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École Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

ISBN 978-1-4614-0109-4 ISBN 978-1-4614-0110-0 (eBook)
DOI 10.1007/978-1-4614-0110-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012952159

Mathematics Subject Classification: 05-06, 05C62, 68R10, 05C35, 52C10

© Springer Science+Business Media New York 2013, Corrected at 2nd printing, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Cover image: Redrawn image of Erhard Schön’s “Fünf Figuren in einem Gebäude,” published in
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and Pavel Valtr

Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs,
and Planar Graphs in a Small Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Giuseppe Di Battista and Fabrizio Frati

v



vi Contents

The Crossing-Angle Resolution in Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Walter Didimo and Giuseppe Liotta

Mover Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Adrian Dumitrescu

Rectangle and Square Representations
of Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Stefan Felsner

Convex Obstacle Numbers of Outerplanar Graphs
and Bipartite Permutation Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Radoslav Fulek, Noushin Saeedi, and Deniz Sarıöz

Hanani–Tutte, Monotone Drawings, and Level-Planarity . . . . . . . . . . . . . . . . . . . 263
Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer,
and Daniel Štefankovič
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Géza Tóth Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
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Introduction

János Pach

In the mathematical literature, the term “geometric graph theory” is often used in
a somewhat vague sense: to cover any area of graph theory in which geometric
methods seem to be relevant to the study of graphs defined by geometric means. In
the present volume, by a geometric graph we mean a graph drawn in the plane so
that its vertices are represented by distinct points and its edges by (possibly crossing)
straight-line segments between these points such that no edge passes through a
vertex different from its endpoints. Topological graphs are defined analogously,
except that their edges can be represented by simple Jordan arcs [17].

In this sense, the theory of geometric and topological graphs starts with the study
of planar graphs, initiated by Euler around 1750. For a long time it appeared that
planar graphs, that is, graphs that can be drawn without edge crossings, do not
have many interesting properties; they offer little excitement for mathematicians.
Kuratowski and Wagner found simple characterizations of planar graphs in terms of
forbidden subdivisions and minors, and it follows from Steinitz’s work on convex
polytopes that every planar graph can be drawn by noncrossing straight-line edges,
as a geometric graph. In other words, every planar graph can be “stretched.” This
fact is usually referred to as Fáry’s theorem [9]. One of the first really surprising
results on planar graphs was the Hanani–Tutte theorem [7, 21], which states that
if a graph can be drawn in such a way that any pair of its edges cross an even
number of times, then it can also be drawn without edge crossing; that is, it must be
a planar graph! It turns out that the reason why parity plays a role here lies in the
Jordan curve theorem: Any curve connecting two points, both of which belong to
the interior of a closed Jordan curve, must cross this curve an even number of times.

In the past quarter of a century, partially driven by the needs of computer graphics
and other techniques of visualization, graph drawing has become a separate new
area of research on the borderline of graph theory and computational geometry,

J. Pach (�)
Ecole Polytechnique Fédérale de Lausanne, Station 8, Lausanne 1015, Switzerland
e-mail: pach@renyi.hu
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2 J. Pach

with its annual international symposia and regular conference proceedings. The
first such conference took place in June 1992, in Marino (near Rome). The subject
has developed in close cooperation with industrial researchers developing software
for visualization. Many interesting mathematical questions were asked, which were
clearly motivated by potential applications. For instance, what is the size of the
smallest integer grid such that every planar graph of n vertices admits a crossing-
free straight-line drawing in which every vertex is mapped to a grid point [10]? Does
there exist a positive-valued function a(d) such that every planar graph of maximum
degree d admits a crossing-free straight-line drawing, in which the angle between
any two adjacent edges is at least a(d) [16]? Many other more realistic measures
of resolution were also considered. Geometric and topological graph theory has
become one of the theoretical pillars of graph drawing.

Most graphs G are not planar. Nevertheless, we often have to represent them in
the plane, and we may want to minimize the number of crossings in the resulting
drawing. The smallest number of crossings that we can achieve is called the crossing
number of G. Turán’s famous “brick factory problem” asks for the crossing number
of a complete bipartite graph with n vertices in each of its vertex classes [20]. In spite
of many attempts to solve this problem, we still do not have even an asymptotically
tight answer to this question. According to Zarankiewicz’s conjecture [12], this
quantity is equal to

( 1
16 + o(1)

)
n4. Many interesting related problems can be raised.

For example, one can define the pair-crossing number of G as the minimum number
of crossing pairs of edges over all possible drawings of G [8, 19]. Do the crossing
number and the pair-crossing number coincide for every graph? We know that if
we restrict our attention to straight-line drawings of G, we obtain a new parameter,
different from the crossing number. The minimum number of crossings over all
straight-line drawings of G is called the linear crossing number of G. It is known that
there are graphs with crossing number 4 and with arbitrarily large linear crossing
numbers [6]. According to a particularly useful inequality of Leighton [15] and,
independently, of Ajtai et al. [3], the crossing number of any graph with n vertices
and e > 3n− 6 edges is at least a positive constant times e3/n2. Apart from the
value of the constant, this bound is tight. It has found many interesting applications
in combinatorial geometry and number theory.

A topological graph is called a thrackle if any pair of its edges meet precisely
once, either at an endpoint or at a proper crossing [22]. According to Conway’s
celebrated thrackle conjecture, every thrackle has at most as many edges as vertices.
The conjecture is known to be true for straight-line thrackles (geometric graphs) and
for thrackles that can be drawn in such a way that that every vertical line meets every
edge in at most one point [13]. However, the best-known general upper bound for
the number of edges of an n-vertex thrackle is only 1.42n (see [11]). The fact that
this simply formulated puzzle has been open for almost half a century indicates
how little we know about crossing patterns of edges in a topological graph. A
topological graph is called simple if any pair of its edges meet at most once, either
at an endpoint or at a proper crossing. Conway’s conjecture can now be rephrased as
follows: Every simple topological graph with n vertices and more than n edges has
two disjoint edges (that is, two edges that do not cross and do not share an endpoint).
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In the same spirit, Erdős, Hanani, Kupitz, Perles, and others raised a number of
exciting extremal problems [4, 5, 14]. What is the maximum number of edges that a
simple topological graph of n vertices can have if it contains no k pairwise disjoint
edges for a fixed k > 2 or some other fixed forbidden configuration? There has been
a lot of activity in this area, yet most of the above questions are still open. For
instance, it is conjectured that, for any fixed k, the maximum number of edges of
a (simple) topological graph with n vertices and no k pairwise crossing edges is
O(n). The conjecture holds for k ≤ 4 (see [1, 2]). It would be true for every k if the
answer to the following question of Erdős were in the affirmative: Does there exist a
constant χ(k) for every k≥ 3 such that any system of segments in the plane, no k of
which are pairwise crossing, can be colored by χ(k) colors so that no two segments
that cross each other receive the same color? However, it has been proved that the
answer is no even for k = 3.

The first conference dedicated to geometric graph theory was held at Rutgers
University, New Jersey, in the framework of the DIMACS Special Focus on Discrete
and Computational Geometry, in the Fall of 2002 (see [18]). The second such
meeting took place eight years later, as part of the Special Semester on Discrete and
Computational Geometry organized by the Bernoulli Center at EPFL, Lausanne.
The progress in this area made during this period is striking. The present volume is
a careful selection of 30 invited and thoroughly refereed survey and research articles
reporting on significant recent achievements in geometric graph theory.

References

1. E. Ackerman, On the maximum number of edges in topological graphs with no four pairwise
crossing edges. Discr. Comput. Geom. 41, 365–375 (2009)

2. P. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number
of edges. Combinatorica 17, 1–9 (1997)
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The Rectilinear Crossing Number of Kn:
Closing in (or Are We?)

Bernardo M. Ábrego, Silvia Fernández-Merchant, and Gelasio Salazar

Abstract The calculation of the rectilinear crossing number of complete graphs is
an important open problem in combinatorial geometry, with important and fruitful
connections to other classical problems. Our aim in this chapter is to survey the
body of knowledge around this parameter.

Mathematics Subject Classification (2010): 52C30, 52C10, 52C45, 05C62, 68R10,
60D05, 52A22

1 Introduction

In a rectilinear (or geometric) drawing of a graph G, the vertices of G are
represented by points, and an edge joining two vertices is represented by the straight
segment joining the corresponding two points. Edges are allowed to cross, but an
edge cannot contain a vertex other than its endpoints. The rectilinear (or geometric)
crossing number cr(G) of a graph G is the minimum number of pairwise crossinsgs
of edges in a rectilinear drawing of G in the plane.
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6 B.M. Ábrego et al.

1.1 The Relevance of cr(Kn)

As with every graph theory parameter, there is a natural interest in calculating the
rectilinear crossing number of certain families of graphs, such as the complete
bipartite graphs Km,n and the complete graphs Kn. The estimation of cr(Kn) is
of particular interest, since cr(Kn) equals the minimum number �(n) of convex
quadrilaterals defined by n points in the plane in general position; the problem
of determining �(n) belongs to a collection of classical combinatorial geometry
problems, the so-called Erdős–Szekeres problems. For a comprehensive survey on
results and open questions on these and related problems, we refer the reader to the
monograph by Brass et al. [16].

Another important motivation to study cr(Kn) is its close connection with the
celebrated Sylvester four-point problem from geometric probability. Sylvester asked
what the probability is that four points chosen at random in the plane form a convex
quadrilateral [29]. After it became clear that this is an ill-posed question [30],
Sylvester put forward a related conjecture. Let R be a bounded convex open set
in the plane with finite area, and let q(R) be the probability that four points chosen
randomly from R define a convex quadrilateral. Then (Sylvester’s conjecture [20])
q(R) is minimized when R is a circle or an ellipse, and maximized when R is a
triangle. This conjecture was proved by Blashke in 1917 [15]. Scheinerman and
Wilf addressed in [27] the general problem when R is not required to be convex.
It is easy to see that in this case q(R) can be made arbitrarily close to 1 by choosing
R to be a very thin annulus. The remaining problem is to determine the infimum
q∗ := infq(R), taken over all open sets R with finite area. Scheinerman and Wilf
established the striking connection

q∗ = lim
n→∞

cr(Kn)(n
4

) , (1)

thus inextricably linking the estimation of Sylvester’s four-point constant q∗ to the
(asymptotic) behavior of cr(Kn).

As we shall see below, recent developments have unveiled a close relationship
between cr(Kn) and yet another classical combinatorial geometry parameter: the
number of (≤ k)-edges in an n-point set.

1.2 Purpose and Timeliness of This Survey

Up until 2000, very little was known about cr(Kn). Since then, our knowledge of
this problem has seen a tremendous growth. Surprising and useful connections to
other classical problems have been unveiled. The current estimates for cr(Kn) have
reached a point that would have seemed unlikely (to say the least) at the beginning
of the previous decade.

For instance, before 2000 the ratio between the best lower and upper bounds
for q∗ was about 0.755; at the time of writing this survey, this ratio has been
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raised above 0.998. The implied success in our understanding of the problem
cannot be understated—hence, the words “closing in” in the title of this chapter.
Moreover, as we have already mentioned above and shall see below in more detail,
the problem of estimating cr(Kn) has turned out to be intimately related to other
classical combinatorial geometry problems. Nowadays, anyone seriously interested
in (≤ k)-edges or in halving lines has no alternative but to take a careful look at the
literature on cr(Kn) that has been produced in the last seven or eight years.

On the more cautious side, we must also note that the steady progress achieved
on the estimation of cr(Kn), both from the lower and the upper bounds’ fronts, seems
to have reached an impasse. To a researcher not too familiar with the field, the ratio
0.998 mentioned in the previous paragraph might signal an imminent closure on the
determination of q∗. This is by no means the prevalent feeling among most (if not
all) researchers actively working on this problem. Hardly any relevant new insights
have been reported for some time. This humbling reality prompted us to include a
word of caution (“or are we?”) in the title of this chapter.

With this in mind, it makes sense to sit down and reflect on what has been
done, to highlight the key developments, and to record the state of the art of the
problem. We also see this as an opportunity to candidly (and, at times, informally)
explain the obstacles that seem to prevent any further substantial progress with the
current techniques, in the hopes that this will foster the development of refined or
substantially novel techniques to attack this fundamental problem.

1.3 Structure of This Survey

The problem of estimating cr(Kn) breaks into the two problems of establishing upper
and lower bounds for this parameter, with the problem of finding exact values of
cr(Kn) lying, evidently, within both realms.

Before moving on to separate discussions on the problems of lower and upper
bounding cr(Kn), we shall review one of the main foundations behind our current
knowledge of cr(Kn). The Rectilinear Crossing Number (RCN) project, led by
Aichholzer, has been a fruitful source of inspiration as well as an invaluable tool
for establishing results and testing conjectures. In Sect. 2 we describe the nature and
reach of the RCN project, which, as we will see, has both a claim and an impact on
both the lower- and upper-bounding fronts.

In Sect. 3 we give an overview of the state of the art of the problem of lower
bounding cr(Kn) circa 2003.

Besides Aichholzer’s RCN project, there seems to be a general consensus on
the other main foundation behind our current knowledge of cr(Kn). A major break-
through was achieved around 2003, when two independent teams of researchers
elucidated the close connection between cr(Kn) and the number of (≤ k)-edges in
an n-point set [4, 25]. A good estimate on the number of such (≤ k)-edges, also
given in these papers, yielded an impressively improved lower bound on cr(Kn).
We devote Sect. 4 to a review of these cornerstone results.
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In Sect. 5 we overview the subsequent efforts to refine the bounds for the number
of (≤ k)-edges given in [4, 25], in the quest for improved lower bounds for cr(Kn).

In Sect. 6 we discuss the different approaches to establishing upper bounds
for cr(Kn).

Section 7 contains a brief summary of the state of the art of the problem at the
time of writing this survey. We present the current best estimates (lower and upper
bounds) for q∗, as well as an annotated table with the values of n for which the exact
value of cr(Kn) is known.

We conclude this survey by reflecting on some possible future developments
around this fundamental problem. We discuss the difficulties that lie behind our
current impasse, and outline a somewhat promising approach that may pave the
way toward future improvements.

2 The RCN Project

Around 2000, a team of researchers led by Aichholzer undertook the task of building
databases with all the distinct (up to order type equivalence; see below) n-point
configurations in general position, for n ≤ 10 [8, 12, 24]. The raw knowledge of all
possible n-point configurations put Aichholzer and his collaborators in a position to
explore in depth several classical combinatorial geometry problems. In particular, it
allowed for the exact calculation of cr(Kn) for small values of n.

The criterion used by Aichholzer et al. to discriminate if two collections of points
are nonisomorphic is based on the concept of order types. Consider an (ordered)
n-point set P = {p1, p2, . . . , pn} in general position. To each three integers i, j,k
with 1 ≤ i < j < k ≤ n, associate a sign (or order type) sign(i jk) according to the
following rule. If, as we traverse the triangle defined by pi, p j, and pk by following
the edges pi p j, p j pk, and pk pi in the given order, the resulting closed curve has
a clockwise orientation, then let sign(i jk) := +. Otherwise, let sign(i jk) := −.
The collection of the order types of all the triples of points of P is the order type
of P. Now let Q be another n-point set in general position. If the elements of Q can
be ordered {q1,q2, . . . ,qn} so that the order types of P and Q are the same, then
P and Q are order type equivalent (under the mapping pi �→ qi for i = 1,2, . . . ,n).
We simply say that P and Q have the same order type.

Order type equivalence is a natural isomorphism criterion for point sets in general
position. For crossing number purposes, it is certainly the relevant paradigm. Indeed,
suppose that P and Q have the same order type. Then there is a bijection from the
points of P to the points of Q so that four points in P span a convex quadrilateral
if and only if the corresponding four points in Q span a convex quadrilateral.
Conversely, if this last condition holds, then P and Q have the same order type.

Aichholzer et al. constructed the complete database of all distinct order types on
n points, for all n ≤ 10. As an application, they verified that cr(K10) = 62 (this had
been proved by Brodsky et al. in [17]).

Without building the complete database for n = 11, the information gathered
by Aichholzer et al. for n ≤ 10 allowed them to calculate cr(K11) and cr(K12).
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To achieve this, taking their database for 10 points as a starting point, they analyzed
(for m = 10, and then for m = 11) which m-point order types may possibly
be extended to (m + 1)-point sets that correspond to crossing-minimal drawings
of Km+1.

The determination of the rectilinear crossing numbers of K11 and K12 marks
the beginning of the RCN project. As one of the major achievements of the RCN,
Aichholzer developed some impressively accurate heuristics to generate geometric
drawings of Kn with few crossings. Aichholzer set up a web page (http://www.ist.
tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/) to keep track of the
best geometric drawings of Kn available, as well as of the number of distinct (up to
order type equivalence) drawings achieving the current minimum.

The results reported by Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/
research/rp/triangulations/crossing/) have had a major lasting impact in the field.
As new results and techniques to find improved lower bounds have become
available (see Sects. 4 and 5), it has been possible to determine the exact value
of cr(Kn) for more values of n (see Sect. 7). The outstanding quality of the upper
bounds obtained by Aichholzer is evidenced by the fact that the drawings reported
in Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/
crossing/) turned out to be crossing-optimal for all n≤ 27 and for n= 30 (for n= 28
and 29 the exact value of cr(Kn) is still unknown). At the time of writing this chapter,
the best upper bounds available (see Sect. 6) are obtained from constructions that
build upon “base” drawings of Kn for relatively small values of n. As further
evidence of the influence of the RCN, we note that the base drawings used have
been obtained by small modifications of drawings given in Aichholzer (http://www.
ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/).

As a final note, we mention that Aichholzer and Krasser subsequently completed
the database of all distinct order types of 11-point sets [13] (http://www.ist.tugraz.
at/staff/aichholzer/research/rp/triangulations/ordertypes/). Using this database as a
starting point, they were able to compute cr(Kn) for all n ≤ 17. Building the
complete database of all the order type nonequivalent 12-point sets seems to be an
unfeasible task; not only it is estimated that the storage of these 12-point sets would
require several petabytes of memory, but there are also some important technical
difficulties.1

3 Lower Bounds I: Before 2004

In a paper published in 1972, Guy [22] gave the exact value of cr(Kn) for n ≤ 9.
Almost 30 years later, Brodsky et al. [17] pushed the existing techniques to their
limit, and introduced some clever new arguments, to calculate the exact value of
cr(K10).

1Aichholzer, personal communication.

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/
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As one of the first results of the RCN project (see Sect. 2), Aichholzer et al. [9]
gave computer-assisted proofs that cr(K11) = 102 and cr(K12) = 153.

Because each of the n subsets of size n− 1 of an n-point set P has at most
cr(Kn−1) crossings, and each crossing of P appears in exactly n− 4 such subsets,
it follows that (n− 4)cr(Kn)≥ ncr(Kn−1). This is equivalent to

1≥ cr(Kn)(n
4

) ≥ cr(Kn−1)(n−1
4

) ,

which shows that Sylvester’s four-point constant q∗ defined in (1) actually exists.
Starting from a lower bound for cr(Km) for any fixed m, one can obtain a lower
bound for cr(Kn) for every n > m (and consequently a lower bound for q∗) by
iterating cr(Kn) ≥ �cr(Kn−1)n/(n− 4)�. This technique was used by Brodsky et
al. [17] with cr(K10) = 62 to show that q∗> 0.3001. Adding to this argument the fact
that cr(Kn) and

(n
4

)
have the same parity when n is odd (this easily follows from (2)

but was proved for any nonnecessarily rectilinear drawing of Kn by Eggleton and
Guy [21]), and using cr(K11) = 102, Aichholzer et al. [9] showed that q∗ > 0.3115.

Building upon ideas from Welzl [34] and Wagner and Welzl [32], Wagner [31]
used a completely novel approach to show that q∗ > 0.3288. Wagner’s work is
particularly significant, since it deviates from the traditional approach of lower
bounding q∗ by using a particular lower bound and a counting argument. Indeed,
the ideas in [31] are prescient of the revolutionary approach that will be reviewed in
the next section.

4 Lower Bounds II: The Breakthrough

Our understanding of geometric drawings of Kn underwent a phase transition by
unveiling a close relationship with k-edges. We recall that if P is an n-point set, and
0 ≤ k ≤ n/2− 1, a k-edge of P is a line through two points of P leaving exactly
k points on one side. A (≤ k)-edge is a j-edge with j ≤ k. The number of k- and
(≤ k)-edges of P are denoted by Ek(P) and E≤k(P), respectively. Finally, let E≤k(n)
denote the minimum E≤k(P), taken over all n-point sets P in general position.

For an n-point set P in the plane in general position, let cr(P) denote the number
of crossings in the rectilinear drawing of Kn induced by P. The following was proved
independently by Lovász et al. [25], and by Ábrego and Fernández-Merchant [4]:

cr(P) =
	n/2
−2

∑
k=0

(n− 2k− 3)E≤k(P)−
3
4

(
n
3

)
+(1+(−1)n+1)

1
8

(
n
2

)
. (2)

The relevance of this connection between cr(P) and E≤k(P) was made evident in
both [4, 25] by proving that

E≤k(n)≥ 3

(
k+ 2

2

)
, for 0≤ k ≤ n/2− 1. (3)
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Substituting (3) into (2) yields

cr(Kn)≥
3
8

(
n
4

)
+Θ(n3), (4)

thus implying the remarkably improved bound q∗ ≥ 3/8 = 0.375.
We recall that the crossing number cr(G) of a graph G is the minimum

number of pairwise crossings of edges in a (nonnecessarily geometric)
drawing of G in the plane. There are drawings of Kn with exactly λn :=
(1/4)	n/2
	(n− 1)/2
	(n− 2)/2
 	(n− 3)/2
 crossings, and it is widely believed
that these drawings are crossing-minimal; that is, it is conjectured that cr(Kn) = λn

for every positive integer n. This conjecture has been verified for n ≤ 12 [22, 26].
Since cr(Kn)≤ λn, it follows at once that limn→∞ cr(Kn)/

(n
4

)
≤ 3/8.

This last upper bound gives an additional significance to (4). With this motiva-
tion, Lovász et al. pushed a little further, invoking the following from [33]:

E≤k(n)≥
(

n
2

)
− n
√

n2− 2n− 4k2+ 4k. (5)

This last bound is better than (3) for k > 0.4956n. Using (3) for k≤ 0.4956n, and (5)
for k > 0.4956n, Lovász et al. derived the slightly improved bound q∗ > (3/8)+
10−5. Although numerically marginal, this improvement is significant because it
shows that cr(Kn) and cr(Kn) differ in the asymptotically relevant term.

5 Lower Bounds III: Further Improvements

Since the key connection (2) was proved in [4, 25], all subsequent efforts to lower
bound cr(Kn) have been focused on finding better estimates for E≤k(n).

The first improvement was reported in [14], giving a lower bound for E≤k(n) that
is strictly better than (3) for k > 0.4651n. The bound given in [14] is in terms of a
complicated expression. For our current surveying purposes, it suffices to mention
that using this bound, Balogh and Salazar proved that cr(Kn)> 0.37553

(n
4

)
+Θ(n3).

Another significant improvement was achieved by Aichholzer et al. [10], who
proved that

E≤k(n)≥ 3

(
k+ 2

2

)
+ 3

(
k+ 2−	n/3


2

)
−max

{
0,(k+ 1−	n/3
)(n− 3	n/3
)

}
.

(6)
A shorter proof of (6), given in the more general context of pseudolinear

drawings, was given in [1].
Substituting (6) into (2), one obtains the improved estimate q∗ ≥ 41/108 >

0.37962. Moreover, it is possible to use the bound by Balogh and Salazar [14] in
the range k > 0.4864n to obtain the marginally better q∗ > 0.37968.
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The current best lower bound known for q∗ is derived using a result recently
reported by Ábrego et al. [3, 7]. They proved that for every k and n such that
�(4n− 11)/9�− 1≤ k ≤ (n− 2)/2,

E≤k(n)≥ uk(n)≥
(

n
2

)
− 1

9

√
1− 2k+ 2

n
(5n2 + 19n− 31). (7)

The function uk is asymptotic to the latter expression and it is better than all
previous bounds [including (5) (6), and the bound in [14]] across its full range
�(4n− 11)/9� ≤ k≤ (n−2)/2. In addition, Ábrego et al. [3] constructed point sets
achieving equality on (6) for all k < �(4n− 11)/9�. Using (6) for k < �(4n− 11)/9�,
and (7) for �(4n− 11)/9� ≤ k ≤ (n− 2)/2. It follows from (2) that cr(Kn) ≥
(277/729)

(n
4

)
+Θ(n3), thus implying that q∗ ≥ 277/729> 0.37997.

6 Upper Bounds

The literature on crossing numbers of particular families of graphs is vastly
dominated by papers that focus on establishing lower bounds. Most of the time, a
natural drawing suggests itself with relatively little effort. When successive attempts
to produce better drawings fail, this is seen as plausible evidence that the proposed
drawing is indeed optimal. The efforts are then directed in the opposite, and usually
remarkably harder, direction: proving nontrivial lower bounds for the crossing
numbers of the graphs upon consideration.

The problem of upper bounding the rectilinear crossing number of Kn is a notable
exception to this trend. The goal is to describe a way to draw Kn with as few
crossings as possible, for arbitrarily large values of n, so as to have at least an
educated guess at the asymptotic value q∗ = limn→∞ cr(Kn)/

(n
4

)
. Over the years,

several strategies to draw Kn with few crossings have been put forward. However,
to this day there has not been a clear candidate for an optimal drawing. The only
common characteristic is that almost all drawings with few crossings have (or
are really close to have) threefold symmetry with respect to a point. That is, the
underlying point set P of the drawing is partitioned into three sets (we call them
wings) of size n/3 each, with the property that rotating each wing 2π/3 and 4π/3
around a suitable point generates the other two wings.

In the early 1970s, Jensen [23] was the first to propose a way to draw Kn for
arbitrarily large values of n. His construction gave specific coordinates for n/3
points in a wing, and then he obtained the remaining two wings by rotating 2π/3
and 4π/3 around the origin. As a result, he obtained q∗ ≤ 7/18 < 0.38889.

At around the same time, Singer [28] started the trend of recursively constructing
drawings of Kn. His idea was to start with a good drawing of Kn/3, apply an affine
transformation to it to make the slope of each of its edges sufficiently close to zero,
and then add the 2π/3 and 4π/3 rotations of the resulting drawing to obtain the
other two wings (see Fig. 1a). This construction shows that
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a b

Fig. 1 (a) Recursive construction by Singer. (b) Recursive construction by Brodsky et al.

cr(Kn)≤ 3cr(Kn/3)+ 3 · n
3

(
n/3

3

)
+ 3

(
n/3
2

)2

.

Indeed, the first term consists of the crossings obtained from four points in the same
wing, the next term counts the crossings from three points in one wing and the
remaining in one of the other two wings, and the last term counts the crossings
from two points in one wing and two points in another wing. Using cr(K3) = 0 as a
starting point, this inequality gives q∗ ≤ 5/13 < 0.38462.

Brodsky et al. [18] modified Singer’s construction by sliding three points in each
wing toward the center of rotation as shown in Fig. 1b. Their construction gives
q∗ ≤ 6,467/16,848< 0.38385.

Aichholzer et al. [9] devised a different replacement construction. They started
with an underlying set P with an even number of points N. Instead of triplicating P,
they replaced every point of P by a cluster of c points on a small arc of circle flat
enough so that all lines among these c points leave N/2 points of P on one side and
N/2− 1 on the other side (see Fig. 2a). Letting n = cN, their construction gives

cr(Kn)≤
(

24cr(P)+ 3N3− 7N2 + 6N
N4

)(
n
4

)
+Θ(n3).

Using a set P with N = 36 points and cr(P) = 21191 they obtained q∗ < 0.380858.
They explored further using different sizes for each of the clusters, which resulted
in an improvement of the latter bound to q∗ < 0.380739. This method of obtaining
lower bounds allowed for improvements by using better initial sets P. Aichholzer
and Krasser [13], as part of their computer-assisted search of the crossing numbers
cr(Kn) for small values of n, obtained a particular drawing of K54 that gives q∗ <
0.380601.

Ábrego and Fernández-Merchant [5] started with an underlying set P with an
even number of points N. They obtained a new set Q by replacing every point of P
by a pair of points close to each other and spanning a line that divides the rest of Q
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a b

Fig. 2 (a) Replacement construction by Aichholzer et al. (b) Recursive construction by Ábrego
and Fernández-Merchant

in half (see Fig. 2b). This property of having a halving-line matching is not satisfied
by an arbitrary point set P, but fortunately it is satisfied by most of the small sets
with optimal crossing number. Moreover, the resulting set Q inherits this property.
Thus, if n = 2kN, then iterating this construction k times gives

cr(Kn)≤
(

24cr(P)+ 3N3− 7N2 +(30/7)N
N4

)(
n
4

)
+Θ(n3). (8)

At the time, using the best-known drawing of K30 (now proved to be optimal)
yielded q∗ < 0.380559. To this date, (8) provides the currently best recursive
construction. The restrictions on the base set P were subsequently weakened [2]
in the sense that (8) also holds for arbitrary sets P with an odd number of points.
Applying this inequality to a drawing of K315 with 152,210,640 crossings gives the
currently best upper bound: q∗ <

83,247,328
218,791,125 < 0.380488.

To support the belief that the crossing-minimal sets have nearly threefold
symmetry, Ábrego et al. [2] constructed a threefold symmetric set of n points
for each n multiple of 3, n < 100 (see Fig. 3). Moreover, threefold symmetry is
inherited from the base set in all recursive constructions mentioned before. In fact,
the drawing of K315 used as a base set to obtain the best current upper bound has
threefold symmetry.

7 Summary

In this section we summarize, for quick reference, the state of the art on cr(Kn) and
q∗ at the time of writing this chapter.

7.1 Sylvester’s Four-Point Constant

0.379972<
277
729

≤ q∗ ≤
83,247,328

218,791,125
< 0.380488. (9)

The lower and upper bounds in (9) are derived in [2,3] (see also [7]), respectively.
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Fig. 3 The underlying vertex set of an optimal 3-symmetric geometric drawing of K24. This point
set contains optimal nested 3-symmetric drawings of K21,K18,K15,K12,K9,K6, and K3

Table 1 Exact rectilinear crossing numbers known

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cr(Kn) 1 3 9 19 36 62 102 153 229 324 447 603 798 1,029

n 19 20 21 22 23 24 25 26 27 30
cr(Kn) 1,318 1,657 2,055 2,528 3,077 3,699 4,430 5,250 6,180 9,726

7.2 Exact Values of cr(Kn)

The exact value of cr(Kn) is known for n≤ 27 and for n = 30 (see Table 1).
For n≤ 27, the lower bound for cr(Kn) is derived in [3] (see also [6]). The bound

cr(K30) ≥ 9726 is proved in [19]. In all cases, the upper bounds were obtained
by Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/
crossing/).

8 Further Thoughts and Future Research

Since the introduction of (2) in [4, 25], all the progress achieved on lower bounding
q∗ has been contingent on the derivation of improved bounds for E≤k(n).

Although it may seem natural to expect the continuation of this trend, there is
some evidence that suggests that this approach alone will not lead to the correct
value of q∗. The reasons behind our caution lie in our own investigations of sets

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/

