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Prefaces

Preface to the Second Edition

In preparing the second edition we have tried to improve and clarify the
presentation, guided in part by the many comments we have received,
and also to make the various arguments more precise, as far as we could
while keeping this book short and introductory.

There are many dozens of small changes and corrections. The more
substantial changes from the first edition include: a completely rewrit-
ten discussion of renormalization, and significant revisions of the sec-
tions on prediction for stationary processes, Markov chain Monte Carlo,
turbulence, and branching random motion. We have added a discussion
of Feynman diagrams to the section on Wiener integrals, a discussion
of fixed points to the section on the central limit theorem, a discussion
of perfect gases and the equivalence of ensembles to the section on en-
tropy and equilibrium. There are new figures, new exercises, and new
references.

We are grateful to the many people who have talked with us or
written to us with comments and suggestions for improvement. We
are also grateful to Valerie Heatlie for her patient help in putting the
revised manuscript together.

Alexandre J. Chorin
Ole H. Hald
Berkeley, California
March, 2009
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vi PREFACES

Preface to the First Edition

This book started out as a set of lecture notes for a first-year gradu-
ate course on the “stochastic methods of applied mathematics” at the
Department of Mathematics of the University of California at Berke-
ley. The course was started when the department asked a group of its
former students who had gone into nonacademic jobs, in national labs
and industry, what they actually did in their jobs, and found that most
of them did stochastic things that had not appeared anywhere in our
graduate course lineup; over the years the course changed as a result
of the comments and requests of the students, who have turned out to
be a mix of mathematics students and students from the sciences and
engineering. The course has not endeavored to present a full, rigorous
theory of probability and its applications, but rather to provide math-
ematics students with some inkling of the many beautiful applications
of probability, as well as introduce the nonmathematical students to
the general ideas behind methods and tools they already use. We hope
that the book too can accomplish these tasks.

We have simplified the mathematical explanations as much as we
could everywhere we could. On the other hand, we have not tried to
present applications in any detail either. The book is meant to be an
introduction, hopefully an easily accessible one, to the topics on which
it touches.

The chapters in the book cover some background material on least
squares and Fourier series, basic probability (with Monte Carlo meth-
ods, Bayes’ theorem, and some ideas about estimation), some ap-
plications of Brownian motion, stationary stochastic processes (the
Khinchin theorem, an application to turbulence, prediction for time se-
ries and data assimilation), equilibrium statistical mechanics (including
Markov chain Monte Carlo), and time-dependent statistical mechanics
(including optimal prediction). The leitmotif of the book is conditional
expectation (introduced in a drastically simplified way) and its uses in
approximation, prediction, and renormalization. All topics touched
upon come with immediate applications; there is an unusual emphasis
on time-dependent statistical mechanics and the Mori-Zwanzig formal-
ism, in accordance with our interests and as well as our convictions.
Each chapter is followed by references; it is, of course, hopeless to try
to provide a full bibliography of all the topics included here; the bib-
liographies are simply lists of books and papers we have actually used
in preparing notes and should be seen as acknowledgments as well as
suggestions for further reading in the spirit of the text.
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We thank Dr. David Bernstein, Dr. Maria Kourkina-Cameron, and
Professor Panagiotis Stinis, who wrote down and corrected the notes
on which this book is based and then edited the result; the book would
not have existed without them. We are profoundly indebted to many
wonderful collaborators on the topics covered in this book, in particu-
lar Professor G.I. Barenblatt, Dr. Anton Kast, Professor Raz Kupfer-
man, and Professor Panagiotis Stinis, as well as Dr. John Barber, Dr.
Alexander Gottlieb, Dr. Peter Graf, Dr. Eugene Ingerman, Dr. Paul
Krause, Professor Doron Levy, Professor Kevin Lin, Dr. Paul Okunev,
Dr. Benjamin Seibold, and Professor Mayya Tokman; we have learned
from all of them (but obviously not enough) and greatly enjoyed their
friendly collaboration. We also thank the students in the Math 220
classes at the University of California, Berkeley, and Math 280 at the
University of California, Davis, for their comments, corrections, and
patience, and in particular Ms. K. Schwarz, who corrected errors and
obscurities. We are deeply grateful to Ms. Valerie Heatlie, who per-
formed the nearly-Sisyphean task of preparing the various typescripts
with unflagging attention and good will. Finally, we are thankful to
the US Department of Energy and the National Science Foundation for
their generous support of our endeavors over the years.

Alexandre J. Chorin
Ole H. Hald
Berkeley, California
September, 2005
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CHAPTER 1

Preliminaries

1.1. Least Squares Approximation

Let V be a vector space with vectors u, v, w, . . . and scalars α, β, . . . .
The space V is an inner product space if one has defined a function
(·, ·) from V × V to the reals (if the vector space is real) or to the
complex (if V is complex) such that for all u, v ∈ V and all scalars α,
the following conditions hold:

(u, v) = (v, u),

(u+ v, w) = (u,w) + (v, w),

(αu, v) = α(u, v), (1.1)

(v, v) ≥ 0,

(v, v) = 0⇔ v = 0,

where the overbar denotes the complex conjugate. Two elements u, v
such that (u, v) = 0 are said to be orthogonal.

The most familiar inner product space is Rn with the Euclidean
inner product. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then

(u, v) =
n∑
i=1

uivi.

Another inner product space is C[0, 1], the space of continuous func-

tions on [0, 1], with (f, g) =
∫ 1

0
f(x)g(x) dx.

When you have an inner product, you can define a norm, the “L2

norm”, by

‖v‖ =
√

(v, v).

©  Springer Science + Business Media, LLC 2009
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2 1. PRELIMINARIES

This has the following properties, which can be deduced from the prop-
erties of the inner product:

‖αv‖ = |α|‖v‖,
‖v‖ ≥ 0,

‖v‖ = 0⇔ v = 0,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

equality

|(u, v)| ≤ ‖u‖‖v‖.
In addition to these three properties, common to all norms, the L2 norm
has the “parallelogram property” (so called because it is a property of
parallelograms in plane geometry)

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2),

which can be verified by expanding the inner products.
Let {un} be a sequence in V .

Definition. A sequence {un} is said to converge to û ∈ V if ‖un−
û‖ → 0 as n → ∞ (i.e., for any ε > 0, there exists some N ∈ N such
that n > N implies ‖un − û‖ < ε).

Definition. A sequence {un} is a Cauchy sequence if given ε > 0,
there exists N ∈ N such that for all m,n > N ‖un − um‖ < ε.

A sequence that converges is a Cauchy sequence, although the con-
verse is not necessarily true. If the converse is true for all Cauchy
sequences in a given inner product space, then the space is called com-
plete. All of the spaces we work with from now on are complete. Ex-
amples are Rn, Cn, L2.

A few more definitions from real analysis:

Definition. An open ball centered at x with radius r > 0 is the
set Br(x) = {u : ‖u− x‖ < r}.

Definition. A set S is open if for all x ∈ S, there exists an open
ball Br(x) such that Br(x) ⊂ S.

Definition. A set S is closed if every convergent sequence {un}
such that un ∈ S for all n converges to an element of S.

An example of a closed set is the closed interval [0, 1] ⊂ R. An
example of an open set is the open interval (0, 1) ⊂ R. The complement
of an open set is closed, and the complement of a closed set is open.
The empty set is both open and closed and so is Rn.

The last, called the triangle inequality, follows from the Schwarz in-
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Given a set S and some point b outside of S, we want to determine
under what conditions there is a point b̂ ∈ S closest to b. Let d(b, S) =
infx∈S ‖x−b‖ be the distance from b to S. The quantity on the right of
this definition is the greatest lower bound of the set of numbers ‖x−b‖,
and its existence is guaranteed by the properties of the real number
system. What is not guaranteed in advance, and must be proved here,
is the existence of an element b̂ that satisfies ‖b̂− b‖ = d(b, S). To see
the issue, take S = (0, 1) ⊂ R and b = 2; then d(b, S) = 1, yet there is

no point b̂ ∈ (0, 1) such that ‖b̂− 2‖ = 1.

Theorem 1.1. If S is a closed linear subspace of V and b is an
element of V, then there exists b̂ ∈ S such that ‖b̂− b‖ = d(b, S).

Proof. There exists a sequence of elements {un} ⊂ S such that
‖b− un‖ → d(b, S) by definition of the greatest lower bound. We now
show that this sequence is a Cauchy sequence.

From the parallelogram law we have∥∥∥∥1

2
(b− um)

∥∥∥∥2

+

∥∥∥∥1

2
(b− un)

∥∥∥∥2

=
1

2

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

+
1

8
‖un − um‖2.

(1.2)

S is a vector space; therefore,

1

2
(un + um) ∈ S ⇒

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

≥ d2(b, S).

Then since ‖b− un‖ → d(b, S), we have∥∥∥∥1

2
(b− un)

∥∥∥∥2

→ 1

4
d2(b, S).

From (1.2),

‖un − um‖ → 0,

and thus {un} is a Cauchy sequence by definition; our space is complete

and therefore this sequence converges to an element b̂ in this space. b̂
is in V because V is closed. Consequently

‖b̂− b‖ = lim ‖un − b‖ = d(b, S).

�

We now wish to describe further the relation between b and b̂.
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Theorem 1.2. Let S be a closed linear subspace of V , let x be any
element of S, b any element of V , and b̂ an element of S closest to b.
Then

(x− b̂, b− b̂) = 0.

Proof. If x = b̂ we are done. Else set

θ(x− b̂)− (b− b̂) = θx+ (1− θ)b̂− b = y − b.

Since y is in S and ‖y − b‖ ≥ ‖b̂− b‖, we have

‖θ(x− b̂)− (b− b̂)‖2 = θ2‖x− b̂‖2 − 2θ(x− b̂, b− b̂) + ‖b− b̂‖2

≥ ‖b− b̂‖2.

Thus θ2‖x − b̂‖2 − 2θ(x − b̂, b − b̂) ≥ 0 for all θ. The left hand side

attains its minimum value when θ = (x−b̂, b−b̂)/‖x−b̂‖2 in which case

−(x− b̂, b− b̂)2/‖x− b̂‖2 ≥ 0. This implies that (x− b̂, b− b̂) = 0. �

Theorem 1.3. (b− b̂) is orthogonal to x for all x ∈ S.

Proof. By Theorem 1.2, (x − b̂, b − b̂) = 0 for all x ∈ S. When

x = 0 we have (b̂, b− b̂) = 0. Thus (x, b− b̂) = 0 for all x in S. �

Corollary 1.4. If S is a closed linear subspace, then b̂ is unique.

Proof. Let b = b̂+n = b̂1 +n1, where n is orthogonal to b̂ and n1

is orthogonal to b̂1. Therefore,

b̂− b̂1 ∈ S ⇒ (b̂− b̂1, n1 − n) = 0

⇒ (b̂− b̂1, b̂− b̂1) = 0

⇒ b̂ = b̂1.

�

One can think of b̂ as the orthogonal projection of b on S and write
b̂ = Pb, where the projection P is defined by the foregoing discussion.

We will now give a few applications of the above results.

Example. Consider a matrix equation Ax = b, where A is an m×n
matrix and m > n. This kind of problem arises when one tries to fit
a large set of data by a simple model. Assume that the columns of A
are linearly independent. Under what conditions does the system have
a solution? To clarify ideas, consider the 3× 2 case:a11 a12

a21 a22

a31 a32

[x1

x2

]
=

b1

b2

b3

 .
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Let A1 denote the first column vector of A, A2 the second column
vector, etc. In this case,

A1 =

a11

a21

a31

 , A2 =

a12

a22

a32

 .
If Ax = b has a solution, then one can express b as a linear combina-

tion of A1, A2, . . . Am; for example, in the 3× 2 case, x1A1 + x2A2 = b.
If b does not lie in the column space of A (the set of all linear com-
binations of the columns of A), then the problem has no solution. It
is often reasonable to replace the unsolvable problem by the solvable
problem Ax̂ = b̂, where b̂ is as close as possible to b and yet does lie
in the column space of A. We know from the foregoing that the “best
b̂” is such that b − b̂ is orthogonal to the column space of A. This is
enforced by the m equations

(A1, b̂− b) = 0, (A2, b̂− b) = 0, . . . , (Am, b̂− b) = 0.

Since b̂ = Ax̂, we obtain the equation

AT (Ax̂− b) = 0 ⇒ x̂ = (ATA)−1AT b.

One application of the above is to “fit” a line to a set of points on
the Euclidean plane. Given a set of points, (x1, y1), (x2, y2), . . . , (xn, yn)
that come from some experiment and that we believe would lie on a
straight line if it were not for experimental error, what is the line that
“best approximates” these points? We hope that if it were not for the
errors, we would have yi = axi + b for all i and for some fixed a and b;
so we seek to solve a system of equationsx1 1

...
...

xn 1

[a
b

]
=

y1
...
yn

 .
Example. Consider the system of equations given by Ax = b,

where A is an n × m matrix and n < m (there are more unknowns
than equations). The system has infinitely many solutions. Suppose
you want the solution of smallest norm; this problem arises when one
tries to find the most likely solution to an underdetermined problem.

Before solving this problem, we need some preliminaries.

Definition. S ⊂ V is an affine subspace if S = {y : y = x+ c, c 6=
0, x ∈ X}, where X is a closed linear subspace of V . Note that S is
not a linear subspace.
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Lemma 1.5. If S is an affine subspace and b′ /∈ S, then there exists
x̂ ∈ X such that d(b′, S) = ‖x̂ + c − b′‖. Furthermore, x̂ − (b′ − c) is
orthogonal to x for all x ∈ X. (Note that here we use b′ instead of b,
to avoid confusion with the system’s right-hand side.)

Proof. We have S = {y : y = x + c, c 6= 0, x ∈ X}, where X is a
closed linear subspace of V . Now,

d(b′, S) = inf
y∈S
‖y − b′‖ = inf

x∈X
‖x+ c− b′‖

= inf
x∈X
‖x− (b′ − c)‖ = d(b′ − c,X)

= ‖x̂− (b′ − c)‖ = ‖x̂+ c− b′‖.
The point x̂ ∈ X exists since X is a closed linear subspace. It follows
from Theorem 1.3 that x̂− (b′ − c) is orthogonal to X. Note that the
distance between S and b′ is the same as that between X and b′−c. �
From the proof above, we see that x̂ + c is the element of S closest to
b′. For the case b′ = 0, we find that x̂+ c is orthogonal to X.

Now we return to the problem of finding the “smallest” solution of
an underdetermined problem. Assume A has “maximal rank”; that is,
m of the column vectors ofA are linearly independent. We can write the
solutions of the system as x = x0 + z, where x0 is a particular solution
and z is a solution of the homogeneous system Az = 0. So the solutions
of the system Ax = b form an affine subspace. As a result, if we want to
find the solution with the smallest norm (i.e., closest to the origin) we
need to find the element of this affine subspace closest to b′ = 0. From
the above, we see that such an element must satisfy two properties.
First, it has to be an element of the affine subspace (i.e., a solution
to the system Ax = b) and second, it has to be orthogonal to the
linear subspace X, which is the null space of A (the set of solutions of
Az = 0). Now consider x′ = AT (AAT )−1b; this vector lies in the affine
subspace of the solutions of Ax = b, as one can check by multiplying
it by A. Furthermore, it is orthogonal to every vector in the space of
solutions of Az = 0 because (AT (AAT )−1b, z) = ((AAT )−1b, Az) = 0.
This is enough to make x′ the unique solution of our problem.

1.2. Orthonormal Bases

The problem presented in the previous section, of finding an ele-
ment in a closed linear space that is closest to a vector outside the
space, lies in the framework of approximation theory, where we are
given a function (or a vector) and try to find an approximation to it
as a linear combination of given functions (or vectors). This is done
by requiring that the norm of the error (difference between the given
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function and the approximation) be minimized. In what follows, we
shall find coefficients for this optimal linear combination.

Definition. Let S be a linear vector space. A collection of m
vectors {ui}mi=1 belonging to S are linearly independent if and only if
λ1u1 + · · ·+ λmum = 0 implies λ1 = λ2 = · · · = λm = 0.

Definition. Let S be a linear vector space. A collection {ui}mi=1

of vectors belonging to S is called a basis of S if {ui} are linearly
independent and any vector in S can be written as a linear combination
of them.

Note that the number of elements of a basis can be finite or infinite
depending on the space.

Theorem 1.6. Let S be an m-dimensional linear inner-product
space with m finite. Then any collection of m linearly independent
vectors of S is a basis.

Definition. A set of vectors {ei}mi=1 is orthonormal if the vectors
are mutually orthogonal and each has unit length (i.e., (ei, ej) = δij,
where δij = 1 if i = j and δij = 0 otherwise).

The set of all the linear combinations of the vectors {ui} is called
the span of {ui} and is written as Span{u1, u2, . . . , um}.

Suppose we are given a set of vectors {ei}mi=1 that are an orthonor-
mal basis for a subspace S of a real vector space. If b is an element out-
side the space, we want to find the element b̂ ∈ S, where b̂ =

∑m
i=1 ciei

such that ‖b−
∑m

i=1 ciei‖ is minimized. Specifically, we have∥∥∥∥b− m∑
i=1

ciei

∥∥∥∥2

=

(
b−

m∑
i=1

ciei , b−
m∑
j=1

cjej

)

= (b, b)− 2
m∑
i=1

ci(b, ei) +

(
m∑
i=1

ciei ,
m∑
j=1

cjej

)

= (b, b)− 2
m∑
i=1

ci(b, ei) +
m∑

i,j=1

cicj(ei, ej)

= (b, b)− 2
m∑
i=1

ci(b, ei) +
m∑
i=1

c2
i

= ‖b‖2 −
m∑
i=1

(b, ei)
2 +

m∑
i=1

(ci − (b, ei))
2,

where we have used the orthonormality of the ei to simplify the ex-
pression. As is readily seen, the norm of the error is a minimum when


