Fungal Biology

Vijai Kumar Gupta · Maria G. Tuohy Editors Manimaran Ayyachamy Anthonia O'Donovan · Kevin M. Turner Associate Editors

Laboratory Protocols in Fungal Biology

Current Methods in Fungal Biology

Fungal Biology

Series Editors:

Vijai Kumar Gupta, PhD Molecular Glycobiotechnology Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland

Maria G. Tuohy, PhD Molecular Glycobiotechnology Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland

For further volumes: http://www.springer.com/series/11224

Vijai Kumar Gupta • Maria G. Tuohy Editors

Manimaran Ayyachamy Anthonia O'Donovan • Kevin M.Turner Associate Editors

Laboratory Protocols in Fungal Biology

Current Methods in Fungal Biology

Editors Vijai Kumar Gupta Molecular Glycobiotechnology Group Department of Biochemistry School of Natural Sciences National University of Ireland Galway Galway, Ireland

Assistant Professor of Biotechnology Department of Science MITS University Lakshmangarh (Sikar), Rajasthan, India

Associate Editors Manimaran Ayyachamy Molecular Glycobiotechnology Group Department of Biochemistry School of Natural Sciences National University of Ireland Galway Galway, Ireland

Anthonia O'Donovan Molecular Glycobiotechnology Group Department of Biochemistry School of Natural Sciences National University of Ireland Galway Galway, Ireland Maria G. Tuohy Molecular Glycobiotechnology Group Department of Biochemistry School of Natural Sciences National University of Ireland Galway Galway, Ireland

Kevin M. Turner Manufacturing Sciences and Technology The Pfizer Biotech Campus at Grange Castle Pfizer Ireland Pharmaceuticals Dublin, Ireland

ISBN 978-1-4614-2355-3 ISBN 978-1-4614-2356-0 (eBook) DOI 10.1007/978-1-4614-2356-0 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951631

© Springer Science+Business Media, LLC 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Fungi represent the fifth kingdom of organisms, which is characterized-second only to prokaryotes-by a huge number of diverse species. Even more, fungi have developed a tremendous variety in lifestyles, biochemical properties, and morphological characters, the latter having been a permanent challenge for defining species and their identification. They have conquered practically all habitats, from deep sea water to desert soil, and from prokaryotes to mammals, leading to an array of positive but also negative impacts on mankind. On the negative side, fungi are known as pathogens of plants-a situation which seriously affects crop plantations all around the earth-but also of higher fungi, of lower eukaryotes, and of all animals up to mammals and men. Also, their versatile metabolism provided them with efficient abilities to colonize almost all material, leading to biodeterioration of various organic materials including paintings and covers, which allowed them to settle in buildings and flats resulting in indoor contamination as a major problem of today. Yet there are also numerous benefits: many fungi are known as beneficial symbionts of plants, such as plant tissue endosymbionts and mycorrhizas. In fact, the earth would be devoid of plants in the absence of the latter. Finally several fungi have been domesticated by humans, either for their use in agriculture (such as for biocontrol of plant or invertebrate pathogens or in plant growth protection and stimulation), for the preparation of feed- and foodstuff, and as efficient producers of biotechnological products such as primary metabolites, numerous enzymes, and antibiotics. In the area of modern molecular biotechnology, fungi such as Pichia pastoris have become important highthroughput hosts for the production of recombinant proteins of bacterial to human origin. Last but not least, fungi like Saccharomyces cerevisiae, Neurospora crassa, and Aspergillus nidulans have become model systems for basic biochemical and genetic research, and an impressing amount of our textbook knowledge would not be available without them. In the current genomic age, elucidation of the genome inventory of about 50 multicellular asco- and basidiomycetes and the same number of yeasts has been completed and opened new avenues for their investigation.

In view of this steadily increased interest in fungi, also the methods needed for their isolation and identification, as well as their genetic manipulation and monitoring of gene expression and protein production, have become refined and complemented. This book aims at presenting an inventory of techniques and methods that are currently in use for studying fungi: it contains 57 chapters dedicated to description of these techniques, starting from concepts of cultivation, enumeration, and visualization of fungi; molecular approaches for detection and quantification; measurement of relevant enzymes and methods for their application; and the use of bioinformatic tools to investigate fungal genomes.

As a professional reference, this book is aimed at all people who work with fungi and should be useful both to academic institutions and research teams, as well as to teachers, graduate and postgraduate students.

Vienna, Austria

Prof. Christian P. Kubicek

Foreword

It gives me immense pleasure to write a foreword for *Laboratory Protocols in Fungal Biology* of Springer, USA edited by Dr. Vijai Kumar Gupta and Dr. Maria G. Tuohy. After going through the content of this laboratory protocol, I feel that it is a wonderful attempt done by Dr. Gupta to compile together all the information about the subject that will be highly useful to all mycologists around the globe. I am sure that this volume will be highly useful to all those concerned with fungi and their biology, including environmental and public health officers and professionals in the field of interest. The volume is really exhaustive covering almost all the aspects of fungal biology. It will also be of interest to postgraduate students in this field and also for one and all interested in Fungi. Additionally it will be of great market value. This effort of Dr. Gupta's is admirable.

Varanasi, India

Prof. R.S. Upadhyay

Preface

The interaction between fungi and their environment is central to many natural processes that occur in the biosphere. The hosts and habitats of these eukaryotic microorganisms are very diverse; fungi are present in every ecosystem on Earth. The fungal kingdom is equally diverse, consisting of seven different known phyla. Yet detailed knowledge is limited to relatively few species. The relationship between fungi and humans has been characterized by the juxtaposed viewpoints of fungi as infectious agents of much dread and their exploitation as highly versatile systems for a range of economically important biotechnological applications. Understanding the biology of different fungi in diverse ecosystems as well as their interactions with living and nonliving is essential to underpin effective and innovative technological developments.

The tools and techniques of molecular biology, once reserved for mammalian and bacterial systems, have been adapted and optimized for the analysis of fungal species at the molecular level. Rapid screening techniques based on screening specific regions in the DNA of fungi have been used in species comparison and identification and are now being extended across fungal phyla with the ultimate goal being the assembly of the "Fungal Tree of Life" by the US National Science Foundation. Within a decade after the Human Genome Sequence was published, genome sequencing technology has been adapted to yield the complete genome sequences of not only fungi of commerce and medical relevance, but other more isoteric species. Post-genomics approaches and systems biology are now also being applied to understanding the details of fungal biology and the interactions between fungi, their hosts, and their environment. The majority of fungi are multicellular eukaryotic systems and therefore may be excellent model systems by which to answer fundamental biological questions. A greater understanding of the cell biology of these versatile eukaryotes will underpin efforts to engineer (e.g., "humanize") certain fungal species to provide novel cell factories for production of proteins for pharmaceutical applications. Finally, renewed interest in all aspects of the biology and biotechnology of fungi may also enable the development of "one pot" microbial cell factories to meet consumer energy needs into the twenty first century. To realize this potential and to truly understand the diversity and biology of these eukaryotes, continued development of scientific tools and techniques is essential.

This publication aims to provide a detailed compendium of analytical methods used to investigate different aspects of mycology, including fungal biology and biochemistry, genetics, phylogenetics, genomics, proteomics, molecular enzymology, and biotechnological applications, in a manner that reflects the many recent developments of relevance to scientists investigating the Kingdom of Fungi.

Galway, Ireland

Vijai Kumar Gupta Maria G. Tuohy Manimaran Ayyachamy Anthonia O'Donovan Kevin M. Turner

Contents

1	Safety Norms and Regulations in Handling Fungal Specimens Finola E. Cliffe	1
2	Methods of Cryopreservation in Fungi Ladislav Homolka	9
3	Long-Term Preservation of Fungal Cultures in All-Russian Collection of Microorganisms (VKM): Protocols and Results Svetlana M. Ozerskaya, Natalya E. Ivanushkina, Galina A. Kochkina, Svetlana S. Eremina, Alexander N. Vasilenko, and Nadezhda I. Chigineva	17
4	Fungal Specimen Collection and Processing Anthonia O'Donovan, Vijai Kumar Gupta, and Maria G. Tuohy	67
5	Chemical and Molecular Methods for Detection of Toxigenic Fungi and Their Mycotoxins from Major Food Crops S. Chandra Nayaka, M. Venkata Ramana, A.C. Udayashankar, S.R. Niranjana, C.N. Mortensen, and H.S. Prakash	73
6	Identification Key for the Major Growth Forms of Lichenized Fungi Jeyabalan Sangeetha and Devarajan Thangadurai	91
7	Microscopic Methods for Analytical Studies of Fungi De-Wei Li	113
8	Scanning Electron Microscopy for Fungal Sample Examination Eduardo Alves, Gilvaine Ciavareli Lucas, Edson Ampélio Pozza, and Marcelo de Carvalho Alves	133
9	High-Resolution Imaging and Force Spectroscopy of Fungal Hyphal Cells by Atomic Force Microscopy Biplab C. Paul, Hui Ma, Laelie A. Snook, and Tanya E.S. Dahms	151

10	Use of Fourier-Transform Infrared (FTIR) Microscopy Method for Detection of Phyto-Fungal Pathogens Vitaly Erukhimovitch and Mahmoud Huleihel	161
11	Diagnosis of Parasitic Fungi in the Plankton: Technique for Identifying and Counting Infective Chytrids Using Epifluorescence Microscopy Télesphore Sime-Ngando, Serena Rasconi, and Mélanie Gerphagnon	169
12	Fungal Cell Wall Analysis Pilar Pérez and Juan C. Ribas	175
13	Histopathological Technique for Detection of Fungal Infections in Plants Vijai Kumar Gupta and Brejesh Kumar Pandey	197
14	Development of Media for Growth and Enumeration of Fungi from Water Segula Masaphy	201
15	Sabouraud Agar for Fungal Growth Janelle M. Hare	211
16	A Method for the Formation of <i>Candida</i> Biofilms in 96 Well Microtiter Plates and Its Application to Antifungal Susceptibility Testing Christopher G. Pierce, Priya Uppuluri, and Jose L. Lopez-Ribot	217
17	Screening for Compounds Exerting Antifungal Activities Jean-Paul Ouedraogo, Ellen L. Lagendijk, Cees A.M.J.J. van den Hondel, Arthur F.J. Ram, and Vera Meyer	225
18	Fluorescence In Situ Hybridization of Uncultured Zoosporic Fungi Télesphore Sime-Ngando, Marlène Jobard, and Serena Rasconi	231
19	Staining Techniques and Biochemical Methods for the Identification of Fungi Jeyabalan Sangeetha and Devarajan Thangadurai	237
20	Protocol for the In Vivo Quantification of Superoxide Radical in Fungi Konstantinos Grintzalis, Ioannis Papapostolou, and Christos Georgiou	259
21	Isolation of Intact RNA from Sorted <i>S. cerevisiae</i> Cells for Differential Gene Expression Analysis	265
22	Quantitative PCR Analysis of Double-Stranded RNA-Mediated Gene Silencing in Fungi José J. de Vega-Bartol, Vega Tello, Jonathan Niño, Virginia Casado and José M. Díaz-Mínguez	279),

23	Semi-Nested PCR Approach to Amplify Large 18S rRNA Gene Fragments for PCR-DGGE Analysis of Soil Fungal Communities Miruna Oros-Sichler and Kornelia Smalla	289
24	Proteomic Protocols for the Study of Filamentous Fungi Raquel González Fernández and Jesús V. Jorrín Novo	299
25	Detection and Quantification of Endoprotease Activity Using a Coomassie Dye-Binding Assay Anthony J. O'Donoghue and Cathal S. Mahon	309
26	Protocol of a LightCycler [™] PCR Assay for Detection and Quantification of <i>Aspergillus fumigatus</i> DNA in Clinical Samples of Neutropenic Patients Birgit Spiess and Dieter Buchheidt	315
27	Application of Polymerase Chain Reaction and PCR-Based Methods Targeting Internal Transcribed Spacer Region for Detection and Species-Level Identification of Fungi K. Lily Therese, R. Bagyalakshmi, and H.N. Madhavan	321
28	Real-Time PCR Assay in Fungi Naomichi Yamamoto	331
29	Quantitative Sampling Methods for the Analysis of Fungi: Air Sampling Mary C. O'Loughlin, Katherine D. Turner, and Kevin M. Turner	337
30	Transformation of Filamentous Fungi in Microtiter Plate Bianca Gielesen and Marco van den Berg	343
31	Molecular Fingerprinting of Fungal Communities in Soil Roberto A. Geremia and Lucie Zinger	349
32	Development of Microsatellite Markers from Fungal DNA Based on Shotgun Pyrosequencing Shaobin Zhong	357
33	Multiplex and Quantifiable Detection of Infectious Fungi Using Padlock Probes, General qPCR, and Suspension Microarray Readout	363
34	Rapid Deletion Plasmid Construction Methods for Protoplast and Agrobacterium-based Fungal Transformation Systems María D. García-Pedrajas, Zahi Paz, David L. Andrews, Lourdes Baeza-Montañez, and Scott E. Gold	375
35	Improved Transformation Method for <i>Alternaria</i> <i>Brassicicola</i> and Its Applications Yangrae Cho, Akhil Srivastava, and Christopher Nguyen	395

36	Methods for High-Quality DNA Extraction from Fungi Vijai Kumar Gupta, Maria G. Tuohy, and Rajeeva Gaur	403
37	Production of Recombinant Proteins from <i>Pichia pastoris</i> : Interfacing Fermentation and Immobilized Metal Ion Affinity Chromatography Berend Tolner, Gaurav Bhavsar, Bride Foster, Kim Vigor, and Kerry Chester	407
38	Development of a Real-Time Quantitative PCR Assay for the Assessment of Uncultured Zoosporic Fungi Télesphore Sime-Ngando and Marlène Jobard	421
39	Nucleic and Protein Extraction Methods for Fungal Exopolysaccharide Producers Jochen Schmid, Dirk Mueller-Hagen, Volker Sieber, and Vera Meyer	427
40	Directed Evolution of a Fungal Xylanase for Improvement of Thermal and Alkaline Stability Dawn Elizabeth Stephens, Suren Singh, and Kugen Permaul	435
41	Genome Shuffling Protocol for the Pentose-Fermenting Yeast Scheffersomyces stipitis Paramjit K. Bajwa, Nicole K. Harner, Terri L. Richardson, Sukhdeep Sidhu, Marc B. Habash, Jack T. Trevors, and Hung Lee	447
42	Detection and Identification of Fungal Microbial Volatile Organic Compounds by HS-SPME-GC–MS Bernhard Kluger, Susanne Zeilinger, Gerlinde Wiesenberger, Denise Schöfbeck, and Rainer Schuhmacher	455
43	Transformation Methods for Slow-Growing Fungi Suman Mukherjee and Rebecca Creamer	467
44	Enzymatic Saccharification of Lignocellulosic Biomass Manimaran Ayyachamy, Vijai Kumar Gupta, Finola E. Cliffe, and Maria G. Tuohy	475
45	Protoplast Fusion Techniques in Fungi Annie Juliet Gnanam	483
46	Large-Scale Production of Lignocellulolytic Enzymes in Thermophilic Fungi Manimaran Ayyachamy, Mary Shier, and Maria G. Tuohy	489
47	Panfungal PCR Method for Detection of Aflatoxigenic Molds Malik M. Ahmad, Pravej Alam, M.Z. Abdin, and Saleem Javed	495
48	Protocols for the Quantification of dsDNA and Its Fragmentation Status in Fungi Ioannis Papapostolou, Konstantinos Grintzalis, and Christos Georgiou	501

49	Rapid Identification and Detection of Pathogenic Fungi by Padlock Probes	505
	Clement K.M. Tsui, Bin Wang, Cor D. Schoen, and Richard C. Hamelin	
50	Drug-Induced Permeabilization in Fungi Maria D. Mayan, Alexandra McAleenan, and Priscilla Braglia	519
51	Extraction and Characterization of Taxol: An Anticancer Drug from an Endophytic and Pathogenic Fungi M. Pandi, P. Rajapriya, and P.T. Manoharan	523
52	Identification of Mycotoxigenic Fungi Using an Oligonucleotide Microarray Eugenia Barros	529
53	DNA Microarray-Based Detection and Identification of Fungal Specimens Minna Mäki	535
54	Bioinformatic Protocols and the Knowledge-Base for Secretomes in Fungi Gengkon Lum and Xiang Jia Min	545
55	High-Throughput Functional Annotation and Data Mining of Fungal Genomes to Identify Therapeutic Targets Gagan Garg and Shoba Ranganathan	559
56	Application of Support Vector Machines in Fungal Genome and Proteome Annotation Sonal Modak, Shimantika Sharma, Prashant Prabhakar, Akshay Yadav, and V.K. Jayaraman	565
57	Bioinformatics Tools for the Multilocus Phylogenetic Analysis of Fungi Devarajan Thangadurai and Jeyabalan Sangeetha	579
Ind	ex	593

Contributors

M.Z. Abdin Department of Biotechnology, Jamia Hamdard University, New Delhi, Delhi, India

Malik M. Ahmad Department of Biotechnology, Jamia Hamdard University, New Delhi, Delhi, India

Pravej Alam Department of Biotechnology, Jamia Hamdard University, New Delhi, Delhi, India

Eduardo Alves Department of Phytopathology, Federal University of Lavras, Lavras, Minas Gerais, Brazil

David L. Andrews Department of Plant Pathology, University of Georgia, Athens, GA, USA

Manimaran Ayyachamy Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland

Lourdes Baeza-Montañez Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Algarrobo-Costa, Málaga, Spain

R. Bagyalakshmi Sankara Nethralaya, Larsen and Toubro Microbiology Research Centre, Chennai, Tamil Nadu, India

Paramjit K. Bajwa School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Eugenia Barros Department of Biosciences, Council for Scientific and Industrial Research (CSIR), Brummeria, Pretoria, South Africa

Gaurav Bhavsar Department of Oncology, University College London Cancer Institute, London, UK

Jonas Blomberg Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, Uppsala, Sweden

Priscilla Braglia Sir William Dunn School of Pathology, University of Oxford, Oxford, UK

Dieter Buchheidt Third Department of Internal Medicine, Mannheim University Hospital, Mannheim, Germany

Virginia Casado Department of Microbiologia y Genetica-CIALE, Universidad de Salamanca, Salamanca, Spain

Kerry Chester Department of Oncology, University College London Cancer Institute, London, UK

Nadezhda I. Chigineva All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Yangrae Cho Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA

Finola E. Cliffe Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland

Rebecca Creamer Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, USA

Tanya E.S. Dahms Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada

Marcelo de Carvalho Alves Department of Soil and Rural Engineering, Campus of the Federal University of Mato Grosso, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil

José J. de Vega-Bartol Department of Microbiologia y Genetica-CIALE, Universidad de Salamanca, Salamanca, Spain

José M. Díaz-Mínguez Department of Microbiologia y Genetica—CIALE, Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, Salamanca, Spain

Svetlana S. Eremina All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Ronnie Eriksson Livsmedelsverket, Uppsala, Sweden

Vitaly Erukhimovitch Analytical Equipment Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Raquel González Fernández Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain

Bride Foster Department of Oncology, University College London Cancer Institute, London, UK

María D. García-Pedrajas Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain

Gagan Garg Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia **Rajeeva Gaur** Department of Microbiology, Dr. R.M.L. Avadh University, Faizabad, Uttar Pradesh, India

Christos Georgiou Department of Biology, University of Patras, Patras, Achaia, Greece

Roberto A. Geremia Laboratoire d'Ecologie Alpine, CNRS/UJF, Université Joseph Fourier, Grenoble, France

Mélanie Gerphagnon Université Blaise Pascal, Aubière, France

Bianca Gielesen DSM Biotechnology Center, Delft, Zuid Holland, The Netherlands

Annie Juliet Gnanam College of Natural Science, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA

Scott E. Gold United States Department of Agriculture–Agricultural Research Unit (USDA–ARS), Toxicology and Mycotoxin Research Unit, Athens Georgia, USA

Konstantinos Grintzalis Department of Biology, University of Patras, Patras, Achaia, Greece

Vijai Kumar Gupta Molecular Glycobiotechnology Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland

Assistant Professor of Biotechnology, Department of Science, Faculty of Arts, Science & Commerce, MITS University, Rajasthan, India

Marc B. Habash School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Richard C. Hamelin Department of Forest Sciences, The University of British Columbia, Vancouver, BC, Canada

Laurentian Forestry Centre, Natural Resources Canada, Quebec, QC, Canada

Janelle M. Hare Department of Biology and Chemistry, Morehead State University, KY, USA

Nicole K. Harner School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Ladislav Homolka Department of Ecology of Microorganisms, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Mahmoud Huleihel Department of Virology and Developmental Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Natalya E. Ivanushkina All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Saleem Javed Department of Biochemistry, Jamia Hamdard University, New Delhi, India

V.K. Jayaraman Scientific and Engineering Computing Group (SECG), Centre for Development of Advanced Computing (C-DAC), University of Pune, Pune, Maharashtra, India

Marlène Jobard LMGE UMR CNRS, U.F.R. Sciences et Technologies, Aubière Cedex, France

Magnus Jobs School of Health and Social Studies, Högskolan Dalarna, Uppsala University, Falun, Sweden

Bernhard Kluger Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Tulln, Austria

Galina A. Kochkina All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Christian P. Kubicek Department of Chemical Engineering, Vienna University of Technology, Vienna, Austria

Ellen L. Lagendijk Department of Molecular Microbiology and Biotechnology, Leiden University, Leiden, The Netherlands

Hung Lee University of Guelph, School of Environmental Sciences, Guelph, ON, Canada

De-Wei Li Valley Laboratory, The Connecticut Agricultural Experiment Station, Windsor, CT, USA

Jose L. Lopez-Ribot Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA

Gilvaine Ciavareli Lucas Department of Phytopathology, Federal University of Lavras, Lavras, Minas Gerais, Brazil

Departamento de Fitopatologia, Universidade Federal de Lavras, Caixa postal, Lavras, Minas Gerais, Brazil

Gengkon Lum Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, USA

Hui Ma Department of Chemistry, National University of Singapore, Singapore

Alexandra McAleenan Clinical Sciences Centre, Imperial College London, London, UK

H.N. Madhavan Sankara Nethralaya, Larsen and Toubro Microbiology Research Centre, Chennai, Tamil Nadu, India

Cathal S. Mahon Department of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, CA, USA

Minna Mäki Program Leader, NAT, Orion Diagnostica Oy, Espoo, Finland

P.T. Manoharan Department of Botany, Vivekananda College, Madurai, Tamil Nadu, India

Segula Masaphy Department of Applied Microbiology and Mycology, MIGAL, Kiryat Shmona, Israel

Maria D. Mayan Fundación CHUAC, Biomedical Research Center— INIBIC, A Coruña, Galicia, Spain

Vera Meyer Department of Applied and Molecular Microbiology, Berlin University of Technology, Berlin, Germany

Xiang Jia Min Department of Biological Sciences, Center for Applied Chemical Biology, Youngstown State University, Youngstown, OH, USA

Sonal Modak Bioinformatics Centre, University of Pune, Pune, Maharashtra, India

C.N. Mortensen Department of Agriculture and Ecology, University of Copenhagen, Copenhagan, Taastrup, Denmark

Dirk Mueller-Hagen Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany

Suman Mukherjee Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, MD, USA

Susann Müller Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Saxonia, Germany

S. Chandra Nayaka Department of Studies in Biotechnology, Asian Seed Health Centre, University of Mysore, Mysore, Karnataka, India

Christopher Nguyen Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA

Jonathan Niño Department of Microbiologia y Genetica—CIALE, Universidad de Salamanca, Villamayor, Salamanca, Spain

S.R. Niranjana Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India

Jesús V. Jorrín Novo Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain

Anthony J. O'Donoghue Department of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, CA, USA

Anthonia O'Donovan Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland

Mary C. O'Loughlin Department of Life Sciences, University of Limerick, Castletroy, Limerick, Ireland

Miruna Oros-Sichler Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institut, Braunschweig, Lower Saxony, Germany Jean-Paul Ouedraogo Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany

Svetlana M. Ozerskaya All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Brejesh Kumar Pandey Molecular Plant Pathology Laboratory, Central Institute for Subtropical Horticulture, Indian Council of Agricultural Research, Lucknow, Uttar Pradesh, India

M. Pandi Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Ioannis Papapostolou Department of Biology, University of Patras, Patras, Achaia, Greece

Biplab C. Paul Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada

Zahi Paz Department of Plant Pathology, University of Georgia, Athens, GA, USA

Pilar Pérez Departamento de Microbiología CSIC/Universidad de Salamanca, Instituto de Biología Funcional y Genómica (IBFG), Salamanca, Spain

Kugen Permaul Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Kwa-Zulu-Natal, South Africa

Christopher G. Pierce Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA

Edson Ampélio Pozza Departamento de Fitopatologia, Universidade Federal de Lavras, Caixa postal, Lavras, Minas Gerais, Brazil

Prashant Prabhakar Department of Biotechnology, Dr. D.Y. Patil University, Pune, Maharashtra, India

H.S. Prakash Department of Studies in Biotechnology, Asian Seed Health Centre, University of Mysore, Mysore, Karnataka, India

P. Rajapriya Department of Microbiology, Srinivasan College of Arts and Science, Perambalur, Tamil Nadu, India

Arthur F.J. Ram Department of Molecular Microbiology and Biotechnology, Leiden University, Leiden, BE, The Netherlands

M. Venkata Ramana Department of Studies in Microbiology, University of Mysore, Mysore, Karnataka, India

Shoba Ranganathan Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Serena Rasconi Department of Biology, University of Oslo, Oslo, Norway

Juan C. Ribas Departamento de Microbiología CSIC/Universidad de Salamanca, Senior Scientist from the Spanish Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Instituto de Biología Funcional y Genómica (IBFG), Salamanca, Spain

Terri L. Richardson School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Jeyabalan Sangeetha Department of Zoology , Karnataka University, 580003, Dharwad, Karnataka, India

Thomas Scheper Chip Technology Institute for Technical Chemistry, University of Hannover, Hannover, Lower Saxony, Germany

Jochen Schmid Department of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Bavaria, Germany

Cor D. Schoen Department of Bio-Interactions and Plant Health, Plant Research International B. V, Wageningen, The Netherlands

Denise Schöfbeck Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Tulln, Austria

Rainer Schuhmacher Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Tulln, Austria

Shimantika Sharma Department of Biotechnology, Dr. D. Y. Patil University, Pune, Maharashtra, India

Mary Shier Department of Biochemistry, National University of Ireland, Galway, Ireland

Sukhdeep Sidhu School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Volker Sieber Chemistry of Biogenic Resources, Technische Universität München, Straubing, Bavaria, Germany

Télesphore Sime-Ngando UMR CNRS 6023, Université Blaise Pascal, Clermont II, Aubière, Cedex, France

Suren Singh Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Kwa-Zulu-Natal, South Africa

Kornelia Smalla Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Lower Saxony, Germany

Laelie A. Snook Department of Human Health and Nutritional Sciences, Guelph, Ontario, Canada

Birgit Spiess Third Department of Internal Medicine, Mannheim University Hospital, Mannheim, Germany

Akhil Srivastava Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA

Frank Stahl Chip Technology Institute for Technical Chemistry, University of Hannover, Hannover, Germany

Dawn Elizabeth Stephens Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Kwa-Zulu-Natal, South Africa

Vega Tello Department of Microbiologia y Genetica—CIALE, Universidad de Salamanca, Salamanca, Spain

Devarajan Thangadurai Department of Botany, Karnataka University, Dharwad, Karnataka, India

K. Lily Therese Sankara Nethralaya, Larsen and Toubro Microbiology Research Centre, Vision Research Foundation, Chennai, Tamil Nadu, India

Berend Tolner Department of Oncology, University College London Cancer Institute, London, UK

Jack T. Trevors School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

Clement K.M. Tsui Department of Forest Sciences, The University of British Columbia, Vancouver, BC, Canada

Maria G. Tuohy Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland

Katherine D. Turner School of Natural Sciences, Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland

Kevin M. Turner Manufacturing Sciences and Technology, Pfizer Ireland Pharmaceuticals, The Pfizer Biotech Campus at Grange Castle, Dublin, Ireland

A.C. Udayashankar Department of Studies in Biotechnology, Asian Seed Health Centre, University of Mysore, Mysore, Karnataka, India

R.S. Upadhyay Department of Botany, Centre of Advanced Study, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Priya Uppuluri Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA

Marco van den Berg Applied Biochemistry and Screening, DSM Biotechnology Center, Delft, Zuid-Holland, The Netherlands

Cees A.M.J.J. van den Hondel Department of Molecular Microbiology and Biotechnology, Leiden University, Leiden, BE, The Netherlands Alexander N. Vasilenko All-Russian Collection of Microorganisms (VKM IBPM RAS, Pushchino, Russia), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow Region, Russia

Kim Vigor Department of Oncology, University College London Cancer Institute, London, UK

Jeannette Vogt Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Saxonia, Germany

Bin Wang Westmead Hospital, Centre of Virus Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia

Gerlinde Wiesenberger Institute of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria

Akshay Yadav Scientific and Engineering Computing Group (SECG), Centre for Development of Advanced Computing (C-DAC), University of Pune, Pune, Maharashtra, India

Naomichi Yamamoto Department of Environmental Health, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea

Susanne Zeilinger Research Area Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Vienna, Austria

Shaobin Zhong Department of Plant Pathology, North Dakota State University, Fargo, ND, USA

Lucie Zinger Laboratoire d'Ecologie Alpine, CNRS/UJF, Université Joseph Fourier, Grenoble, France

Safety Norms and Regulations in Handling Fungal Specimens

Finola E. Cliffe

Abstract

This chapter provides basic safety information required when handling fungal cultures and when performing the procedures outlined in this manual. Several topics are discussed including routine precautions when working with fungal organisms.

Keywords

Fungi • Mycology • Health and safety • Biosafety • Biosafety levels

Introduction

Biosafety measures designed to ensure the safety of laboratory workers include the use of various primary and secondary barriers, many of which are due to the advent of new technologies in the fields of materials science and engineering. Personnel undertaking the protocols in this manual may come across potentially hazardous materials such as pathogenic and infectious biological fungal agents, in addition to toxic

Department of Biochemistry,

Molecular Glycobiotechnology Group, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland e-mail: fcliffe@gmail.com chemicals and carcinogenic, mutagenic, or teratogenic reagents. In the case of fungal specimens, it has long been acknowledged that laboratory workers can attain infections from the agents they work with.

There have been many reported cases of laboratory-acquired infection, with countless more cases undoubtedly left unreported. Inhalation appears to be the most prominent route of exposure. Fungal hyphae in nature develop structures such as conidia on fruiting bodies or hyphal elements that develop into transmissible subsegments, which are ultimately designed for optimum dispersal in air. These elements are designed to be readily discharged, resistant to desiccation, and to remain aloft for long periods of time. Once inhaled by a host, the conidia develop into the yeast phase and can be found in the tissue of infected hosts [1]. Even with the advances in biosafety training and education, laboratory-acquired

F.E. Cliffe (\boxtimes)

fungal infections continue to occur. The dimorphic fungi Blastomyces dermatitidis, Coccidioides immitis, and Histoplamsa caspsulatum, for example, were found to be responsible for the majority of laboratory-acquired fungal infections in the United States [2-4]. Laboratory-associated pulmonary infections have occurred following the inhalation of conidia from mold-form cultures of B. dermatitidis [5, 6] and local infections from the accidental parenteral inoculation with infected tissues or cultures containing yeast forms of the fungus [7, 8] have been documented. Various reports of laboratory-associated C. immitis are reported in the literature prior to 1980 [9-11] including a case recorded by Nabarro [12] where a biochemist developed an intense acute infection after working with a colonial growth. Laboratory-associated histoplasmosis occurs mainly through inhalation of conidia produced by the mold form of the fungus [4, 13]; however, cutaneous infections have occurred due to accidental inoculation [14, 15].

These incidences indicate the ongoing occurrences of laboratory-acquired infections as a result of simple and preventable laboratory errors. As mentioned, the bulk of laboratory-acquired fungal infections are caused by inhalation of infectious conidia from the mold form, resulting in pulmonary infections; for example, the simple processes of opening of a culture plate lid can result in the release of large numbers of conidia [16]. To reduce the risk of infection it is practical to handle all fungal cultures under the conditions of biosafety laboratory containment BSL-2 or BSL-3 [17].

New biosafety technologies and associated guidelines have been developed to considerably improve ways to safely use fungal material. An enhanced understanding of the risks associated with various manipulations of many agents transmissible by different routes has enabled laboratory workers to apply appropriate biosafety practices to specific laboratory areas. These safety guidelines include engineering controls, management policies, work practices and procedures, as well as medical interventions. However, users must always progress with the caution associated with good laboratory practice, under the supervision of personnel responsible for implementing laboratory safety programs at their institutions.

Biosafety Levels

Several biosafety levels (BSL) have been developed for laboratories to provide increasing levels of staff and environmental protection. BSLs are guidelines that describe appropriate containment equipment, facilities, and procedures for use by laboratory workers. The BSLs range from biosafety level 1 (BSL 1) to biosafety level 4 (BSL 4), and each BSL is based on the increased risk associated with the pathogenicity of the microorganisms encountered. Most clinical microbiology laboratories follow BSL 2 practices. When working with highly infectious agents for which the risk of aerosol transmission is greater, laboratories should follow BSL 3 practices.

BSL-1 is suitable for working with fungal agents that are not known to cause disease in healthy humans. BSL-1 practices, safety equipment, and facility design and construction are appropriate for undergraduate and secondary educational training and teaching laboratories, and for other laboratories in which work is done with defined and characterized strains of viable microorganisms not known to consistently cause disease in healthy adult humans. It is important to remember, however, that many agents not ordinarily associated with disease processes in humans are opportunistic pathogens and may cause infection in the young, the aged, and immunodeficient or immunosuppressed individuals. BSL-1 represents a basic level of containment that relies on standard microbiological practices with no special primary or secondary barriers recommended, other than a sink for hand washing.

BSL-2 should be used for work involving fungal agents that pose a moderate potential hazard to laboratory workers. These agents include the large group of opportunistic fungal pathogens such as Aspergillus spp. and Fusarium spp. Some protocols can be carried out on an open bench providing the potential for aerosol production is low [17]. Although organisms regularly employed at Biosafety Level 2 are not known to be transmissible by the aerosol route, procedures with aerosol or high splash potential that may increase the risk of such personnel exposure must be conducted in primary containment equipment, or in devices such as a biological safety cabinet (BSC) or safety centrifuge cups. Personal protective equipment (PPE), such as splash shields, face protection, gowns, and gloves should be used as appropriate. In addition, secondary barriers such as hand-washing sinks and waste decontamination facilities must be accessible to decrease the chance of environmental contamination [18].

BSL-3 is appropriate for work with infectious agents, which may cause serious or potentially lethal diseases as a result of inhalation. The fungal pathogens C. immitis and H. capsulatum fall into this group. Autoinoculation, ingestion, and exposure to infectious aerosols are the main hazards to personnel working with these organisms. All laboratory operations should be performed in a BSC or other enclosed apparatus, such as a gastight aerosol generation chamber. Secondary barriers for this level include controlled access to the laboratory and ventilation requirements that minimize the release of infectious aerosols from the laboratory. Within this level, primary and secondary barriers to protect personnel in contiguous areas, the community, and the environment from exposure to potentially infectious aerosols have been highlighted [18].

At present, no fungal agents have been classified for use at BSL-4. BSL-4 practices, safety equipment, and facility design and construction are applicable for work with hazardous and exotic agents that pose a high individual risk of life-threatening disease, which may be transmitted via the aerosol route, and for which there is no available vaccine or therapy. The primary hazards to personnel working with Biosafety Level 4 agents are respiratory exposure to infectious aerosols, mucous membrane or broken skin exposure to infectious droplets, and autoinoculation. All manipulations of potentially infectious diagnostic materials, isolates, and naturally or experimentally infected animals pose a high risk of exposure and infection to laboratory personnel, the community, and the environment. The laboratory worker's complete isolation from aerosolized infectious materials is accomplished primarily by working in a Class III BSC or in a full-body, air-supplied, positive-pressure personnel suit. The BSL-4 facility itself is generally a separate building or completely isolated zone with complex, specialized ventilation requirements and waste management systems to prevent release of viable agents to the environment [18].

The safety plan of a laboratory should address general considerations, chemical safety, and section-specific safety. In the case of mycology laboratories, as with all laboratories, each section requires a site-specific risk assessment to address biohazard considerations and to outline measures for staff protection. Table 1.1 outlines an example of the type of assessment that should be performed.

Materials (See Note 1)

- 1. Sterile distilled water
- 2. PPE such as coats, gowns, gloves, masks, face shields, safety glasses
- 3. Ethanol (70%)
- 4. Biosafety cabinet
- 5. Eyewash station
- 6. Hand washing sinks
- 7. HEPA filtered respirators or masks
- 8. Plasticwear (substitute for glass)
- 9. Centrifuge safety cups
- Containers for transport of specimens, waste, and sharps.
- Biohazard bags
- 12. Biohazard labels
- 13. Automatic or mechanical pipetting devices