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Preface

Mathematical finance was probably founded by Louis Bachelier in 1900 [19].
In his thesis and subsequent contributions, he constructed a stochastic model of
stock price processes, essentially inventing the random walk or Brownian motion.
But this was five years before Einstein investigated Brownian motion and long
before Kolmogorov refounded probability on sound mathematical grounds; some
basic probabilistic tools were missing. Bachelier’s contribution was considered
nonrigorous and, consequently, not recognized for its true pioneering value.

In contrast, few works in mathematical finance have enjoyed the fame and had the
impact of Fischer Black and Myron Scholes’ seminal paper [46]. In a bold move, it
took the subjective concept of risk aversion out of the rationale for pricing financial
derivatives, grounding such pricing on purely objective considerations.

“Objective,” though, does not mean that no arbitrariness remains. In line with
Bachelier, the Black–Scholes theory is based on an arbitrary choice of mathematical,
stochastic model for underlying stock prices, which we will call “Samuelson’s
model,” although some authors trace it back to earlier works.

Samuelson’s model is called a “geometric diffusion,” or “lognormal distribution.”
In that model, the price process S(t) is assumed to obey the following Itô stochastic
equation:

dS
S

= μdt +σdB , (0.1)

where μ and σ are known, deterministic parameters, or time functions, called “drift”
and “volatility,” respectively, and B(·) is a standard Brownian motion (or Wiener
process).

Following these prestigious forerunners, most of the literature in mathematical
finance relies on Samuelson’s model, although notable exceptions have existed ever
since, for example, [56, 57, 77, 87, 109, 117, 122, 124, 133].

The aim of this volume is to report several accomplishments using another
class of models that we call, after [132], interval models. In these models, if
n stocks are considered, it is assumed that a compact convex set of R

n is

v
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known that always contains the vector of relative stock price velocities (in a
continuous-time setting) or one-step relative price changes (in a discrete-time
setting). In the scalar case, corresponding to the classic Black–Scholes problem,
and in discrete time, this means that we know two constants d < 1 and u > 1 – the
notations used here are in reference to [57] – such that for a given δ t > 0 and for all
possible price trajectories

S(t + δ t) ∈ [dS(t),uS(t)] ,

a line segment. In contrast, Cox et al. [57] assume that

S(t + δ t) ∈ {dS(t),uS(t)} ,

the end points of a line segment, of course, a huge difference in terms of realism, and
also of mathematics, even if in some cases we recover some of their results. More
generally, in higher-dimensional problems, whether discrete or continuous time, this
results in a tube of possible trajectories, or a so-called trajectory tube model.

These interval models were introduced independently, and almost simultane-
ously, by the authors of this volume. We only cite here some earlier papers as a
matter of historical record. A common feature of these works is that, far remote from
the mainstream finance literature, they suffered long delays between the date when
they were written and their eventual publication, usually not in finance journals.
Beyond Roorda et al. [132] already cited, whose preprint dates back to 2000, we
mention here a 1998 paper by Vassili Kolokoltsov [95] and a paper from 2003 that
only appeared in 2007 [86], a thesis supervised by Jean-Pierre Aubin defended in
2000 [128] – but a published version [17] had to wait till 2005 – and a conference
paper by Pierre Bernhard, also in 2000 [37], an earlier form of which [35] did not
appear in print until 2003.

If probabilities are the lingua franca of classic mathematical finance, it could be
said that, although probabilities are certainly not ruled out, the most pervasive tool
of the theories developed in this volume is some form of dynamic game theory. Most
developments to be reported here belong to the realm of robust control, i.e., minimax
approaches to decision making in the presence of uncertainty. These take several
forms: the discrete Isaacs equation, Isaacs and Breakwell’s geometric analysis of
extremal fields, Aubin’s viability approach, Crandall and Lions’ viscosity solutions
as extended to differential games by Evans and Souganidis, Bardi, and others,
Frankowska’s nonsmooth analysis approach to viscosity solutions, and geometric
properties of risk-neutral probability laws and positively complete sets.

As a consequence, we will not attempt to give here a general introduction to
dynamic game theory, as different parts of the book use different approaches. We
will, however, strive to make each part self-contained. Nor will we try to unify the
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notation, although some of these works deal with closely related topics. As a matter
of fact, the developments we report here have evolved, relatively independently,
over more than a decade. As a result, they have developed independent, consistent
notation systems. Merging them at this late stage would have been close to impos-
sible. We will provide a concise “dictionary” between the notations of Parts II–V.

Part I is simply an introduction that aims to review, for the sake of reference,
two of the most classic results of dynamic portfolio management: Merton’s optimal
portfolio and Black and Scholes’ pricing theory, each with a flavor more typical
of this volume than classic textbooks. The Cox–Ross–Rubinstein model will be
presented in detail in Part II, together with the interval model.

Parts II and III mostly deal with the classic problem of hedging one option with
an underlying asset. Part II tackles the problem of incompleteness of the interval
model, introducing the fair price interval, and an original problem of maximizing
the best-case profit with a bound on worst-case loss. Part III only deals with the
seller’s price – the upper bound of the fair price interval – but adding transaction
costs, continuous and discrete trading schemes, and the convergence of the latter
to the former, for both plain vanilla and digital options. Both parts deal in some
respect with the robustness of the interval model to errors in the estimation of
price volatility. Both use a detailed mathematical analysis of the problems at hand:
portfolio optimization under a robust risk constraint in Part II, classic option pricing
in Part III, to provide a “fast algorithm” that solves with two recursions on functions
of one variable a problem whose natural dynamic programming algorithm would
deal with one function of two variables.

It is known that in the approach of Cox, Ross, and Rubinstein, the risk-neutral
probability associated with the option pricing problem spontaneously appears in
a rather implicit fashion. Part V elucidates the deep links between the minimax
approach and risk-neutral probability and exploits this relationship to solve the
problem of pricing so-called rainbow options and credit derivatives such as credit
default swaps.

Part V uses the tools of viability theory and, more specifically, the guaranteed
capture basin algorithm to solve the pricing problem for complex options. A
remarkable fact is that, as opposed to the fast algorithm of Part III, which is
specifically tailored to the problem of pricing a classic option, the algorithm used
here is general enough that, with some variations, it solves this large set of problems.

There obviously is no claim of unconditional superiority of one model over
others or of our theories over the classic ones. Yet, we claim that these theories
do bring new insight into the problems investigated. On the one hand, they are less
isolated now than they used to be in the early 2000s, as a large body of literature
has appeared since then applying robust control methods to various fields including
finance, a strong hint that each may have a niche where it is better suited than more
entrenched approaches. On the other hand, and more importantly, we share the belief
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that uniform thinking is not amicable to good science. In some sense, two different
– sensible – approaches to the same problem are more than twice as good as one, as
they may enlighten each other, be it by their similarities or by their contradictions.

France Jean-Pierre Aubin
France Pierre Bernhard
The Netherlands Jacob C. Engwerda
United Kingdom Vassili Kolokoltsov
The Netherlands Berend Roorda
The Netherlands J.M. Schumacher
France Patrick Saint-Pierre



Notation Dictionary

II III IV V Part number

T T T T Exercise time
X K K K Exercise price
F M f U Terminal payment
0 C±,c± β δ Transaction cost rates

S0 = RS0(T ) S0 Riskless bond price
j∈{1, . . . ,J} Asset (upper) index

Continuous time

Constants

μ0 r0 Riskless return rate
τ−+μ0 r� Min risky asset return
τ++μ0 r� Max risky asset return

Time functions

t ∈ [0,T ] t ∈ [0,T ] t ∈ [0,T ] t ∈ [0,T ] Current time
R =S0/S0(T ) End-time discount rate

S S = Ru S S Risky asset price
τ +μ0 r Risky asset return rate
XS = Rv E Portfolio exposure
v = ϕ�(t,u) E=E♥(t,W ) Optimal hedging strategy
Y p0 Number of bonds in portfolio
X p Number of shares of risky stock
Rw W Portfolio worth
RW W♥ Optimal portfolio worth

(Control) Impulses (Triggered)

tk tn Impulse times
ξk ψ(x)− x Impulse amplitudes

Discrete time

Constants

h h τ ρ Time step
n K n N Total number of steps

eμ0h ρ = 1+ rτ 1+ρr0 One-step riskless ratio
d 1+ τ−h d j 1+ρrd Min one-step S ratio
u 1+ τ+h u j 1+ρru Max one-step S ratio

Time functions

t j = jh tk = kh m tn = nρ Current time
Sj Sk = Rkuk S j

m Sn Risky asset price
v 1+ τk ξ j 1+ rn

ρ One-step S ratio

γ j Xk γ j
m Risky shares in portfolio

γ j = gj(Sj) vk = ϕk(uk) Hedging strategy
Rkwk Xm W n Portfolio worth
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Part I
Revisiting Two Classic Results in Dynamic

Portfolio Management

Author: Pierre Bernhard
INRIA Sophia Antipolis-Méditerranée,
France

The material presented in this part was developed for a course in portfolio
management while the author was a professor at École Polytech’Nice, a department
of the University of Nice Sophia Antipolis.

In this two-chapter part, we revisit the two most classic results in the theory of
dynamic portfolio management: the Merton optimal portfolio in Chap. 1 and the
famous Black and Scholes option pricing theory in Chap. 2.

In both cases we recall the classic result, to be used also as a reference for the
remainder of the volume, but with nonclassic developments in the spirit of this
volume attached to them. The “Merton” optimal portfolio problem is investigated
with two different models: the classic one and a uniform-interval model. The Black
and Scholes option pricing theory is dealt with in a robust control – or game theoretic
– probability-free approach. A third very classic result is the discrete-time theory of
Cox, Ross, and Rubinstein. It will be presented in the next part and fully revisited
in Part IV.

Notation

• at : For any vector or matrix a, a transposed.

Universal constants

• R: The real line.
• N: The set of natural (positive) integers.
• K= {0,1, . . . ,K − 1}.
• 1l: A vector of any dimension with all entries equal to 1.



2 I. Two Classic Results

Main variables and parameters

• T : Horizon of finite horizon problems [Time]
• h: Time step of discrete trading theory [Time]
• Si(t), i = 1, . . . ,n: Market price of risky asset i (without index if only one risky

asset is present) [Currency]
• S0(t): Price of riskless asset [Currency]
• R(t) = S0(t)/S0(T ): End-time value coefficient [Dimensionless]
• ui(t) = Si(t)/R(t): Normalized market price of asset i [Currency]
• μi: Drift coefficient in model for Si [Time−1 (continuous), dimensionless (dis-

crete)]
• μ0: Expected return of riskless asset [Time−1 or dimensionless]
• λi = μi − μ0 Excess expected return of asset i over riskless asset [Time−1

(continuous) or dimensionless (discrete)]
• σi: A line of coefficients defining the variability of Si around its expected value

[Time−1/2 (continuous), dimensionless (discrete)]
• σ : Matrix whose lines are the σi [Time−1/2 (continuous), dimensionless (dis-

crete)]
• Σ =σσ t : Covariancelike matrix [Time−1 (continuous), dimensionless (discrete)]
• Xi(t): Number of shares of asset i in portfolio [Dimensionless]
• W (t): Portfolio worth [Currency]
• w(t) =W (t)/R(t): Portfolio normalized worth. [Currency]
• ϕi = XiSi/W = Xiui/w: Fraction of portfolio invested in asset i [Dimensionless]
• C(t): Rate of portfolio consumption [Currency×Time−1] (continuous) or step-

wise consumption [Currency] (discrete)
• c(t) =C(t)/R(t)
• χ(t) = C(t)/W (t) = c(t)/w(t): Relative rate of withdrawal of funds from

portfolio for consumption [Time−1 (continuous), dimensionless (discrete)]
• Π : Coefficient of bequest utility function [Currency]
• π : Coefficient of running utility function [Currency×time−1 (continuous), cur-

rency (discrete)]
• P: Coefficient of Bellman function [Currency]
• γ ∈ (0,1): Exponent of c and w in utility functions [Dimensionless]
• α (α1−γ in discrete theory): Maximum (normalized in continuous theory) return

rate of a portfolio [Dimensionless]
• δ : Discount rate for infinite horizon problem [Time−1 or dimensionless]
• β = δ −μ0 (continuous) or δ h/(1−γ) (discrete): Normalized discount rate [Time−1

or dimensionless]



Chapter 1
Merton’s Optimal Dynamic Portfolio Revisited

1.1 Merton’s Optimal Portfolio Problem

The problem considered here is that of managing a dynamic portfolio over a period
of time [0,T ] – or over [0,+∞); we shall consider this infinite horizon case in a
separate subsection – in a market where several assets are available, with differing
and varying returns. The portfolio manager is allowed to sell parts of his portfolio
to obtain an immediate utility. He is also interested in having sufficient wealth at
the end of the period considered. In this section, we deal with the classic continuous
trading formulation of [118].

1.1.1 Problem and Notation

1.1.1.1 The Market

We consider a market with n risky assets and one riskless asset. The riskless asset
will always be referred to by the index 0, the risky assets by indices 1 to n. Let Si(t)
be the market price of asset i, i = 0,1, . . . ,n. We need a model of the market. We
extend the model (0.1) to n assets in the following way: we assume that each risky
asset obeys the Itô equation

dSi

Si
= μidt +σidb. (1.1)

Here, μi are known constants and σi are lines of coefficients, all of the same length
�≤ n. (But to make things simple, we may take �= n.) Accordingly, b is a standard
Brownian motion of dimension � (or n), i.e., a vector whose entries are independent
standard Brownian motions. We let σ be a matrix whose line number i is σi, and

Σ := σσ t . (1.2)

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 1,
© Springer Science+Business Media New York 2013
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4 1 Merton’s Optimal Dynamic Portfolio Revisited

The riskless asset satisfies
dS0

S0
= μ0dt.

In the finite horizon case, we shall rather use the dimensionless end-time value
coefficient

R(t) = S0(t)/S0(T ) = eμ0(t−T ).

We shall assume that a reasonable portfolio does not contain assets whose expected
return μi is less than the riskless return μ0 since they would bring no value or risk
alleviation. We shall call

μi − μ0 = λi

the excess of expected return over the riskless rate. And we shall use the ratios

ui(t) =
Si(t)
R(t)

,

which, in view of (1.1), satisfy the Itô equation

dui

ui
= λidt +σidb. (1.3)

1.1.1.2 The Portfolio

A portfolio shall be defined by n + 1 functions Xi(t), i = 0,1, . . . ,n, giving the
number of shares of each asset in the portfolio at time t. As a model simplification,
we consider that the Xi are not restricted to being integers. They shall take their
values in R. Thus we also allow the portfolio to be “short” in some assets. Its worth
is therefore

W (t) =
n

∑
i=0

Xi(t)Si(t).

We shall instead use

w(t) =
W (t)
R(t)

= X0(t)S0(T )+
n

∑
i=1

Xi(t)ui(t).

Transactions will be variations dXi of the number of shares. Together with the
variations in market prices, they produce variations in the worth of the portfolio:

dW =
n

∑
i=0

(SidXi +XidSi) or dw = S0(T )dX0 +
n

∑
i=1

(uidXi +Xidui).

We allow such transactions to yield some excess cash, which the manager may
want to use for immediate consumption. Let, therefore,Cdt = cRdt be the cash taken
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from the portfolio by the transactions dXi. (If we wanted to allow discontinuous Xi,
we could let dXi be finite and C(·) contain a Dirac impulsion. But we will not need
to do this because the solution we shall find has continuous Xi.) This is obtained
through transactions satisfying dW +Cdt = 0, or, dividing through by R,

S0(T )dX0 +
n

∑
i=1

uidXi+ cdt = 0.

Hence, we find that

dw =
n

∑
i=1

Xidui − cdt,

or, using (1.3),

dw =
n

∑
i=1

Xiui(λidt +σidb)− cdt.

It is customary to simplify this expression using the fractions ϕi and χ of the
portfolio defined as

ϕi =
XiSi

W
=

Xiui

w
, χ =

C
W

=
c
w
.

Since we allow short positions for the portfolio, ϕ is unconstrained in R
n.

Consumption, on the other hand, is assumed to be nonnegative; hence so must χ be.
We also use the vector notation λ ∈ R

n
+ and ϕ ∈ Δn (the simplex of Rn) for the

n-vectors of the λi and ϕi, i ≥ 1. We finally obtain

dw =
[
(ϕtλ − χ)dt+ϕtσdb

]
w. (1.4)

1.1.1.3 Utility

The utility derived by the manager, which he wants to maximize, is supposed to be
the sum of a running utility (which we may, of course, write directly in terms of c
instead of C; it is just a matter of lowering the discount rate by μ0)

∫ T

0
U(t,c(t))dt

and a bequest utility B(w(T )). Hence, he seeks to maximize

J = E

[
B(w(T ))+

∫ T

0
U(t,c(t))dt

]
. (1.5)

The utility functions U and B should be chosen to be increasing concave to model
risk aversion and satiation effects. It turns out that a decision that will lead to a
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simple solution of the optimization problem can be made by choosing them to be
the same fractional powers of c and w, respectively. Let p(·) be a given nonnegative
function and Π a given nonnegative constant. Let us thus choose γ ∈ (0,1) and

U(t,c) = p(t)1−γcγ = p(t)1−γ χγwγ , B(w) = Π 1−γwγ . (1.6)

We may, for instance, wish to have the future running utility of consumption in the
form π1−γCγ exp[δ (T − t)], i.e., discounted by a factor δ = μ0 +β . In that case, we
just take

p(t) = πeβ̃(T−t), β̃ = μ0 +
β

1− γ
. (1.7)

We are finally led to investigate a simple stochastic control problem of optimizing
(1.5) (1.6) under the scalar dynamics (1.4).

1.1.2 Solution

We investigate first the finite horizon problem.

1.1.2.1 Finite Horizon

We apply a standard dynamic programming technique. The Bellman equation for
the Value function V (t,w) is, making use of the notation (1.2),

∀(t,w) ∈ [0,T ]×R,

∂V
∂ t

+ max
ϕ∈Rn,χ∈R+

[
∂V
∂w

(ϕtλ − χ)w+
w2

2
ϕtΣϕ

∂ 2V
∂w2 +U(t,χw)

]
= 0,

∀w ∈ R, V (T,w) = B(w). (1.8)

We replace U and B with (1.6) and look for a solution of the form

V (t,w) = P(t)1−γwγ .

The simplifying fact is that now all individual terms in the equation have a
coefficientwγ , so that we may divide through by it, obtaining an ordinary differential
equation for P(t):

∀(t,w) ∈ [0,T ]×R, (1− γ)P(t)−γ Ṗ(t)+ max
ϕ∈Rn,χ∈R+

[
γP(t)1−γ(ϕtλ − χ)

+
1
2

ϕtΣϕγ(γ − 1)P(t)1−γ + p(t)1−γχγ
]
= 0,

P(T ) = Π .
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Moreover, the maximizations in ϕ on the one hand and in χ on the other
hand separate and yields further simplifications, giving with extremely simple
calculations the optimal ϕ� and χ� as

ϕ�(t) =
1

1− γ
Σ−1λ , χ�(t) =

p(t)
P(t)

. (1.9)

And, finally, the equation for P(t) is

Ṗ+
γ

2(1− γ)2 λ tΣ−1λ P+ p = 0. (1.10)

Let, therefore,

α :=
γ

2(1− γ)2 λ tΣ−1λ , (1.11)

to get

P(t) = eα(T−t)Π +

∫ T

t
eα(s−t)p(s)ds. (1.12)

Notice also that if p(·) is differentiable, then κ = 1/χ� can be directly obtained
as the solution of a linear differential equation:

κ̇ +

(
ṗ
p
+α
)

κ + 1 = 0, κ(T ) =
Π
π
. (1.13)

Many comments are in order. More complete discussions of this classic result
can be found in textbooks. We will make a minimum number of remarks.

Remark 1.1. 1. Formula (1.9) for ϕ� yields a constant composition of the portfolio.
Withdrawals for consumption should be made proportionally.

2. This formula is reminiscent of the corresponding formula in Markowitz’s theory
of static portfolio optimization (where S is a covariance matrix). See [110].

3. A “small” covariance matrix S tends to produce a “large” ϕ∗, leaving a smaller
share ϕ�

0 = (1−∑n
i=1 ϕ�

i ) for the riskless asset. Specifically, if
〈
1l,Σ−1λ

〉≥ 1−γ ,
then the prescription is to borrow cash to invest in risky assets.

4. χ�, though not constant, is also exceedingly simple, given by (1.9), (1.11), (1.12)
or by χ� = 1/κ and (1.13) if p is differentiable.

5. It readily follows from (1.10) that P(·) is always decreasing, so that P(t)≥ Π for
all t. Hence if Π > 0, then χ�(t)≤ p(t)/Π .

6. If p(t) is chosen according to (1.7), then ṗ/p = −β̃ is constant, and χ� is
obtained via (1.13) as a closed form. Let β ′ = β̃ − α . We shall see in the
next subsection that it is desirable that it be positive. Then one obtains χ� =
[(Π/π − 1/β ′)exp[−β ′(T − t)] + 1/β ′]−1. Noticeably, if β ′ > π/Π , then this
ensures that π/Π < χ� < β ′.
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7. A “large” Π and a small p make for a smaller χ�. If one cares about the bequest
to the next period, he should be parsimonious. In contrast, if Π = 0, then in the
end, as t → T , χ�(t)→ ∞. The entire portfolio is sold for consumption.

1.1.2.2 Infinite Horizon

The concern for long-run wealth, represented by the bequest function, may be
addressed by a utility performance index of the form

J = Eπ1−γ
∫ ∞

0
e−(β+μ0)tCγ dt.

(The coefficient π1−γ is there for the sake of preserving the dimension of J as a
currency amount.)

To deal with that case, in the portfolio model of Sect. 1.1.1.2, we set T = 0. And
we write the new criterion using β̃ as in (1.7):

J = Eπ1−γ
∫ ∞

0
e−(1−γ)β̃t cγ dt.

Equation (1.8) is now replaced by its stationary form:

(1− γ)β̃V = max
ϕ∈Rn,χ∈R+

[
∂V
∂w

(ϕtλ − χ)w+
w2

2
ϕtΣϕ

∂ 2V
∂w2 +π1−γχγwγ

]
.

Calculations completely similar to those of the previous paragraph show that the
optimum exists if and only if β̃ > α . (Otherwise, the portfolio may yield an infinite
utility.) We find P = π/(β̃ −α), so that we finally get

ϕ� =
1

1− γ
Σ−1λ , χ� = β̃ −α. (1.14)

Similar remarks can be made as above. We leave them to the reader.

1.1.3 Logarithmic Utility Functions

Other forms of the utility functions lead to closed-form solutions. Such an instance
is U(C) = −exp(−γC), γ > 0. Yet it is considered less realistic in terms of
representing the risk aversion of the portfolio manager. We refer to [118] for further
discussion. We propose here a different extension.

Adding to the criterion to be maximized a number independent of the controls ϕ
and χ clearly does not change the choice of optimal controls. The same holds if we
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multiply the criterion by a positive constant. Thus the criterion

J̃γ = E

[
Π 1−γ w

γ (T )− 1
γ

+

∫ T

0
p1−γ(t)

wγ (t)− 1
γ

dt

]

leads to the same optimal controls as the original one. However, this new criterion
presents the added feature that, as γ → 0, it has a limit

J̃0 = E

[
Π lnw(T )+

∫ T

0
p(t) lnw(t)dt

]
.

We therefore expect that the same formulas for ϕ� and χ�, but with γ = 0, should
hold for the criterion J̃0 with logarithmic utility functions. This is indeed correct.
However, the Value function is less simple. It is nevertheless a simple exercise to
check that the following Value function Ṽ , with

P(t) = Π +

∫ T

t
p(s)ds,

satisfies the Bellman equation with the same formulas ϕ� = Σ−1λ , χ� = p/P.
The Value function is

Ṽ (t,w) = P(t) lnw+
λ tΣ−1λ

2

[
(T − t)Π +

∫ T

t
(s− t)p(s)ds

]

+
∫ T

t
p(s)

(
ln

p(s)
P(s)

− 1

)
ds.

1.2 A Discrete-Time Model

We follow essentially the same path as in the continuous trading problem, but with a
discrete-time model, generalizing somewhat Samuelson’s solution [135]. But it will
be convenient to postpone somewhat the description of the market model.

1.2.1 Problem and Notation

1.2.1.1 Dynamics and Portfolio Model

Market

We want to allow discrete transactions, with a fixed time step h between transactions,
an integer submultiple of T . We set T = Kh and K := {0,1, . . . ,K − 1}. Let,
therefore, tk = kh, k ∈K be the trading instants.

As previously, the index 0 denotes a riskless asset for which



10 1 Merton’s Optimal Dynamic Portfolio Revisited

S0(tk) = exp(μ0(k−K)h)S0(T ) = R(tk)S0(T ).

For i = 1, . . . ,n, let, as previously, ui(tk) = Si(tk)/R(tk), and let

τi(t) =
ui(t + h)−ui(t)

ui(t)

be the relative price increment of asset i in one time step,1 so that we have

ui(tk+1) = (1+ τi(tk))ui(tk).

The n-vector of τi is as usual denoted by τ .

Portfolio

Our portfolio is, as in the continuous trading theory, composed of Xi shares of asset
number i, i = 0,1, . . . ,n. Its worth is again

W (tk) =
n

∑
i=0

Xi(tk)Si(tk).

We prefer to use

w(tk) =
W (tk)
R(tk)

=
n

∑
i=0

Xi(tk)ui(tk).

We allow the portfolio manager to change the Xi at each time tk. Hence, we
must distinguish values before and after the transactions. We let Xi(tk), W (tk),
and w(tk) denote the values before the transactions of time tk and, when needed,
Xi(t

+
k ), W (t+k ), and w(t+k ) be their values after the transactions of time tk [with

Xi(t
+
k ) = Xi(tk+1)]. One exception to this rule is that ϕi(tk) will denote the fractions

after the transactions. The transactions of time tk may decrease the worth of the
portfolio by an amount C(tk) = R(tk)c(tk) available for immediate consumption.
Hence

n

∑
i=0

(Xi(t
+
k )−Xi(tk))ui(tk)+ c(tk) = 0

and
W (t+k ) =W (tk)−C(tk), w(t+k ) = w(tk)− c(tk).

Let

1We choose to consider τi as dimensionless, but this is an increment per time step, so that it might
be considered the inverse of a time. Avoiding that ambiguity complicates the notation.
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ϕi(tk) =
Xi(t+k )Si(tk)

W (t+k )
=

Xi(t+k )ui(tk)

w(t+k )
and χ(tk) =

C(tk)
W (tk)

=
c(tk)
w(tk)

be the decision variables of the manager. As previously, ϕ may lie anywhere in R
n,

while now, χ is constrained to be nonnegative and no more than one.
One easily obtains the dynamics of the portfolio as

w(tk+1) = [1+ϕt(tk)τ(tk)][1− χ(tk)]w(tk). (1.15)

1.2.1.2 Utility

We assume that the portfolio manager wants to maximize a weighted sum of the
expected utility of future consumption and of the expected utility of the portfolio
worth at final time T = tK = Kh; hence a performance index of the form

J = E

[

B(w(T ))+
K−1

∑
k=0

U(tk,c(tk))

]

. (1.16)

And as in the continuous trading theory, we shall specialize the analysis to fractional
power utility functions. Let Π be a given nonnegative constant and {pk}k∈K a given
sequence of nonnegative numbers. We set

U(tk,c) = p1−γ
k cγ = p1−γ

k χγwγ , B(w) = Π 1−γwγ . (1.17)

In formula (1.16), pK is not used. It will be convenient to define it as

pK = Π . (1.18)

We shall consider the logarithmic utility in Sect. 1.2.2.3.

1.2.2 Solution

1.2.2.1 Finite Horizon

We have to optimize criterion (1.16), (1.17) with the dynamics (1.15). We do this
via dynamic programming. Bellman’s equation reads

∀(k,w) ∈K×R+,V (tk,w)

= max
ϕ∈Rn,χ∈[0,1]

{
EV
(

tk+1,(1+ϕtτ(tk))(1− χ)w
)
+ p1−γ

k χγwγ
}
, (1.19)

with the terminal condition
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∀w ∈R+, V (T,w) = Π 1−γwγ . (1.20)

Assume that, for some number Pk+1,

V (tk+1,w) = P1−γ
k+1 w

γ ,

which is true for k = K − 1 with PK = Π . Then (1.19) yields

V (tk,w) = max
ϕ∈Rn,χ∈[0,1]

{
EP1−γ

k+1

(
[1+ϕtτ(tk)](1− χ)

)γ
+ p1−γ

k χγ
}
wγ ,

hence V (tk,w) = P1−γ
k wγ , with

P1−γ
k = max

ϕ∈Rn,χ∈[0,1]

{
EP1−γ

k+1

(
[1+ϕtτ(tk)](1− χ)

)γ
+ p1−γ

k χγ
}
.

This recurrence formula for Pk may be simplified as follows. Notice first that it can
be written as

P1−γ
k = max

χ∈[0,1]

{
P1−γ

k+1 max
ϕ∈Rn

E[1+ϕtτ(tk)]γ (1− χ)γ + p1−γ
k χγ

}
.

In the preceding equation, on the right-hand side, the market parameters enter only
the term

L(ϕ) := E[1+ϕtτ(tk)]γ . (1.21)

Let α be defined as

α1−γ := max
ϕ∈Rn

L(ϕ). (1.22)

This is a characteristic of the market. With this notation, the recursion for Pk

becomes

P1−γ
k = max

χ∈[0,1]
[P1−γ

k+1 α1−γ (1− χ)γ + p1−γ
k χγ ].

We now use the following “little lemma.”

Lemma 1.2. Let p, q, and r be positive numbers, and γ ∈ (0,1). Then

max
x∈[0,r]

{p1−γxγ + q1−γ(r− x)γ}= (p+ q)1−γrγ ,

it is obtained for

x =
p

p+ q
r, 1− x =

q
p+ q

r.
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Proof. It suffices to equate the derivative with respect to x to zero,

γ p1−γxγ−1 − γq1−γ(r− x)γ−1 = 0,

to get

r− x
x

=
q
p
,

hence x = rp/(p+ q), which lies in (0,r), and place this back in the quantity to
maximize. We check the second derivative:

γ(γ − 1)[p1−γxγ−2 + q1−γ(r− x)γ−2]

is negative for all x ∈ [0,1] since γ − 1 < 0. 
�
As a consequence, we find that

Pk = αPk+1 + pk, PK = Π = pK ;

hence, recalling (1.18) and (1.20),

Pk =
K

∑
�=k

α(�−k)p�.

We also obtain that the optimal consumption ratio χ� is

χ�(tk) =
pk

Pk
.

The optimal ϕ�, as well as the precise value of α , depends on the probability law we
adopt in the market model. We shall consider that question hereafter, but we may
nevertheless make some remarks similar to those for the continuous-time theory.

Remark 1.3. 1. ϕ�, maximizing L(ϕ), is constant, depending only on the market
model.

2. α is a measure of the efficiency of the market. The Pk are increasing in α . Hence
χ� is decreasing in α . As α goes to 0, χ∗ goes to 1.

3. If Π is large and the pk, k < K, are small, then χ∗ is small. In contrast, if Π = 0,
then χ�(tK−1) = 1. The entire portfolio is sold for consumption in the last step.

1.2.2.2 Infinite Horizon

We investigate now the formulation in an infinite horizon, which is another way of
addressing the long-run worth of the portfolio. Therefore, let a discount constant δ
be given, and let the performance index be

J = E

∞

∑
k=0

δ−khc(tk)
γ = E

∞

∑
k=0

δ−khχ(tk)γw(tk)
γ .


