synthesis scheme
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In our user study, 9 participants are asked to judge the image’s naturalness, and

20 participants with ages ranging from 20 to 35 years old are asked to judge whether

these images can express the target emotion. The statistics of the results for the user

study are illustrated in Fig. 6 in terms of the naturalness. We also show several

example results in Fig. 5 for both our method and the color transfer method.

In Fig. 6, yellow bars show the number of participants voting for each type of the

ratings. We can observe that the images resulting from our method are more natural

to the audience than the ones from the color transfer method. This could be

explained by the fact that the statistic modeling using GMM is more generative

and robust, while the exemplar image based color transfer might sometimes lead to

over-fitting. Figure 6 and Table 2 show that in most cases images which are

synthesized using our method outperform the color transfer results in terms of

the accuracies of emotion synthesis. Figure 5 further shows that our results are more

Fig. 5 Example results of the image emotion synthesis. Each row, from left to right, show the

original image, synthesized image using our method, naturalness evaluation bar, color transfer

result and reference image in color transfer. The middle bars show statistics of user’s responses

which indicate based on naturalness whether synthesizing result (left) is Much Better, Better,

Same, Worse, Much Worse than the result from color transfer method (right). For better viewing,
please see in x2 resolution and in color pdf file

12 M. Xu et al.



natural than color transfer based results. As can be seen, color transfer based results

rely on reference images. Therefore, if the color distribution of reference image is

too far from the target image, the transformed result will be unnatural, e.g., trees in

the last example look red which are not realistic. However, our statistical learning

based method do not have such a problem.

5 Conclusions

In this work, we developed a learning based image emotion synthesis framework

which can transfer the learnt emotion related statistical information onto arbitrary

input images. Extensive user studies well demonstrated that the proposed method is

effective and the re-emotionalized images are natural and realistic.
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